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1 Means and errors  

1.1 Introduction 

In the research in analytical, physical, and other domains of chemistry the researchers are 

confronted with modeling of the experimental data, error determination, and statistical tests to 

obtain the model parameters. This is a very important part of the experimental research but often 

0poorly understood. 

The purpose of this text is to present these topics together with the exercises. Most of the 

exercises might be performed using easily available Excel, Origin, and SigmaPlot. Unfortunately, 

Excel is not certified for the statistical analysis.1-3 From its version 2013 it was improved and most 

of the earlier errors eliminated. It can be used in typical cases, however, certified programs as 

Minitab should be used for the certified statistical analysis. 

Although excellent books on statistics and data analysis were published,4-19 however, they are 

often too general or too advanced for chemists, and often do not use the new corrected Excel 

functions. The purpose of these notes is to present a comprehensive survey of methods used in 

error and data analysis and modeling of the experimental data. All these issues are illustrated by 

Examples (files in Excel or Origin) which can be inspected. Besides, there are Examples (with 

solutions) which should be solved to better understand these methods. This book is divided in two 

parts, first mainly for simple modeling, error analysis, and statistical tests, second on more 

advanced data reduction, modeling, interpolation, smoothing and numerical integration and 

differentiation. The second book: Data analysis and modeling, Part 2, Chemometrics, treats the 

analysis of larger amount of experimental data and multivariate analysis. 

1.2 Significant digits 

All the experimental measurements are obtained with certain error. Number of significant 

digits must correspond to the precision of the measurements. In the physicochemical or analytical 

measurements standard deviation and confidence limits determine the precision of the results. 

If the numbers are too precise, they should be rounded. Of course, in mathematics there are precise 

numbers which can be determined with any desired precision, e.g. π or e (base of the natural 

logarithms). 

The general rule in calculations is all the calculations are carried out with the maximal 

precision and they are rounded only at the end, otherwise the errors might be introduced at each 

operation. Below, there are examples of rounding off the numbers. 

Rounding 

 

37.56  → 37.6 

37.54  → 37.5 

37.65  → ? 

In this case, to avoid accumulation of errors when the last number is 5 and the number before 

it is even one should round to the smaller value and if it is odd to the larger: 

37.65  → 37.6 

37.35  → 37.4 

 

Other examples: 
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23.4   3 significant digits 

12.40  4 significant digits 

0.002   1 significant digits 

0.0023   2 significant digits 

0.00270  3 significant digits 

 

How many significant digits is in: 

 

240   ? 

2.4102  2 significant digits 

2.40102  3 significant digits 

 

Multiplication/division 

One should keep number of significant digits corresponding to the least precise number: 

7.64315.3 = 116.9379  4 significant digits  3 significant digits = 3 significant digits 

                   = 117 

7.893315 = 118.3995  2 significant digits  = 1.2102  

68.2332  = 4655.7423   5 significant digits  = 4655.7 

 

Addition/subtraction 

One should keep precision corresponding to the least precise number 

386.0 + 67.241 = 453.241  453.2 

 

 386 

   67.241 

     1.32 

+   64.5 

_________ 

 516.421  516 

1.3 Measures of errors 

The purpose of the statistics is to make conclusions about the experimental data. There are two 

principal measures of errors: 

1) Accuracy 

a. absolute error, that is the difference between the measured, xi, and the true value, μ:  

xi – μ  

b. relative error, (xi – μ)/ μ, it is often expressed in % 

2) Precision characterizes reproducibility of the data when one repeats the same measurements 

several times in the same way. The measures are: 

a. standard deviation, σ  

b. variance, σ2 

Differences between accuracy and precision are displayed in Fig. 1.1.  
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Fig. 1.1. Illustration of the precision and accuracy. 

1.4 Type of errors 

There several types of errors: 

1) systematic, they have an origin, which can be determined and corrected 

a. instrumental errors, for example weak battery, resistive electric contacts, etc. 

b. errors of the method, they are caused by the non-ideal behavior of the reactants, 

e.g. complexing reaction too slow, contamination, instability or decomposition of the 

reagents, chemical interferences 

c. errors caused by the experimenter, e.g., reading from the incorrect scale, apparatus 

not correctly adjusted, etc.  

2) random errors, indeterminable, might be positive or negative, caused by then random 

fluctuations, noise, they do not have one cause. Only the random errors can be studied 

using statistical methods. 

1.5 Distribution of errors 

Population is the complete ensemble of data. It might be finite, e.g., number of habitants in 

the city, number of cells in a sample. In typical physical measurements it is an infinite number of 

results that could be obtained in an experiment. Of course, one cannot determine the whole 

 

High accuracy 

Low precision 
Low accuracy 

Low precision 

High accuracy 

High precision 

Low accuracy 

High precision 
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population and acquirement of a very large amount of data is impractical. In physical 

measurements one works with samples. 

Sample is a limited number of repeated measurements which allows to conclude about the 

parameters of the population. 

When one repeats the measurements several times in the same way it is possible to plot 

frequency of obtaining given results versus the obtained value. This is illustrated in Fig. 1.2 where 

number of measured values of the 10 ml pipet volume in the small intervals of 0.01 ml is plotted 

versus the volume found for the repetition of 30, 100, and 1000 times. When the number of 

measurements N goes to infinity, N → , the obtained distribution curve approaches the Gauss or 

normal distribution curve. 

This normal distribution curve describes probability density function, PG, that is the probability 

that the measured value is between x and x + dx. The normal (Gauss) distribution is fully described 

by three parameters: the value x, true value μ, and standard deviation of the population σ: 

 

2

2

( )

2
G

1
( , , )

2

x

P x e



 
 

−
−

=    (1.1) 

 

An example of such continues curve for PG(x, 10.00, 0.01) that is  = 10.00 and  = 0.01 is 

shown in Fig. 1.3.  
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Fig. 1.2. Distribution of the measured values PG(x, 10.00, 0.01) of the volume of 10 ml pipet with 

standard deviation 0.01 for 30, 100, and 1000 measurements. 
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Fig. 1.3. Normal distribution curve for μ = 10 and σ = 0.01. 

Very often normalized distribution is presented for the reduced parameter z: 

 
( )x

z




−
=   (1.2) 

Using this substitution, it is possible to transform G ( , , )P x    into G( ,0,1)P z  with μ = 0 and σ = 1. 

The Gauss distribution function, Eq. (1.1), becomes: 

 
2 /2

G
1

( ,0,1)
2

zP z e


−=   (1.3) 

 

A plot of this function is shown in Fig. 1.4.  

0
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Fig. 1.4. Normalized Gaussian probability function, PG(z, 0, 1). 
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In Excel, G ( , , )P x   , is calculated using NORM.DIST(x, μ, σ, FALSE) and the normalized 

Gauss probability function, G( ,0,1)P z , as NORM.DIST(z, 0, 1, FALSE) or 

NORM.S.DIST(z, FALSE). The logical values FALSE or TRUE are only used to choose the 

formula (two different formulas are used in NORM.DIST) to calculate the value, see also Eq. (1.9)

; with FALSE probability PG is calculated while with TRUE its integral. 

 

The true value is approximated by the mean: 

 1 2 1...
lim N

N

i

i
N

x
x x x

x
N N

 =
→

+ + + 
= = = 

 


  (1.4) 

It might be calculated using Excel function AVERAGE(cell1:cellN). It can be noticed that the sum 

of deviations from the mean is zero: 

 ( )
1

0
N

i

i

x x

=

− =   (1.5) 

The standard deviation of the population is: 

 

2

1

( )
N

i

i

x

N



 =

−

=


  (1.6) 

and the variance, σ2: 

 

2

2 1

( )
N

i

i

x

N



 =

−

=


  (1.7) 

The variation coefficient, CV, is simply the relative standard deviation expressed in %: 

 100%CV



=   (1.8) 

In Excel standard deviation of the population it can be calculated using function 

STDEV.P(cell1:cellN). 

An example of the distribution of the deviations from the mean is presented in Fig. 1.5. 
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Fig. 1.5. Distribution of the deviations from the mean of 16 points distributed normally. The sum 

of the deviations is zero. 

Gaussian curves obtained for different σ and μ are presented in Fig. 1.6 - 1.8. 

 
Fig. 1.6. Gaussian curves for: a) good precision and accuracy, b) bad precision and good accuracy, 

c) good precision and bad accuracy, d) bad precision and accuracy. 
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Fig. 1.7. Gaussian curves for different values of σ and the same μ. 

 
Fig. 1.8. Gaussian curves for different μ and the same σ, 

1.6 Integration of the Gauss curve 

The area of the Gaussian curve between μ–σ and μ+σ or for the normalized curve between -1 

and 1 is 68.3% of the total surface area. This is illustrated in Fig. 1.9.  
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Fig. 1.9. Surface area under the Gauss curve. The area between -1 and +1 is 68.3%. 

For other ranges see Table 1.1 below. 

 

Table 1.1. Surface area under the Gauss curve. 

Non normalized  Normalized   Area 

μ        -1… +1    68.3% 

μ  2      -2… +2    95.5% 

μ  3       -3      +3    99.7% 

μ  1.96        -1.96…+1.96   95% 

 

The integral under the Gauss curve is calculated using NORM.DIST function with the logical 

(cumulative) value TRUE: 

 

2

2

G

( )

2NORM.DIST( , , ,TRUE) ( d,
2

,
1

) d

x xx

x P x e xx



   
 

−

−
−

−

==     (1.9) 

or for the normalized curve: 

 

2

2
G

1
NORM.S.DIST( ,TRUE) ( ,0,1) d e d

2

zz z

z P z z z


−

− −

= =    (1.10) 

If one needs to determine the area under -1 and +1 the following formula should be used: 

 

2
1 1

2
G

1 1

1
( ,0,1) d e d

2

NORM.S.DIST(1,TRUE)-NORM.S.DIST(-1,TRUE)

NORM.DIST(1,0,1,TRUE) NORM.DIST( 1,0,1,TRUE)

z

P z z z


−

− −

=

=

= − −

 

  (1.11) 

These integrals used in Excel are illustrated in Fig. 1.10. 
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Fig. 1.10. The grey area under Gauss curve represents the integral form - to z = 1 and the integral 

form z = -1 to z = 1. 

It should be stressed that integration of the non-normalized and normalized Gaussian curves in 

the same range gives the same results. For example, using data form Fig. 1.3 and 1.4 that is μ = 10 

and σ = 0.01, integrations from μ – σ to μ – σ gives: 

 
2 2

2 2

( ) ( 10)10.01

2 2 0.01

9.99

NORM.DIST(10.01,10,0.01,TRUE) NORM.DIST(9.99,10,0.01,TRUE,T

1 1
d d

2 0.0

RUE)

0.682689

1 2

x xx

x

e x e x





  

− −+ − −


−

−

=

=

=

 

  (1.12) 

 

and using equivalent reduced parameter z 

 

2
1

2

1

1
e d NORM.S.DIST(1,TRUE) NORM.S.DIST( 1,TRUE)

2

0.682689

z

z


−

−

= − −

=

   (1.13) 

 

To illustrate application of the normal distribution few examples will be shown below. 

 

Example 1.1. 

For the normal distribution with  = 25 and  = 5 find: 

a) probability P(x  20) 

We need to calculate integral of the Gauss curve form 20 to , Fig. 1.11: 
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Fig. 1.11. Distribution of PG(x, 25,5) and the calculation of the probability P(x  20). 

 

20

20

( 20) ( ,25,5)d 1 ( ,25,5)d

1 NORM.DIST(20,25,5,TRUE)

1 0.15866 0.84134

G GP x P x x P x x



−

 = = −

= −

= − =

 

  (1.14) 

b) P(x<40) 

 

Fig. 1.12. Distribution of PG(x, 25,5) and the calculation of the probability P(x<40). 

 

40

( 40) ( ,25,5)d

NORM.DIST(40,25,5,TRUE) 0.99865

GP x P x x

−

 =

= =

   (1.15) 

c) P(21x30) 
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P

x
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Fig. 1.13. Distribution of PG(x, 25,5) and the calculation of the probability P(21x30). 
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30 21

(21 30) ( , 25,5)d ( , 25,5)d

NORM.DIST(30,25,5,TRUE)-NORM.DIST(21,25,5,TRUE) 0.62949

G GP x P x x P x x

− −

  = −

= =

    (1.16) 

See calculations in Examples1.xlsx, sheet Ex. 1.1. 

 

Example 1.2. 

The average of notes of one course measured during several years is μ = 65 and  = 15. 

Calculate: 

1) % of students with the average x  85 

2) % of students with the average x ≤ 50 

3) % of students with the average 60 ≤ x ≤ 85 

4) what values of notes have lower 20% of students? 

Re. 1. 

 

85

85

( 85) ( ,65,15)d 1 ( ,65,15)d

1 NORM.DIST(85,65,15,TRUE) 1 0.9088 0.0912 9.12%

P x P x x P x x



−

 = = −

= − = − = =

    (1.17) 

Re. 2. 

 

50

( 50) ( ,65,15)d

NORM.DIST(50,65,15,TRUE) 0.159 15.9%

P x P x x

−

 =

= = =

   (1.18) 

 

Re. 3. 
85 60

(60 85) ( ,65,15)d ( ,65,15)d

NORM.DIST(85,65,15,TRUE)-NORM.DIST(60,65,15,TRUE) 0.5393 53.9%

G GP x P x x P x x

− −

  = −

= = =

    (1.19) 

Re. 4. 

In this case one should find the value of x for which: 

 ( ,65,15)d 0.20

x

GP x x
−

=   (1.20) 

This is illustrated in Fig. 1.14 and for the normalized parameters in Fig. 1.15. 
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Fig. 1.14. Illustration of Example 1.2-4.  

The shaded area is 0.2 of the total area under the curve. 
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Fig. 1.15. Illustration of Example 1.2-4.  

The shaded area is 0.2 of the total area. Graph is shown for the normalized distribution which 

can be obtained by normalization of the parameters, Eq. (1.2) and α = 0.2. 

This can be calculated using Excel function NORM.INV(α, μ, σ): 

 
( ) NORM.INV( , , )

(0.2) NORM.INV(0.2,65,15) 52.4

x

x

   =

= =
  (1.21) 

There are 20% of students have results lower than x = 52.4. 

There is a similar function for the normalized distribution: 

 ( ) NORM.S.INV(0.2) 0.8416z  = = −   (1.22) 

Using Eq. (1.2) one gets x(0.2) = μ + z σ = 65 -0.841615 = 52.4. See calculations in 

Examples1.xlsx, sheet Ex. 1.2. 
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1.7 Standard deviation of the population and sample standard deviation 

The main purpose of the statistics is to find mean, standard deviation, and confidence 

intervals. There are two methods used depending on the amount of data available. 

a) When large amount of data points is available, in practice when its number N  30, one can 

estimate the true μ and standard deviation of the population, σ: 

 

( )
2

i

1 1where    lim

N N

i

i i
x

x x

N N



 = =
→

−

= =

 
  (1.23) 

b) In general, x    but x  → when N →. When N < 30 one cannot determine . In such 

a case one can determine sample standard deviation that is standard deviation of a small 

sample of data points, s: 

 

2

i

1 1

( )

where   
1

N N

i

i i

x x x

s x
N N

= =

−

= =
−

 
  (1.24) 

The difference between σ and s is the term in the denominator indicating number of degrees of 

freedom. There are N points and the number of degrees of freedom should be N, but these points 

were used to determine x , therefore number of degrees of freedom is N-1. 

The average is calculated in Excel using AVERAGE, standard deviation of the population 

using STDEV.P and sample standard deviation using STDEV.S. 

1.8 Standard deviation of the true value and of the mean 

Standard deviations of mean are calculated using the following formula (which will be 

developed in the section on the error propagation in Example 2.4.): 

 x
x x

s
s

N N


 = =   (1.25) 

Example 1.3 

Calculate mean, standard deviation and standard deviation of the mean of the data (100 points) 

in Examples1.xlsx, sheet Ex 1.3. 

 

Calculation of these parameters is shown in Ex. 1.3. The results are displayed in in Fig. 1.16, 

see details in Example 1.3 in Examples1.xlsx, sheet Ex 1.3. It can be noticed, that the average and 

standard deviations approach μ and σ while the standard deviation of the mean, xs , always 

decreases with increase of the number of points. However, xs , initially decreases rapidly and then 

very slowly. 
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Fig. 1.16. Dependence of the random values x, average, xm, standard deviation, s, and standard 

deviation of the average, xs (=sxm), on number of points. 

1.9 Confidence intervals 

Using the statistical methods, it is possible to estimate confidence intervals around x  where 

the real value might be situated. One can determine an interval: a  x   b with certain probability. 

More precisely, one can say with the probability 1-α that the real value is within some interval. 

The value of α is called confidence level but often this term is used for (1-α)100%. There are 

two methods used depending on the fact if the standard deviation of the population is known. 

1.10 Confidence intervals when σ is known 

If one makes more than 30 measures, s → σ. In such a case one can use normal (Gaussian) 

distribution to evaluate the confidence intervals: 

 ( ) ( / 2) ( / 2) xIC x z x z
N


   =  =    (1.26) 

This means that with the confidence of 1 - α the real value is between the limits shown in Eq. 

(1.26) that is with the confidence α that it is outside. For example, for the confidence level of 95%, 
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that is for α = 0.05, the value of z(α/2) = z(0.025) = -1.96 and z(1-α/2) = z(0,975) = 1.96 that is 

|z(0.025)|=z(0.975) (two-tailed test, see Section 1.12). These zones are illustrated in Fig. 1.17. 
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Fig. 1.17. Illustration of the zone 1-α and two tails α/2 each. The grey area constitutes α part under 

the Gauss curve. 

Example 1.4. 

Copper was determined by the atomic spectroscopy. For three measurements the average was 

x  = 2.30 ppm and the standard deviation determined earlier pooling large number of data was 

 = 0.20 ppm. Calculate the confidence intervals for the probability 95% and 99%. 

The value of z(α/2) are: z(0.025) = -1.96 and z(0.005) = -2.58, respectively and those z(1- α/2) 

are: z(0.975) = 1.96 and z(0.995) = 2.58. These values were calculated using NORM.S.INV(p). 

Therefore, the confidence intervals are: 

95% (α = 0.05, α/2 = 0.025) CI(μ) = x  z x  = 2.30  1.960.20/ 3  = 2.30  0.23 

99% (α = 0.01, α/2 = 0.005) CI() = x  z x  = 2.30  2.580.20/ 3  = 2.30  0.30. 

There is a probability of 5% that the real value is outside intervals 2.30  0.23 and probability 

of 1% that the real value is outside the intervals 2.30  0.30. See calculations in Examples1.xlsx, 

sheet Ex. 1.4. 

 

1.11 Confidence intervals when σ is not known 

If σ is unknowns one must use s (sample standard deviation) to estimate the confidence interval. 

However, in this case one cannot use normal distribution. Because less data is known the result 

will depend on the number of points used and one has to use the Student distribution function. 

It gives larger confidence intervals than normal distribution. Only when N → , Student 

distribution becomes normal. The values of the Student distribution function are presented in Fig. 

1.18, and Example 1.5. 
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Example 1.5.  

Simulate Student distribution functions and their integrals for df = 4 and 9 degrees of liberty. 

Compare with normal distribution function. 

The results are shown in Examples1.xlsx, sheet Ex. 1.5.  

Student distribution depends on the number of degrees of freedom df = N – 1. In the calculation 

of the confidence intervals instead of z(α/2) one should use t(α, df): 

 ( ) ( ", ) ( ", ) x
s

IC x t df x t df s
N

  =  =    (1.27) 

where df = N – 1 and symbol α” indicates so called two-tailed test (see below). The values of the 

Student distribution function might be calculated using Excel function: T.DIST(t,df,FALSE). The 

values of t(α, df) are calculated in Excel using T.INV.2T(α, df); this is so called two-tailed Student 

distribution (symbolized by ) which means that the surface area outside the central 1-α is α and 

there are two tails, α/2 each, similarly to Fig. 1.17. 
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Fig. 1.18. Student probability, PS, distribution for the number of degrees of freedom df = 2, 4, 9, 

and , when it becomes normal. 

For example, using probability of 95%, |z(0.05/2)| = z(1-0.05/2) = 1.96 and for three 

measurements t(0.05”,2) = 4.30, which means that the confidence intervals are over two times 

larger than for the normal distribution for df = 2.  

1.12 Two-tailed and one-tailed tests 

In the above tests we were determining the confidence intervals for the normal: ( / 2) xx z    

and for the Student ( ", ) xdx t f s  distributions for which the probability of finding our values 

was 0.95 or 95%. This means that the probability of finding results outside this interval is 0.05 or 
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5%. This case is illustrated in Fig. 1.19, left, for the Student distribution function. Confidence 

interval values, Eq. (1.27), xCI are: 

 

( )

( ) ( )

CI

CI

",

", ",

x

x

x x
t df

s

x x
t df t df

s



 

−
= 

−
−   +

  (1.28) 

This case is called two-tailed t-test shown in Fig. 1.19, left. There are two tails containing each 

0.025 of the total surface area, therefore, the total surface area of two tails is 0.05 and the part 

inside the confidence intervals is 0.95. Index  indicates that this is a two-tailed test. It might be 

calculated using Excel function: T.INV.2T(α,df) or in this particular case T.INV.2T(0.05,4). 

Another case is so called one-tailed test. It corresponds to the condition CI ( ', ) xx x t sdf +  

illustrated in Fig. 1.19, right. Here we are interesting only in the data below the confidence interval:  

 ( )CI ',
x

x x
t df

s


−
 +   (1.29) 

 
 

Fig. 1.19. Student t density of probability distribution function for 4 degrees of freedom showing 

two-tailed (left) and one-tailed (right) tests for the confidence level α = 0.05. The black areas of 

two tails (left) have the probability of 0.05 and the central part of 0.95. The corresponding value 

of t(0.05,4) is calculated using Excel function T.INV.2T(0.05,4). The black area of the one-tailed 

distribution graph is 0.05 and that of the rest is 0.95, calculated as t(0.05’,4) i.e. T.INV(0.95,4) = 

|T.INV(0.05,4)|.  

The probability that  

 ( )CI ',
x

x x
t df

s


−
 +   (1.30) 

is α. The sign ’ means that the one-tailed distribution is used. The corresponding value of t(α’,df) 

is calculated using Excel function T.INV(α,df) and it the case of t(0.05’,4) as T.INV(0.95,4). These 

calculations are shown in Example 1.5 for df = 4. 
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Example 1.6. 

The analysis of alcohol in blood gave the following results: 0.084%, 0.089% and 0.079%. 

Calculate the confidence intervals for the confidence limit of 95%. 

a) using only these data 

b) assuming that σ is known,  =  0.006%. 

 

Re. a) 

Student statistics is used,  is unknown 

x  = (0.084 + 0.089 + 0.079)/3 = 0.084 

Sample standard deviation: 

( )
1 0.005

1

N

i

i

x x

s
N



=

−

= =
−


  

df =N – 1 = 3 -1  = 2 

t(0.05,2) = 4.30 

CI = 0.084  4.30*0.005/ 3  = 0.084  0.012.  

The results should be presented in the following form: 

x  = 0.084, s = 0.005, xs  = 0.003 for N = 3 or df = 2 

With the probability of 95% the true value is between: 

0.072 ≤ x  ≤ 0.096 or x  = 0.084 ± 0.012. 

It should be stressed that  is reserved for confidence intervals and must not be used for the 

standard deviations! 

Re. b) 

 is known, normal distribution is used 

|z(0.05/2)| = z(1-0.05/2) = 1.96 

IC = 0.084  1.96*0.006/ 3  = 0.084  0.007 

x  = 0.084,  = 0.006, x  = 0.003 for N = 3 or df = 2 

With the probability of 95% the true value is between: 

0.077 ≤ x  ≤ 0.091 or x  = 0.084  0.007 

It should be noticed that using known value of   the CI are smaller. See calculations in 

Examples1.xlsx, sheet Ex. 1.6. 

 

Example 1.7. 

Measurements of the iron concentration in the sample carried out using atomic absorption 

spectroscopy gave the following results: 3.2, 2.9, 3.0, 3.3, 3.1 ppm. Calculate the mean standard 

deviation, standard deviation of the mean, and confidence intervals for the confidence level of 95% 

and 99%. 

a) 95% 

The analysis might be carried out as in Example 1.6b but it is easier to use Descriptive Statistics 

in Data Analysis in Excel (for the first use it must be installed: File, Options, Add-Ins, Excel Add-
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Ins, Analysis ToolPack; the necessary files are already on the disk). Below there is the obtained 

result. Explanations were added on the right. 

Column1  

  

Mean       3.1      x   

Standard Error     0.071     xs   

Median      3.1      value in the middle 

Mode       #N/A 

Standard Deviation   0.16     s 

Sample Variance    0.025     s2 

Kurtosis      -1.2 

Skewness      8.7E-15 

Range       0.4      xmax – xmin 

Minimum      2.9      xmin 

Maximum      3.3      xmax 

Sum       15.5     

1

N

i

i

x

=

   

Count       5      N 

Confidence Level(95.0%)  0.196324316   ( ", ) xdft s  

 

To present the results they should be rounded: 

x  = 3.10, sx = 0.16, xs  = 0.07, N = 5 (df = 4) 

With the probability of 95% the true value is between: 

2.90 ≤ x  ≤ 3.30  

(that is 3.10-0.20 and 3.1+0.20) or x = 3.10  0.20 

 

b) 99% 

Column1  

  

Mean       3.1 

Standard Error     0.071 

Median      3.1 

Mode       #N/A 

Standard Deviation   0.16 

Sample Variance    0.025 

Kurtosis      -1.2 

Skewness      8.7E-15 

Range       0.4 

Minimum      2.9 

Maximum      3.3 

Sum       15.5 

Count       5 

Confidence Level(99.0%)  0.33 
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The only difference in comparison with the earlier example is the value of “Confidence 

Level(99%)” which is in fact the value which should be subtracted and added to the mean to obtain 

CI. 

x  = 3.10, sx = 0.16, xs  = 0.07, N = 5 (df = 4) 

With the probability of 99% the true value is between: 

2.77 ≤ x  ≤ 3.43 or x = 3.10  0.33. 

See calculations in Examples1.xlsx, sheet Ex. 1.7. 

1.13 Pooling data 

Very often many measurements are carried out in a similar way, but the number of repetitions 

is small. Nevertheless, all these results might be applied to determine better estimation of the 

sample standard deviation or even standard deviation of the population. The standard deviation of 

the pooled data is calculated using: 

 

2

pooled

( )ix x
s

N n

−
=

−


  (1.31) 

where n is the number of samples and iN N=   is the total number of measurements.  

 

Example 1.8. 

Let us suppose that the measurements were carried out on 8 samples, each sample was 

different:  

Sample #    Ni    x   
2( )ix x−  

1      5  1.673  0.029 

2      4  1.015  0.0115 

3      5  3.24  0.0242 

4      6  2.018  0.0611 

5      4  0.57  0.0114 

6      5  2.482  0.0658 

7      4  1.13  0.0175 

8      7  1.27  0.0319 

N = 40       = 0.2524 

 

 

The value df = N – n = 40 – 8 = 32 is the number of degrees of freedom (total number of points 

minus number of means). In the above case spooled = 0.089. Because number of degrees of freedom 

is larger than 30 one can consider spooled = σ. See calculations in Examples1.xlsx, sheet Ex. 1.8. 

1.14 Weighted mean 

When the different measures are characterized by different precision one should take it into 

account and use the weighted mean. Let us assume that for each measurement its standard 

deviation is known: 
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1

2

3

1

2

3

...

N

x

x

x

N x

x s

x s

x s

x s

 

The statistical weights, wi, of each measurement is inversely proportional to the variance: 
21 /
i

i x
w s= . The weighted mean is calculated as: 

 i i

i

w x
x

w
=




  (1.32) 

and its standard deviation is: 

 2

2

1 1

1

i

x
i

x

s
w

s

= =
 

  (1.33) 

This will be illustrated in the following example. 

 

Example 1.9. 

In the case of the radioactive decay the standard deviation is equal to the square root of 

number of impulses measured, xi (Poisson distribution): 

 
ix is x=   (1.34) 

The following results were obtained during data acquisition in different times: 

Time of data acquisition 

ti / min 

Number of impulses measured 

xi 

5 10255 

20 41200 

2 4084 

10 20650 

Calculate the sample specific activity i.e. impulses per minute. 

The specific activity ri = xi/ti and its standard deviation: i

i

x i

r

i i

s x
s

t t
= = . The following 

results are obtained: 

 

Activity 

/i i ir x t=  

Standard deviation 

/i i is x t=  

wi wi ri wi(ri- r )2 

2051 20.25 0.002438 5 0.161742 

2060 10.15 0.009709 20 0.007092 

2042 31.95 0.0009794 2 0.287916 

2065 14.37 0.004843 10 0.165991 

 sum 0.01797 37 0.62274 
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Using Eqns. (1.32) and (1.33) the following results are obtained: 

r  = 2059.1 pulses/min, xs  = 7.5 pulses/min.  

These results are in Examples1.xlsx, sheet Ex. 1.9. 

 

In certain cases standard deviation of the mean seems to be too small with respect to the 

standard deviations of the samples.7,20 This can arrive when the distribution of the measured data 

is not normal. This hypothesis can be determined using χ2 (chi-square) test, defined as:  

 

 

2
2 2

2
1 1

( )
( )

i

N N
i

i i

i ix

x x
w x x

s


= =

−
= = −    (1.35) 

 

This experimental function should follow χ2(α,k) statistics. It can be determined in Excel using 

CHISQ.INV.RT(α,k). In the above example is: 2
exp  = 0.6227. The value of χ2(0.05, 3) = 7.81. 

Because the experimental value of 2
exp  < χ2(0.05, 3) we can accept the obtained result (see later 

in this test in the verification of the statistical hypotheses). χ2 distribution function will be shown 

in Section 4.10.  See calculations in Examples1.xlsx, sheet Ex. 1.9. 

Let us consider another example.  

 

Example 1.10. 

Five measurements were carried out and the following results were obtained: 

 

xi ixs  

1.4 0.2 

0.9 0.15 

3.0 0.3 

1.8 0.2 

2.5 0.25 

 

Calculate the mean and the standard deviation. 

 

The results of calculations are presented below. 
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Table 1.2. Calculations of the weighted mean. 

ix    
ixs     wi       wi xi    

2( )i iw x x−  

1.4   0.2    25    35    0.907195 

0.9   0.15  44.44444   40    21.19029 

3.0   0.3   11.11111  33.33333   22.07454 

1.8   0.2    25    45    1.097323 

2.5   0.25   16    40    13.23523 

 

  sum=  121.5556  193.3333   58.50457 = 
2
exp  

  

x =  1.59             2 (0.05,4) = 9.488 

xs  = 0.09 

 

It can be noticed that the experimental value of 
2
exp  = 58.50457 is much greater than  

2 (0.05,4) = 9.488. This might indicate that the standard deviations of the meare too small and 

the error distribution is not normal. In such a case it was suggested7,20 that the standard deviation 

should be multiplied by a factor 
2
exp / ( 1)N −  : 

 

2
exp

,corr
1

x xs s
N


=

−
  (1.36) 

In the case above: 

 ,corr
58.505

0.091 0.35
4

xs = =   (1.37) 

See calculations in Examples1.xlsx, sheet Ex. 1.10. 
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2 Propagation of errors 

In physico-chemical measurements it is necessary to calculate function of several (n) 

parameters pi, ( )1 2 3, , ,... nz p p p p  where each parameter is determined with its standard deviation. 

To answer the question what is the standard deviation of z calculated using parameters pi one 

should use the error propagation method. 

2.1 Standard deviation of the calculated value 

Let us assume a function z of n parameters: 

 ( )1 2, ,  ..., nz f p p p=   (2.1) 

Its total derivative is: 

 

2 1 3 1 1

1 2
1 2,..., , ,... ,...,

d d d d

n n n

n
np p p p p p p

f f f
z p p p

p p p
−

      
= + +     

       
  (2.2) 

Let us assume that the deviations dxi are very small, that is pi <<pi where: 

 d    i i ip p = −   (2.3) 

and 

 ( )1 1 2 2 1 2d   , ,  ...  ,  ( ,  ... )n n nz z p p px p p pp pf p= +  + +  −   (2.4) 

The square of dz is: 

 

2 2

2 2 2

1 2

1 2

1 2 1 3

1 2 1 3

d d d ...

2 d d 2 d d ...

f f
z p p

p p

f f f f
p p p p

p p p p

    
= + +   

    

         
+ + +      

          

  (2.5) 

The values dpi
2 are always positive but the terms d di jp p  might be positive or negative and in 

the summation they might cancel, therefore: 

 

2 2
2 2 2

1, 2,
1 21 1 1

(d ) (d ) (d ) ... :
N N N

i i i
i i i

f f
z p p N

x x

 

 
= = =

   
 + +   

   
     (2.6) 

and the sum of squares leads to standard deviation: 

 

22
2( )d i i
z

pz

N N




 −
= =   (2.7) 

This equation might be written for standard deviations of a population or of a sample (assuming 

that the parameters pi are independent): 

 
1 2

1 2

2 2
2 2 2

1 2

2 2
2 2 2

1 2

...

...

z p p

z p p

f f

p p

f f
s s s

p p

  
    

= + +   
    

    
= + +   

    

  (2.8) 
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Eq. (2.8) allows us to calculate the standard deviation of z when the standard deviations of the 

parameters are known. 

To determine the confidence interval of z it is necessary to estimate the effective number of 

degrees of freedom, veff, for z, and the value of t. Let us suppose that each parameter pi is 

determined Ni times with the number of degrees of freedom dfi = Ni – 1. Of course, the number of 

measurements might be different for each pi. Then, the effective number of degrees of freedom for 

z is calculated using the following equation:21,22  

 

2
2

4
2

4
4

1

1

4

4
4

1

i
i

i

n

p n pii iz

eff eff ii

z
eff

n p
i

ii

z zs sp ps

df df df

s
df

z
s

p

df

=

=

=

               
= =

=

 
 

 







  (2.9) 

and the confidence interval is calculated as ( , )eff zt df s . It should be noticed that eff idf df 
. 

More detailed definition of the error propagation will be given later in Eqs. (3.134)-(3.135)

. 

2.2 Maximal error 

When standard deviation is not known because the error analysis was not performed it is 

possible to estimate the maximal error which could be found when there is no cancelation of the 

terms. It can be found, assuming pi <<pi, Eq. (2.10): 

 

 

2 1 3 1 1

1 2
1 2,..., , ,... ,...,

d d d ... d

n n n

p
np p p p p p p

f f f
z p p p

p p p
−

      
= + + +     

       
  (2.10) 

becomes: 

 

2 1 3 1 1

1 2
1 2,..., , ,... ,...,

d ...

n n n

n
np p p p p p p

f f f
z p p p

p p p
−

      
=  +  + +     

       
  (2.11) 

or: 

 1 2
1

' ( , ,... )
i

n

p n i
i

z f p p p x

=

 =    (2.12) 

where z represents the maximal error without the compensation of the random deviations. This 

is the worst-case scenario but it allows for a quick estimation of possible errors. This will be 

illustrated in Example 2.1. 

 

Example 2.1. 
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Calculate the standard deviation and confidence interval of the volume of the box having 

dimensions a, b, and c using the following data: 

a = 5.5  b = 3.6  c = 1.9  sa = sb = sc = 0.1 (all in mm). The measurements of each 

parameter were repeated 4 times (dfi – 4 – 1 = 3). 

 

V = abc = 37.62 

 
2 2 2 2 2 2 2( ' ) ( ' ) ( ' ) ( ) ( ) ( ) 5.48

2.3

V a a b b c c a b c

V

s f s f s f s b c s a c s abs

s

=  +  + =   +   + =

=
  (2.13) 

 

 
4

4 4 4
4 4 4

5.37 5

3 3 3

V
eff

a b c

s
df

V V V
s s s

a b c

= = 
       

     
       + +

  (2.14) 

and t(0.05,5) = 2.57 and confidence interval is sV t(0.05,5) = 6.0. 

The answer is: V = 37.6, sV = 2.3, and CI = 6.0. It is important to note that the number of 

significant digits in the standard deviation is one or two and the calculated function must be 

rounded accordingly. See calculations in Examples2.xlsx, sheet Ex. 2.1-2.2. 

 

Example 2.2. 

Calculate the maximal error in the above example assuming: a = b = c = 0.1. 

 ' ' ' 3.7a a b b c cV f f f =  +  +  =  (2.15) 

The answer V = 37.6, V = 3.7 (or V = 38, V = 4). See calculations in Examples2.xlsx, sheet 

Ex. 2.1-2.2. 

 

Example 2.3. 

Calculate the standard deviation of the sum: 

 

2 2
2 2

2 2 2

y a

y a b

y a b

y y
s s

a b

s s s

= +

    
= +   

    

= +

  (2.16) 

The variance of sum equals sum of variances. 

 

Example 2.4. 

Calculate standard deviation of the mean assuming that the standard deviation of each 

measurement is the same, sx. 
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( )1
1 2

2 2 2 2
2 2 2 2 2

1

2
2 2 2 2

2 2 2 2

1
...

1 1 1
...

1 1 1
...

N

i

i
N

N

x x x x
ii

x
x x x x

x

x

x x x
N N

s s s s s
x N N N

N s
s s s s

NN N N N

s
s

N







=

=

= = + + +

       
= = + + +       

       

= + + = =

=



   (2.17) 

Standard deviation of the mean is the standard deviation of a single measurement divided by 

the square root of the number of points, see Eq. (1.25). 

 

Example 2.5. 

Calculate the standard deviation of the product: y = ab: 

2 2 2 2 2 2 2 2

2 2 2

2 2 2

2 2

:y a b

y a b

a b
y

s b s a s y a b

s s s

y a b

s s
s y

a b

= + =

= +

   
= +   

   

  (2.18) 

In the multiplication (or division) the relative variances are added. 
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Example 2.6 

 2 2 2( )

a

a
y a

y
a

y e

s e s

s
s

y

=

=

=

  (2.19) 

Example 2.7. 

 2 1 2

1

  where  is a constant

( )

n

n
y a

n
y

a an

y a n

s na s

s na n
s s

y aa

−

−

=

=

= =

  (2.20) 

Example 2.8. 

Calculate volume, standard deviation, and confidence interval of a cylinder characterized by 

the diameter D and the height h:  D = 7.76 mm, sD = 0.02 mm; h = 62.33 mm, sh = 0.02 mm. The 

individual measurements of D and h were repeated six times. 

 

( ) ( ) ( ) ( )

2
3

2 2
2 2

2

2 2 2 2

3

2947.88 mm
4

,
2 4

759.8 0.02 47.29 0.02

230.9 0.849 15.2 mm

V D h

V

D h
V

V V
s s s

D h

V Dh V D

D h

s



 

= =

    
= +   

    

 
= =

 

= + =

= + =

  (2.21) 

The value of dfeff calculated using Eq. (2.9) is 5.04  5, t(0.05,5) = 2.57 and dfeff t(0.05,5) = 39. 

The final results are: V = 2948 mm3, sV = 15 mm3, CI = 39. It is evident that the largest contribution 

to the standard deviation comes from the measurements of the diameter. See calculations in 

Examples2.xlsx, sheet Ex. 2.8. 

 

Example 2.9. 

Few more examples. 
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a) 

 

22 2
2 2 2 2 2

2

2 2 2

2 2 2

:y a b c

a b c
y

ab
y

c

b a ab
s s s s y

c c c

s s s
s y

a b c

=

    
= + + −     

     

= + +

  (2.22) 

b) 

 
( )

( )

( )

( )

( )
( )

2
2 2

2 2 2 2 2
2

22 2
2 2 2

2 4

1 1
y a b c d

a b
y c d

a b
y

c d

a b
s s s s s

c d c d c d

a bs s
s s s

c d c d

−
=

+

 −     = + − + − +   
 + +    + 

−+
= + +

+ +

  (2.23) 

c) 

 

( ) ( )

2 2

2 2 2
2 2

2 2
y a b

a b
y

a b

b A
s s s

a b a b

−
=

+

   
   = +
   + +   

  (2.24) 

d) 

 

( )
( )

1/3

22
2/3 2/3

2 2 2 2
2

1 1 1

3 3
y a b c

a
y

b c

a a a
s s s s

b c b c b c b c

− −

 
=  

+ 

     
 = + − +    

+ + +      +   

  (2.25) 

e) 

 
ln10

ln10

10

ln ln10;

ln(10) ln(10)

a

a

a
y a a

y

y a y e

s e s y s

=

= =

= =

  (2.26) 
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f) 

 

10log

10 ;    ln ln10

ln

ln10

1

ln10

y

y a

y a

a a y

a
y

s s
a

=

= =

=

=

  (2.27) 

g) 

 

( ) ( ) ( )
2 2 2

2 2 1 2 2ln

c

c c c
y a b c

y ab

s b s acb s ab b s−

=

= + +
  (2.28) 

Example 2.10. 

pH of the solution is 2.10. What is the standard deviation of the H+ concentration when: 

spH = 0.01 

 
H

H

pH 3

H

pH 4
pH

3

10 7.94 10

10 ln10 1.8 10

0.18 10

a

a

a

s s

s

+

+

+

− −

− −

−

= = 

= = 

= 

  (2.29) 

spH = 0.02 

 
H

30.37 10as
+

−=    (2.30) 

See calculations in Examples2.xlsx, sheet Ex. 2.10. 

 

Example 2.11. 

From the Nernst equation 0 log xE E p a= +  determine the standard deviation of ax. 

 

 

( )
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0

0

0

0 0

0

( )/

( )/

( )/
0

( )/ 0 2

2
( )/ ( )/ 0

2 2 2 2
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10 (ln10) /

10 (ln10) /

10 [( ) ln10] /

10 (ln10) 10 [( ) ln10]

x

E E p
x

E E px

E E px

E E px

E E p E E p

E pa E

a

a
p

E

a
p

E

a
E E p

p

E E
s s s s

p p

−

−

−

−

− −

=


=




= −




= − −



   
−   = + +

   
   

  (2.31) 
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Example 2.12. 

To determine the activity using ion selective electrodes two measurements were performed, 

first in the standard solution containing a1 = 10-3 where E1 = 237.1 mV and the second in the 

unknown solution where E2 = 250.7 mV. The slope p = 25.9 mV, sp = 0.4 mV, the standard 

deviations of the potentials are sE = 1.0 mV, and that of the standard 
1as  = 310-5. What is the 

value, standard deviation, and confidence interval of the unknown solution assuming that the 

measurements of a1 were repeated 6 times, E1 4 times, E2 4 times, and p 5 times? 

 

( )

2 1

2 1 2 1

2 1 2 1

2

2

0 0
1 1 2 2

3
2 1

2 2
1

1 1

2 12 2
1 1 2

2

4

3 3
2

ln ln

1.691 10

1

1

3.7 10

1.69 10 0.37 10

E E

p

E E E E

p p

E E E E

p p

a

a

E E p a E E p a

a a e

a a
e a e

a E p

E Ea a
a e a e

E p p p

s

a s

−

−

− −

− −

−

− −

= + = +

= = 

  
= = − 

   

−  
= = 

  

= 

=  = 

  (2.32) 

The effective number of degrees of freedom for a2, dfeff = 4.719  5, and CI = 0.9510-3. 

See calculations in Examples2.xlsx, sheet Ex. 2.12. 
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3 Linear regression     

3.1 Introduction  

Very often there is a correlation between data y and x, see for example Fig. 3.1. 

 

 
Fig. 3.1. Examples of correlation between x and y: a) and b) negative and positive correlations 

with low dispersion, c) no correlation, d) correlation with large dispersion. 

If there is a correlation between data one can use different models to describe those using 

equations. Let us first consider linear correlation between data. 

In analytical and physical chemistry very often linear relations exist. In many other cases, the 

nonlinear equation might be linearized, e.g.: 

 

0

0 1

0
0 1

ln

where  ,   , , ln

E E p a

y b b x

y E b E b p x a

= +

= +

= = = =

  (3.1) 

or 

 
0 1

0 1

exp( / )

ln ln

1
ln , ln , ,

k A E RT

E
k A

RT

y b b x

E
y k b A b x

R T

=

= +

= +

= = = =

  (3.2) 
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It should be added that linear regression means that regression is linear versus parameters, that 

is polynomial regression is linear and y = exp(b x) nonlinear, because y is a nonlinear function of 

parameter b. 

3.2 Determination of the parameters and standard deviations of linear regression 

Let us suppose that N values yi are measured as function of xi: 

 

1 1

2 2

3 3

N N

...

x y

x y

x y

x y

  (3.3) 

Let us also assume that only the measured values yi are determined with certain error while the 

values xi are known without error that is their precision is much larger than that of yi. Then we can 

postulate a linear regression between the data: 

 0 1ŷ b b x= +   (3.4) 

where ŷ  are the values calculated using above equation and parameters b0 and b1 are calculated 

for N pairs xi and yi. Of course, in reality, because of the experimental errors, for each experimental 

point one can write the relation: 

 0 1i i iy b b x = + +   (3.5) 

where εi is: 

 ˆi i iy y = −   (3.6) 

the difference between the experimental and calculated value for xi. The least squares method 

minimizes the sum of squares S2: 

 
2 2 2 2

0 1

1 1

ˆ( ) ( ) min
N N N

i i i i i

i i i

S y b b x y y

= =

= = − − = − =     (3.7) 

This means that the parameters b0 and b1 minimize the sum of squares. At the minimum one can 

write that the derivative of the function is zero: 

 

1 0

2 2

0 1

0 0

b b

S S

b b

    
= =   

       

  (3.8) 

This is illustrated in Fig. 3.2. Differentiation, Eq. (3.8), of S2, Eq. (3.7), gives: 

 
0 1

0 1

2( ) 0

2( ) 0

i i

i i i

y b b x

y b b x x

− − =

− − =




  (3.9) 

where the summation goes from i = 1 to N. These two equations might be rearranged into: 

 
( )

( ) ( )
0 1

2
0 1

i i

i i i i

Nb x b y

x b x b x y

+ =

+ =

 

  
  (3.10) 
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Fig. 3.2. The experimental points and a straight line which minimizes the sum of squares of 

deviations 2
i . 

Eq. (3.10) presents a system of two equations with two unknowns. It can be written in a matrix 

form as: 

 
0

2
1

i i

i ii i

N x yb

x ybx x

    
=    

      

 
 

  (3.11) 

with solution: 

 

2

0

x y x xy
b

d

−
=

   
  (3.12) 

and 

 1
xy

xx

SN xy x y
b

d S

−
= =

  
  (3.13) 

where 

 ( )
22

xxd N x x NS= − =    (3.14) 

Matric method of solution of Eq. (3.11) will be presented in Section 3.12. One can give another 

form of the solutions introducing new parameters: 

i



41 

 

( )
( )

( ) ( )

( ) ( ) ( )

2
2 2

2

2 2

2
2

2 2 2

2 2

2 2

2

2

2

ii i
xx i i

i i
i

i i i
i i

i

xx x
S x x x

N N

x N x
x

N N

x x x
x x

N N

d
x N x

N

 
 = − = − +
 
 

 
 = − +
 
 

− +
= + = −

= = −


 

 


  
 



  (3.15) 

 

 ( )
( )

2
2 2 i

yy i i

y
S y y y

N
= − = −


    (3.16) 

 

 ( )( ) i i
xy i i i i

x y
S x x y y x y

N
= − − = −

 
    (3.17) 

and 

 1
xy

xx

S
b

S
=   (3.18) 

It should be added that to avoid numerical errors Sij should be calculated using formulas with 

mean values instead of sums of xi and yi. Standard deviation of each value yi, ys  (also called 

residual standard deviation, rs ) is calculated from the sum of deviations ˆi iy y− , similarly to the 

standard deviation of the arithmetic mean, but with the number of degrees of freedom is now df = 

N – 2, because 2 parameters: b0 and b1 must be calculated first to obtain the standard deviation: 

 
( ) ( )

2 2
0 1ˆ

2 2

i i i i
y

y y y b b x
s

N N

− − −
= =

− −

 
  (3.19) 

The standard deviation of b1 is calculated from Eq. (3.18) using Eq. (3.17): 

 
1

2 2
2 2 21 1

y yb
i ii i

b b
s s s

y y

    
= =   

    
    (3.20) 

 1 i i

i

Nx xb

y d

−
=




  (3.21) 

 
( )

22 2 2
1

2

2i i k k

i

N x Nx x xb

y d

− + 
= 

 

 
  (3.22) 

and finally: 
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( ) ( ) ( )

( )
1

2 2 22 2 2
2 2 2 2

2 2
22

2i i i i i
y y yb

i i

N x N x N x N x x N
s s N s s

dd
N x x

− + −
= = =

 −
  

    

 

 (3.23) 

and 

 

( )
1 2

y y
b y

xx
i

s sN
s s

d S x x

= = =

−
  (3.24) 

To calculate the standard deviations of the origin b0 one should use condition that regression 

passes through point x , y  (see below) 

 0 1y b b x= +   (3.25) 

or 

 0 1b y b x= −   (3.26) 

and applying the law of error propagation: 

 

( )

( )

0 1

0

22 2 2 2
22 2 2 20 0

1

2 2 2

2

1

1

y y i
y yb b

i i i
b y y y

xxi

s Ns xb b
s s s x s

y b N d d

x x x
s s s s

d N NSx x

   
= + =  + − =  

    

= = =
−



  



  (3.27) 

 

3.3 Properties of the least-squares method 

Let us determine the sum of deviations, εi: 

  

 

( ) ( )

( )

0 1
1 1

2

ˆ
N N

i i i i i
i i

i i i i i
i

i i i i i

y y y b b x

x y x x y
y

d

N x y x y x

d



= =

= − = − −

 −
 −
 =
 −
 −
  

  

   


  

  (3.28) 
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( )

( )

( )

2

2

22

22

0

i i i i i i

i i i i i

i i i i

i i i i

y d N x y N x x y

d

N x x y y x

N

N x y y x

d

N x y y x

d

− +
=

− +
+

−
=

− +
+ =

    

   

   

   

  (3.29) 

or 

 ˆ
i iy y=    (3.30) 

 ˆ
i iy y=   (3.31) 

which means that the averages of the experimental and calculated values is the same and the 

straight line passes through this point: ,x y . 

 

3.4  Standard deviation of the calculated values ˆiy    

The calculated values are given by: 

 0 1ˆi iy b b x= +   (3.32) 

and might be rearranged into: 

 ( )1ˆi iy y b x x= + −   (3.33) 

The standard deviation is calculated using error propagation method: 

 ( )
1

22 2 2
ˆi

y iy b
s s s x x= + −   (3.34) 

but 

 
( )

( )
1

22 2
22 2ˆ

2

y yi i
y y xx ib

xx

s sy y
s s s S x x

N N S

−
= = = = −

−


   (3.35) 

and 

 
( )

2

ˆ
1

i

i
y y

xx

x x
s s

N S

−
= +   (3.36) 

This equation indicate that the smallest standard deviation is at ix x= , ˆ /
iy ys s N= , and it 

increases going further in both directions. The confidence intervals for these parameters are 

calculated by multiplying the standard deviations by t0.05, N-2 (assuming 95% probability): 

 

0

1

0 0.05, 2

1 0.05, 2

ˆ0.05, 2ˆ
i

N b

N b

i N y

b t s

b t s

y t s

−

−

−







  (3.37) 

This is illustrated in Fig. 3.3. 
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3.5 Standard deviations of the experimental yi  

In a similar way it is possible to calculate the standard deviations and confidence intervals of 

yi. Deviation, Δ, of the experimental point yi form that predicted by regression, ˆiy  is: 

 ˆi i iy y = = −   (3.38) 

 
( )

2
2 2 2 2

ˆ

1
1

i

i
y yy

xx

x x
s s s s

N S


 −
 = + = + +
 
 

  (3.39) 

and 

 
( )

2
1

1 i
y

xx

x x
s s

N S


−
= + +   (3.40) 

It is evident that the standard deviation of the experimental yi is larger than that of ˆiy  calculated 

and it also depends on the distance from x . Comparison of the confidence intervals ( , )iy s t k  

is presented in Fig. 3.4 ( , )iy s t k . Certain graphical programs (Origin, SigmaPlot) make these 

plots automatically. They might be also calculated manually in Excel using formulas presented 

above.  
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Fig. 3.3. Plot of the experimental points (symbols), calculated straight line (black line) and 

confidence intervals of ˆiy  ( ˆ0.05, 2ˆ
ii N yy t s− , red line). 



45 

2

2.5

3

3.5

4

4.5

5

5.5

6

0.97 1.17 1.37 1.57 1.77 1.97 2.17

x

y

exp

calc

IC y calc

IC y calc

IC y exp

IC y exp

 
Fig. 3.4. Plot of the experimental points (symbols) calculated straight line (black line), and 

confidence intervals of ˆiy  (red line), and that of yi (dashed line) for α = 0.05. 

3.6 Correlation and determination coefficients 

Correlation coefficient, r, describes how good is the regression. It takes values between -1  r  

1. It is defined as: 

 xy

xx yy

S
r

S S
=   (3.41) 

When it is 0 there is no correlation and when it is |1| the correlation is ideal, and all the 

experimental points lay exactly on the line. Qualitatively, one can use terms: 

r > 0.95 good correlation 

r > 0.99 very good correlation. 

 

The statistical meaning has the determination coefficient r2 (or R2). It represents the ratio of 

sum of squares explained by regression, SSreg to the total sum of squares, SStot. Eq. (3.41) might be 

written in another form: 

 

( )

( )

2

reg2 1

tot 2

1

ˆ
(explained by regression)

 (total sum of squares)

N

i

i
N

i

i

y y
SS

r
SS

y y

=

=

−

= =

−





  (3.42) 

Its meaning is how much of the total variation if yi can be explained by regression. It is sometimes 

expressed in %. 
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To better understand how to perform regression an example is shown below. Excel allows to 

determine regression and its errors using Regression in Data Analysis (in Data). 

 

Example 3.1. 

Determine regression parameters for the following data: 

 

 x     y 

 

-5  -7.4 

-3  -4.3 

-1  -0.4 

1    3.3 

3    6.7 

5   10.2 

7   12.4 

9   16.4 

 

Use of Regression in Excel is displayed below. 

 

 
 

 

Fig. 3.5. Use of the Regression in Excel. 

The obtained results are displayed in Table 3.1.  
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First, Regression Statistics presents determination coefficient: R Square (r2) = 0.99743, and 

that there are 8 data points, N, Observations = 8. 

The Analysis of Variances ANOVA will be presented later.  

 

Table 3.1. Results of the regression analysis in Excel for Example 3.1. 

SUMMARY OUTPUT       

       

Regression Statistics      

Multiple R 0.998714      

R Square 0.99743      

Adjusted R Square 0.997002      

Standard Error 0.456109      

Observations 8      

       

ANOVA       

  df SS MS F Significance F  
Regression 1 484.5005357 484.5005 2328.93 5.30764E-09  
Residual 6 1.248214286 0.208036    

Total 7 485.74875        

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 1.22 0.18 6.911539 0.000454 0.79 1.65 

X Variable 1 1.698 0.035 48.25898 5.31E-09 1.612 1.784 

       

       

       

RESIDUAL OUTPUT       

       

Observation Predicted Y Residuals     

1 -7.275 -0.125     

2 -3.87857 -0.421428571     

3 -0.48214 0.082142857     

4 2.914286 0.385714286     

5 6.310714 0.389285714     

6 9.707143 0.492857143     

7 13.10357 -0.703571429     

8 16.5 -0.1     

 

Test F of the significance of the parameter b1 is 2328.9 >> F(0.05,1,6) = 5.99 (parameter b1 is 

very important) and the probability, p, of the hypothesis H0: b1 = 0 is shown as Significance F and 
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calculated using Excel function F.DIST.RT(F,1,df2) in this case F.DIST.RT(F,1,6), see Excel file. 

It is p = 5.3110-9 and is much lower than 0.05 and this hypothesis must be rejected. 

 

Next, there are regression results: 

 

Intercept (b0) = 1.22,  

Standard deviation: Standard Error 
0bs  = 0.18,  

Confidence Intervals for the assumed probability of 95%: 0.79 ≤ b0 ≤ 1.65 

 

X Variable 1 (b1) = 1.698 

Standard deviation: Standard Error 
1bs  = 0.035 

Confidence Intervals for the assumed probability of 95%: 1.612 ≤ b1 ≤ 1.784 

These values were rounded using Excel function 
.00

.0→
 to keep the precision according to the 

standard deviations (not more than 2 significant digits in standard deviation). 

The probability, p, that H0 (bi = 0) is true is called in Excel “P-value” and it is 0.00045 for b0, 

and 5.310-9 for b1, both much lower than 0.05. It is calculated using Excel function T.DIST.2T(t, 

df), here df = N – 2 = 6. 

Finally there are calculated values, ˆiy  as “Predicted Y” and “Residuals”: ˆi iy y− . There are 

also automatic plots created for the regression and residuals. 

 

One can write the summary results as follows: 

Model: y = b0 + b1x  

b0 = 1.22,  
0bs = 0.18,  CI for 95% :    0.79  b0  1.65 or b0 = 1.22 ± 0.43 

b1 = 1.698, 
1bs = 0.035,  CI for 95% :  1.612  b1  1.784 or b1 = 1.698 ± 0.086 

r2 = 0.99743 

See calculations in Examples3.xlsx, sheet Ex. 3.1. 

 

3.7 Linear regression for y = b1 x 

In certain cases, the free term b0 is insignificant and a simpler linear model might be postulated:  

 
1

1

ˆ

i i i

y b x

y b x

=

= + 
  (3.43) 

To find the best value of b1 one should minimize the sum of squares: 

 
( ) ( )22 2 2 2

1 1 1
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i i

i i i i
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= =

= − = − − =

− +

 

  

  (3.44) 

that is the derivative of sum of squares by the coefficient should be equal zero: 

 
2

2
1

1

d
2 2 0

d
i i i

S
x y b x

b
= − + =    (3.45) 
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from which: 

 1 2

i i

i

x y
b

x
=




  (3.46) 

The standard deviation of the slope is obtained as: 
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  (3.48) 

and 
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  (3.49) 

where 
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22
12 ˆ( )

1 1

i i i i
y

y y y b x
s

N N

− −
= =

− −

    (3.50) 

The standard deviation of ˆiy  is calculated from the condition that the line passes through ,x y   
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( )

1

1

ˆ

ˆ

i i

i i

y y b x x

y y b x x

− = −

= + −
  (3.51) 

and using the error propagation technique: 
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  (3.52) 

Similarly as before the standard deviation of yi is: 
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2

2

1
1

i

i
yy
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x x
s s

N x

−
= + +


  (3.53) 
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Example 3.2. 

Determine the linear regression parameters assuming the following model: 1ŷ b x=  for the data 

below: 

 x      y 

  

0.2  0.57 

0.4  1.24 

0.6  1.78 

0.8  2.43 

1.0  3.12 

1.2  3.57 

 

Using Excel Regression analysis and selection option: Constant is Zero, the following results are 

displayed in Table 3.2. 

 

Table 3.2. Results of the regression analysis in Excel for Example 3.2. 

SUMMARY OUTPUT      

       

Regression Statistics      

Multiple R 0.99976      

R Square 0.999521      

Adjusted R Square 0.799521      

Standard Error 0.056592      

Observations 6      

       

ANOVA     1.71E-09 
 

correct 

  df SS MS F Significance F  
Regression 1 33.39909 33.39909 10428.62 5.51E-08 incorrect 

Residual 5 0.016013 0.003203    

Total 6 33.4151        

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept 0 #N/A #N/A #N/A #N/A #N/A 

X Variable 1 3.029 0.030 102.1206 1.71E-09 2.953 3.105 

       

RESIDUAL OUTPUT      

       

Observation Predicted Y Residuals     

1 0.605824 -0.03582     

2 1.211648 0.028352     

3 1.817473 -0.03747     

4 2.423297 0.006703     
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5 3.029121 0.090879     

6 3.634945 -0.06495     

 

The results might be presented as: 

Model : y = b1 x 

b1 = 3.029, 
1bs = 0.030, CI (95%) : 2.953  b1  3.105 or b1 – 3.029  0.076 

r2 = 0.9995 

It should be noticed that in older Excel versions incorrect table of ANOVA and R2 were presented. 

It was corrected in Excel 2013. In Excel 2013 the value of p (Significance F) is calculated with 

incorrect number of degrees of freedom, F.DIST.RT(F,1,4) instead of F.DIST.RT(F,1,5). See the 

Excel file for details. Because there is only one parameter in regression equation p values 

“Significance F” and “P-value” for the significance of the slope are now identical. p = 1.7110-9. 

See calculations in Examples3.xlsx, sheet Ex. 3.2. 

3.8 Error of xc value calculated from regression 

In chemical analysis often the calibration curve is determined (with its parameters) and then 

form the measured signal of unknown, yc, the corresponding unknown concentration, xc is 

determined.17 It is important to know what is the standard deviation of xc determined from the 

working curve. Two cases will be considered: 

a) The working curve is described by equation: 0 1ŷ b b x= +  

For the unknown concentration one can write the following equation: 

 

( )1

1

c c

c
c

y y b x x

y y
x x

b

= + −

−
= +

  (3.54) 

The standard deviation of xc is: 

 
1

2 22
2 2 2 2

1
c

y yx b
c

x x x
s s s s

y y b

      
= + +    

      
  (3.55) 

but: 

 

1

2 2
2 2

1

1

2
1 1

1

1

( )

y y
y b

xx

c

c

s s
s s

N S

x

y b

x

y b

x y y

b b

= =


=




= −



 −
= −



  (3.56) 

and: 
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( )

2

2
1 1

1
1

c

y c
x

xx

s y y
s

b N b S

−
= + +   (3.57) 

When the unknown yc is measured m times the standard deviation is smaller: 

 
( )

2

2
1 1

1 1
c

y c
x

xx

s y y
s

b m N b S

−
= + +   (3.58) 

where the parameters: sy, b1, Sxx and N are related to the calibration cure and were determined 

prior to the determination of the unknown. 

 

b) The working curve is described as: 1ŷ b x=  

In this case the concentration is calculated using Eq. (3.54) and its standard deviation is: 

 
( )

2

2 2
1 1

1 1
c

y c
x

i

s y y
s

b m N b x

−
= + +


  (3.59) 

Application of this method is shown in Example 3.3. 

 

Example 3.3. 

In analytical chemistry a calibration curve was obtained from the following measurements of 

the analytical signal, y, versus concentration, x: 

 

x     y 

0.100 0.34 

0.200 0.80 

0.300 1.20 

0.400 1.77 

0.500 2.14 

0.600 2.42 

0.700 2.90 

0.800 3.36 

0.900 3.74 

 

Next the analytical signal of the unknown sample was measured three times and the mean 

value was yc = 1.15. Determine the unknown concentration, xc, and its standard deviation. 

 

First, calibration line was calculated using equation y = b0 + b1x. The results are presented 

below: 
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Table 3.3. Fit of the experimental working curve (above) to the equation y = b0 + b1x:  

SUMMARY OUTPUT      

       

Regression Statistics      

Multiple R 0.998677      

R Square 0.997357      
Adjusted R 
Square 0.996979      

Standard Error 0.063629      

Observations 9      

       

ANOVA       

  df SS MS F 
Significance 

F  
Regression 1 10.69348 10.69348 2641.246 2.77E-10  
Residual 7 0.028341 0.004049    

Total 8 10.72182        

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept -0.03639 0.046225 -0.78721 0.456983 -0.14569 0.072917 

X Variable 1 4.221667 0.082145 51.39305 2.77E-10 4.027425 4.415908 

 

It is clear that the t-test shows that the parameter b0 is not important, |texp| = 0.787 < t(0.05,7) 

= 2.364, see t-test for the importance of the parameters in Section 5.2.1. A new regression using 

equation y = b1x must be recalculated. It is presented below. 

 

Table 3.4. Fit of the experimental working curve (above) to the equation y = b1x: 

SUMMARY OUTPUT      

       

Regression Statistics      

Multiple R 0.999688      

R Square 0.999376      
Adjusted R 
Square 0.874376      

Standard Error 0.062098      

Observations 9      

       

ANOVA       

  df SS MS F 
Significance 

F  
Regression 1 49.42085 49.42085 12816 1.11E-12  
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Residual 8 0.030849 0.003856    

Total 9 49.4517        

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept 0 #N/A #N/A #N/A #N/A #N/A 

X Variable 1 4.164211 0.036784 113.2078 
4.14E-

14 4.079387 4.249034 

 

Using this regression, the following results were obtained: 

sy= 0.062098182 

xc= 0.278 

cxs  = 0.011 

CI(xc)= t(0.05,8) 
cxs = 0.025 

At the confidence level of 95% the unknown concentration is: xc= 0.278 ± 0.025. See the 

calculations in Examples3.xlsx, sheet Ex. 3.3. 

3.9 Calibration 

In analytical chemistry, in order to determine the unknown concentration, a relation between 

the analytical signal and the concentration must be determined. For example, using spectroscopy, 

a linear relation between the absorbance, emission, or fluorescence and concentration is 

determined by measuring analytical signal for certain number of standards. The best straight line 

is then determined using the least-squares method described above. In the case of intrinsic 

nonlinear correlation other models (usually polynomial) are used. Let us look at the case when the 

liner relation exists. The concentrations must cover all the concentration range studied. 

Extrapolations outside this range should not be used because we do not know anything about the 

behavior of the analytical signal outside the studied zone.  

3.10 Sensitivity 

First, let us define the sensitivity. There are two types of sensitivity: 

a) Calibration sensitivity, m: this is simply the slope of the calibration curve, 0 1y b b x= +  

which is often rewritten as blS mC S= +  where S (or y) is the analytical signal, C (or x) is 

the concentration and Sbl (or b0) is the signal of the blank in the absence of the analyte. The 

larger the slope the larger is the calibration sensitivity. 

b) Analytical sensitivity, γ: this is the ratio of the slope of the calibration curve, i.e. calibration 

sensitivity, to the standard deviation, sC of the analytical signal at a given concentration: 

 
C

m

s
 =   (3.60) 

It can be noticed that m has units and is independent of concentration while γ is dimensionless 

but concentration dependent. It cannot be determined for the zero concentration because sC does 

not exists in such a case. 
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3.10.1 Detection limit and dynamic range 

One of the important factors in calibration is the detection limit. Qualitatively, detection limit 

is the smallest concentration which is distinguished from the blank. The smallest signal 

distinguished from the noise, Sm, is defined as: 

 3m bl blS S s= +   (3.61) 

where blS  is the mean signal of the blank and sbl is its standard deviation. This means that the 

signal three times larger than the standard deviation is the minimal signal distinguished. This is 

based on the accepted convention. For normal distribution, 99.4% of the results is found between 

±3sbl. This is illustrated in Fig. 3.6. 

-4

-3

-2

-1

0

1

2

3

4

Sbl + 3sbl

Sbl-3sbl

Sbl

Sbl + sbl

Sbl - sbl

 
Fig. 3.6. Normal distribution of the results around blS ; the black lines show bl blS s  and blue 

lines 3bl blS s .  

The minimal concentration distinguished from the noise is calculated from the calibration curve: 

 
3m bl bl

m

S S s
C

m m

−
= =   (3.62) 

To better understand the meaning of the limit of detection let us look at Fig. 3.7. 
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Fig. 3.7. Distribution of measurements of blank and of the sample at the detection limit (assuming 

Student distribution of samples for df = 6). Only 1.2% of blank measurements exceed LOD while 

50% of measurements at LOD is below this limit (and 50% above).  

It can be noticed that only 1.2% of measurements of the blank exceeds the detection limit while 

50% of the measurements of a sample containing analyte at the detection limit is below the 

detection limit and 50% above. For the sample at the detection limit there is 50% chance of 

concluding that the analyte is absent because the signal is below the detection limit. The 

distribution curves were calculated assuming Student’s distribution for df = 6; these curves are 

broader than those for the normal distribution. 

The minimal concentration, which can be quantitatively determined, is called limit of 

quantitation (LOQ), CLOQ, is larger than Cm. It is assumed that CLOQ must be 10 times larger than 

the noise of the blank: 

 LOQ

10 bls
C

m
=   (3.63) 

It should be mentioned that this limit is a bit arbitrary and other definitions also exist.23 

When linear working curve is used in the analysis at higher concentrations one can observe 

nonlinearity and this is the end of the limit of linearity, LOL. This is illustrated in Fig. 3.8. 
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Fig. 3.8. Limit of detection limit, Cm, limit of quantitation, LOQ, and limit of linearity, LOL. The 

distance between LOQ and LOL determines useful dynamic range where analysis can be 

performed.24 

3.10.2 Selectivity 

In analysis we expect that the measured signal is related to the measured analyte only. 

However, there might be interfering substances which influence the measured signal. Selectivity 

(or specificity) is the capability to distinguish of the analyte from other interfering species. Let us 

assume that besides the determined substance A there are interfering substances B and C. The 

measured signal S in such a case is described as: 

 A A B B C C blS m C m C m C S= + + +   (3.64) 

Introducing selectivity coefficients for A with respect to B, kA,B, and C, kA,C are 

 CB
A,B A,C

A A

mm
k k

m m
= =   (3.65) 

and Eq. (3.64) might be rearranged to 

 ( )A A A,B B A,C CS m C k C k C= + +   (3.66) 

The method is selective if the coefficients of selectivity are small. 

 

Example 3.4. 

The calibration data were determined and they are presented below. 

x y 

0.2 0.61 

0.4 0.98 

0.6 1.43 
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0.8 1.85 

1.0 2.32 

1.2 2.69 

a) Determine the calibration curve.  

b) The signal of the blank was measured 15 times and the following results were obtained: blS  

= 0.079, sbl = 0.055. Determine the limit of detection (LOD) and limit of quantitation (LOQ).  

c) Besides, measurements for x = 0.4 and 1.0 were repeated 15 times and the following results 

were obtained: 

x = 0.4, y = 0. 98, sy = 0.032 

x = 1.0, y = 2.36,  sy = 0.062. 

Determine the calibration and analytical sensitivity at these concentrations. 

d) Unknown concentration was measured 3 times and the average signal is yC = 2.28. Calculate 

the unknown concentration and its standard deviation and confidence limits at 95%. 

All the calculations are shown in Example3.xlsx, sheet Ex. 3.4.  

The results of the regression analysis are shown below. 

 

SUMMARY OUTPUT      

       

Regression Statistics      
Multiple R 0.999834      
R Square 0.999668      
Adjusted R 

Square 0.999585      
Standard Error 0.016662      

Observations 6      

       

ANOVA       

  df SS MS F 

Significance 

F  
Regression 1 3.339773 3.339773 12030.06 4.14E-08  
Residual 4 0.00111 0.000278    
Total 5 3.340883        

       

  Coefficients 

Standard 

Error t Stat P-value Lower 95% 

Upper 

95% 

Intercept 0.132667 0.015511 8.552856 0.001026 0.0896 0.175733 

X Variable 1 2.184286 0.019915 109.6816 4.14E-08 2.128993 2.239578 

 t(0.05,4)= 2.776     

 

a) The determination coefficient is large, 0.9997. The regression equation is:  

y = (0.132 ± 0.043) + (2.184 ± 0.055) x. Both parameters are statistically important based 

on the t-test and p-level tests. 

b) Concentration LOD is 

LOD

3 0.055
0.075

2.184
C


= =   
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and the limit of quantitation: 

LOQ

10 0.055
0.25

2.184
C


= =   

c) Calibration sensitivity is the slope of the regression curve, m = 2.184; it is independent of 

concentration. 

The analytical sensitivity is: 

x = 0.4, 
2.184

68
0.032

 = =   

x = 1.0, 
2.184

52
0.042

 = =  

d) Using regression equation the unknown concentration is calculated as: 

2.28 0.133
0.983

2.184
Cx

−
= =   

The standard deviation of the concentration is calculated using Eq. (3.58): 

2

2

0.01666 1 1 (2.28 1.662)
0.006

2.1843 3 6 2.1842 0.70Cxs
−

= + + =


  

and the confidence intervals: 

0.006 2.776 0.02CI =  =   

The unknown concentration is: 0.983  0.017 (or 0.98 ± 0.02). 

For details see Examples3.xlsx, Sheet Ex3.4. 

 

Example 3.5 

Determine the error of the analytical signal of 310-3 M K+ in the presence of 210-2 M Na+ if 

selectivity coefficient is 
K ,Na

k + +  = 0.052. 

The analytical signal is: 

K K K ,Na Na
( ) 0S m C k C+ + + + += + +  

or 

3 2 3

K

3 10 0.052 210 4.04 10
S

m +

− − −=  +  =   

and the relative error of the signal is: 
3 3

rel 3

4.04 10 3 10
100% 35%

3 10
E

− −

−

 −
=  =   

The presence of the interfering ion Na+ causes error of 35%. 

3.11 The method of standard additions 

The method of standard additions is often used in analysis. To the analyzed sample one or 

several aliquots of standard solution are added and the analytical signal is measured. The advantage 

of this method over standard calibration technique is that the unknown solution matrix components 

(which can influence/interfere with the analytical signal) are the same. The disadvantage is that 
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this is an extrapolation technique and the assumption is made that beyond the concentration range 

studied the equations are the same. 

For the simple addition of one sample and assuming simple relation between analytical signal, 

y, and concentration, x: 1y b x=  one makes two measurements, one for the unknown: 

 1u uy b x=   (3.67) 

and after that the addition of the standard: 

 1 1( )u sy b x x= +   (3.68) 

where yu is the signal of the unknown, y1 is the signal of the mixture of unknown and standard, xu 

is the concentration of the unknown, and xs is the concentration of the standard. Division of these 

equations to eliminate the slope gives the concentration of unknown (assuming that dilution is 

neglected): 

 
1

s u
u

u

x y
x

y y
=

−
  (3.69) 

However, when addition of the standard volume Vs caused dilution, Eq. (3.68) must be replaced 

by: 

 1 1
s

u s
s s

V V
y b x x

V V V V

 
= + 

+ + 

  (3.70) 

where V is the initial volume of the unknown. This leads to the concentration of unknown: 

 

1

s
u s

s
u

u
s

V
y x

V V
x

V
y y

V V

+
=

−
+

  (3.71) 

Much better method is the method of repeated additions of the standard solution where the 

obtained analytical signal is plotted versus concentration (or volume) added to the solution of 

unknown. Example of such plot is displayed in Fig. 3.9. 
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Fig. 3.9. Illustration of the method of standard additions. For x = 0 the signal corresponds to the 

unknown sample. The value of x extrapolated to y = 0 corresponds to the concentration of the 

unknown sample. 

In order to take into account dilution one can plot y(V+Vs) versus the volume of added standard 

Vs: 

 
1

0 1

( ) ( )s u s s

s

y V V b x V x V

Y B B V

+ = +

= +
  (3.72) 

where 

 0 1 1 1and     u sB b x V B b x= =   (3.73) 

Extrapolation of the straight line to Y = 0 gives the standard volume 
'
sV  and the concentration of 

the unknown is: 

  

 

'
0 1

' 0

1

'
0

1

0s

s

s s s
u

B B V

B
V

B

B x x V
x

B V V

+ =

= −

= = −

  (3.74) 

from which unknown concentration might be determined. Notice, that 
'
sV  is negative and, of 

course, xu positive. In order to find the standard deviation of the found xu, Eq. (3.72) might be 

rearranged to: 

1

'
1

'

1

( )

for  = 0

( )

s s

s s

s s

Y Y B V V

Y

Y B V V

y
V V

B

− = −

− = −

= −

          (3.75) 

 

The error propagation equation might be applied to 
'
sV  keeping in mind that Vs is the 

independent variable determined without error: 

 ' 1

2 2
2 2

2 4
1 1

1

s

Y
BV

s y
s s

NB B
= +   (3.76) 

the standard deviation of the slope was found earlier, Eq. (3.24), which leads to: 

 

( )
'

2 2
2

2
221

1

1

1

s

Y
NV

s s

i

s Y
s

NB
B V V

=

 
 
 

= + 
 −
 
 



  (3.77) 

and the standard deviation of the unknown concentration is: 
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 'u s

s
x V

x
s s

V
=   (3.78) 

Calculations of the standard deviation are shown in the following Example 3.6. 

 

Example 3.6. 

Determine concentration and its standard deviation for the method of standard additions using 

the following data: V = 100 ml, standard concentration: xs = 20 ppm, and the measured atomic 

emission signal, y, and different volumes of the standard, Vs, added: 

 

 Vs Vs+V      y Y (Vs- sV )2 

 0 100 2.09 209.00 225 

 5 105 2.91 305.55 100 

 10 110 3.82 420.20 25 

 15 115 4.42 508.30 0 

 20 120 5.12 614.40 25 

 25 125 5.54 692.50 100 

 30 130 6.30 819.00 225 

sV  = 15  Y  = 509.85 700 

               = Sxx 

 

To linearize the signal it was multiplied by V + Vs : ( )sY y V V= + , The plot of Y vs. Vs is 

shown in Fig. 3.10. 
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Fig. 3.10. Data analysis for the standard additions method, Example 3.6. 

Regression analysis was carried out in Excel and it is in Examples3.xlsx, sheet Ex. 3.5. The 

results are shown below: 
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SUMMARY OUTPUT      

       

Regression Statistics      
Multiple R 0.999046      
R Square 0.998094      
Adjusted R 

Square 0.997712      
Standard Error 10.33495      

Observations 7      

       
ANOVA       

  df SS MS F 

Significance 

F  
Regression 1 279620.1 279620.1 2617.891 5.39E-08  
Residual 5 534.0561 106.8112    

Total 6 280154.2        

       

  Coefficients 

Standard 

Error t Stat P-value Lower 95% 

Upper 

95% 

Intercept 210.0536 7.042082 29.82833 7.94E-07 191.9513 228.1558 

X Variable 1 19.98643 0.390624 51.16533 5.39E-08 18.9823 20.99056 

 

Using Eq. (3.74), volume 
'
sV  = -10.51 ml. Then, the unknown concentration is:  

 

'

2.102s s
u

x V
x

V
= − =   (3.79) 

The standard deviation of 
'
sV  using Eq. (3.77) is: 

 ( )
'

'

2 2 2
2

2 2 2
221

1

1

1 106.81 1 509.85
0.2868

719.986 19.986 700

0.54

s

s

Y
NV

s s

i

V

s Y
s

NB
B V V

s

=

 
 

  = + = + =     −  
 

=

   (3.80) 

and standard deviation of the sample concentration, Eq. (3.78), 0.11
uxs = . The confidence 

intervals for the unknown, using t(0.05,5) = 2.5706, are: 

 2.10 0.28 ppmux =    (3.81) 

See Examples3.xlsx, sheet Ex. 3.5 for details. 

3.12 Matrix description of the least-squares method 

Matrix description of the regression simplifies the problem and allows for the generalization 

of the linear regression. It should be added that the term linear regression denotes systems where 
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the unknown parameters bi are linear functions of y. In this sense polynomial approximation is 

linear: 

 
2 3

0 1 2 3ŷ b b x b x b x= + + +   (3.82) 

and exponential function of bi is nonlinear: 

 ( )1 2ˆ expy b b x=   (3.83) 

To describe a simple linear regression, i.e. fit to a straight line (y = b0 +b1 x) let us consider the 

following matrices: X, Y, b, and ε: 

 

1 1 1

2 2 2
0

3 3 3
1

1

1

1

... ... ...

1 N N N

x y

x y
b

x y
b

x y

     
     
      

=   =   = =   
      
     
          

X Y b ε   (3.84) 

The linear model postulated might be written in matrix form as, see Eq. (3.5): 

 = +Y Xb ε   (3.85) 

Using the definition of transposed matrices: 

 

 

1 2 3

1 2 3

1 1 1 ... 1
'

...

' ...

N

N

x x x x

y y y y

 
=  

 

=

X

Y

  (3.86) 

one can write:  

 
2

' '
i i

i ii i

N x y

x yx x

   
= =   

    

 
 

X X X Y   (3.87) 

and 

 ' '=X Xb X Y   (3.88) 

This equation is identical with Eq. (3.11). To determine vector b both sides of this matrix 

equation must be multiplied by the inverse matrix: 

 ( ) ( ) ( ) ( )
1 1

' ' ' '
− −

=X X X X b X X X Y   (3.89) 

which gives the solution: 

 ( )
1

'
−

=b X'X X Y   (3.90) 

The latter might be also obtaibed using matrix description of the data. The sum of squares, S2, Eq. 

(3.7), is given by: 

 ( ) ( )'= − −ε'ε Y Xb Y Xb   (3.91) 

and taking into account that: 

 ( ) ( ) ( ) ( )' ' '


+ + = + + +  
a Bx c Dx B c Dx D a Bx

x
  (3.92) 

Eq. (3.91) becomes 

 ( ) ( ) ( ) ( ) ( )' ' ' 2 '


− − = − − − − = − −  
Y Xb Y Xb X Y Xb X Y Xb X Y Xb

b
  (3.93) 
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and the vector b is found at the minimum 

 
( )

2 '( )

' '


= − − =



=

ε'ε
X Y Xb 0

b

X Xb X Y

  (3.94) 

where 0 is the vector of zeros, which is identical with Eq. (3.88). The calculated values of ˆiy  are 

obtained as: 

 ˆ =Y X b   (3.95) 

This equation might be rearranged into another form using Eq. (3.90) for b: 

 
( )

( )

1

1

ˆ ' '

' '

−

−

= =

=

Y X X X X Y HY

H X X X X

  (3.96) 

where H is called hat matrix as it changes experimental yi into calculated iŷ  from regression (it 

puts a hat on yi). Its diagonal elements are called leverage which describe the influence of each 

response value on the fitted value for that same observation. 

The matrix method might also be used to determine standard deviations. Matrix of variances 

and covariances of the regression parameters, Cb is: 

 ( )

2 2

1 2 2 2'
11

i i i

xx xx xx xx
y y y

i

xx xxxx xx

x x x x

NS NS NS S
s s s

x x

S SNS S

−

   
 −  −
   = = =   
   −−
     

  


bC X X   (3.97) 

where 

 2 / ( 2)ys N= −ε'ε   (3.98) 

Eq. (3.97) can be written in another format: 

 0 0 1

1 0 1

var( ) cov( , )

cov( , ) var( )

b b b

b b b

 
=  

 
bC   (3.99) 

where var denotes variance and cov covariance. It is evident that covariances of b0 and b1 are not 

equal zero and cov(b0,b1) = cov(b1,b0). 

The diagonal elements of this matrix are variances (standard deviation squared) of the 

regression parameters and the non-diagonal elements are covariances.  

The calculated values of ˆky  for one value of  xk may be obtained introducing vector: 

  ' 1k kx=X   (3.100) 

which gives: 

 
'ˆ 'i k ky = =X b b X   (3.101) 

and its variance: 

 ( )
k

1' ' 2
ˆ 'y k k k k yC s

−
= =bX C X X X X X   (3.102) 

The variance of yk is: 

 ( )k

1
' ' 2
k y(1y kC s

− 
= + 

 
X X X X   (3.103) 
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3.13 Polynomial regression 

Polynomial regression is a form of linear regression (linear versus regression parameters) in 

the form: 

 
2 3

0 1 2 3 ...y b b x b x b x= + + + +   (3.104) 

 

Polynomial regression might be written simply using matrix notation. Let us assume polynomial 

model: 

 
2

0 1 2i i i iy b b x b x = + + +   (3.105) 

For such model matrix X, called Jacobian, must be modified: 

 

2
1 1

2
2 2

2
3 3

2

1

1

1

...

1 N N

x x

x x

x x

x x

 
 
 
 

=  
 
 
 
 

X   (3.106) 

but the regression equation, Eq. (3.90) is exactly the same. 

Matrix X might be easily constructed for other models keeping in mind the meaning of its 

parameters. Its elements are the derivatives of the regression equations, e.g. Eq. (3.105), by the 

parameters bi : 

 

1 1 1

0 1 2

2 2 2

0 1 2

3 3 3

0 1 2

0 1 2

... ... ...

i
ij

j

N N N

y y y

b b b

y y y

b b b
y

x y y y
b

b b b

y y y

b b b

   
   
 

   
   
 

= =    
    

 
 
 
  

 
    

X   (3.107) 

For Eq. (3.105) it is simply matrix Eq. (3.106). Another example is presented below. 

 

Example 3.7. 

Write matrix X for the model: 
3

1 3i i i iy b x b x = + +  

Using Eq. (3.107) one obtains: 
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3
1 1

3
2 2

3
3 3

3

...

N N

x x

x x

x x

x x

 
 
 
 

=  
 
 
 
 

X   (3.108) 

 

3.14 Multiple linear regression 

Multiple linear regression is an extension of a simple (univariate) linear regression (

0 1y b b x= + ) to more than one independent parameter (multivariable regression) in the form: 

  

 0 1 1 2 2 3 3 ... p py b b x b x b x b x= + + + + +   (3.109) 

An example of such problem is the study of the amounts of various chemicals included in the 

cement mixture on the amount of heat evolved in the curing of cement, where parameters xi are 

the amounts of the components. This problem also appears in factorial design, multivariable 

calibration, etc. For one point Eq. (3.109) might be written as: 

 0 1 1, 2 2, 3 3, , ,...i i i i p i p iy b b x b x b x b x= + + + + +   (3.110) 

The problem is easily solved writing Jacobian matrix X, Eq. (3.107), for Eq. (3.110): 

 

1,1 2,1 ,1

1,2 2,2 ,2

1,3 2,3 ,3

1, 2, ,

1 ...

1 ...

1 ...

1 ... ... ... ...

1 ...

p

p

p

N N p N

x x x

x x x

x x x

x x x

 
 
 
 =
 
 
 
  

X   (3.111) 

with the solution in the form of Eq. (3.90). An example of multiple regression will be shown in 

Section 5. There is also multivariate regression where several different y values are measured at 

different sets of xi,j. This type of regression is used in chemometrics, but it is not accessible in 

Excel. This method will be presented in Part 2, Data analysis and modeling, Chemometrics. 

 

3.15 Weighted least squares regression 

It is possible that the experimental data used for the regression analysis are determined with 

different precision, that each value of yi has different standard deviation, 
iys . In such a case one 

should use weighted least-squares method. Let us define the diagonal matrix Gy of the statistical 

weights, 
21/

i
i y

w s= : 
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1

2

3

2

2

2

2

1 / 0 0 0 0

0 1 / 0 0 0

0 0 1 / 0 0

0 0 0 ... 0

0 0 0 0 1 /
N

y

y

y
y

y

s

s

s

s

 
 
 
 
 

=
 
 
 
 
  

G   (3.112) 

The problem described earlier by Eq. (3.88) must be modified by including the statistical 

weights: 

 ' 'y y=X G X b X G Y   (3.113) 

which has solution: 

 ( )
1

' 'y y

−
=b X G X X G Y   (3.114) 

and 

 
( )

( )

1

1

ˆ ' '

' '

y y

y y

−

−

= = =

=

Y Xb X X G X X G Y HY

H X X G X X G

  (3.115) 

The variance/covariance matrix is in this case: 

 ( )
1 2' y ys

−
=bC X G X   (3.116) 

with 

 
2

2

y
ys

N
=

−

ε'G ε
  (3.117) 

The matrix of the variances of ˆky  is: 

 ( )k

1
' ' ' 2

ˆ k k k y k yy s
−

= =bC X C X X X G X X   (3.118) 

and that of yi: 

 ( )k

1
' ' 2
k y y(1y kC s

− 
= + 

 
X X G X X   (3.119) 

Equations for weighted regression might be also developed as for linear regression replacing 

sum of squares in Eq. (3.7) by weighted sum of squares: 

 
2 2

2 2 20 1
2 2

1 1 1

ˆ( ) ( )
ˆ( ) min

i i

N N N N
i i i i

i i i i
i i i iy y

y b b x y y
S w y y

s s


= = =

− − −
= = = = − =      (3.120) 

To determine regression parameters derivatives in Eq. (3.8) must be calculated: 

 

2

0 1

0

2

0 1

1

2( )( ) 0

2( )( ) 0

i i i

i i i i

S
y b b x w

b

S
y b b x x w

b


= − − − =




= − − − =







  (3.121) 

leading to the system of two liner equations, analog of Eq. (3.11): 
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0

2
1

i i i i i

i i ii i i i

w w x b w y

b w x yw x w x

    
=    

      

  
 

  (3.122) 

Solution of Eqs. (3.122) gives the values of parameters b0 and b1, compare with Eqs. (3.12)-(3.13)

: 

 

2

0

1

i i i i i i i i i

i i i i i i i i

w x w y w x w x y
b

d

w w x y w x w y
b

d

−
=

−
=

   

   
  (3.123) 

where d is now defined as: 

 ( )
22

i i i i id w w x w x= −     (3.124) 

Similarly, the standard deviations of the regression parameters are determined, as in Eqs. (3.23) 

and (3.27): 

 
0

1

2
2 2

2 2

i i
yb

i
yb

w x
s s

d

w
s s

d

=

=




  (3.125) 

where 
2

ys  is: 

 
( )

2

2
ˆ

2

i i i

y

w y y
s

N

−
=

−


  (3.126) 

These equations allow for easy calculation of the weighted regression in Excel. They also follow 

from the matrix notation above. 

 

Example 3.8. 

Find coefficients of the weighted regression using the following data. 

 

xi yi si wi 

0 1.9 0.4 6.25 

1 2.3 0.5 4 

2 3.5 0.7 2.040816327 

3 4.5 0.9 1.234567901 

4 5.2 1 1 

5 6 1.2 0.694444444 

6 5.5 1.1 0.826446281 

 

This problem might be solved using Origin, using program polfit.exe, or in Excel. The results are shown 

below: 

 

Parameter  Value  Standard Error  t-Value  95% LCL  95% UCL 

Intercept   1.84859  0.17677    10.45743 1.39419   2.303 

Slope    0.74423  0.07619    9.76859  0.54839   0.94008 
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Using t-test, the values for both parameters are larger than the critical value of t(0.05”, 5) = 

2.447, therefore both parameters are important. The fit and confidence intervals at the confidence 

level of 95% are displayed in Fig. 3.11. 

Calculations in Excel using directly Eqs. (3.123)-(3.126) are also presented. See details in 

Examples3.xlsx, sheet Ex. 3.8 and Origin Ex3-8.opj. 

0 2 4 6

2

4

6

8

y

x

 
Fig. 3.11. Plot of the experimental points with their standard deviations, prediction line (black), 

confidence interval for the calculated values (red line) and for the experimental points (dashed 

blue) for weighed regression in Example 3.8 calculated in Origin (Ex3-8.opj). 

3.16 Linear regression with errors in y and x 

In all the developments until now we have assumed that the independent variable x is 

determined precisely that is its error is negligible. This variable is usually time, volume, 

temperature, etc., which might be determined precisely. However, there are cases where the 

independent variable is measured with certain error which cannot be neglected.25,26  

In such cases in estimation of the total variance, 
2

,eff is , we have to take into account two 

contributions: 1) that of yi, 
2

iy
s  and 2) influence of the variance of x on y, 

2 2(d / d )
ix

y x s  which 

gives the total effective variance, s2
eff: 

 
2 2 2 2

, (d / d )
i i

eff i y x
s s y x s= +   (3.127) 

For the linear regression: 

    1d / dy x b=   (3.128) 

and Eq. (3.127) becomes: 

 
2 2 2 2

, 1
i i

eff i y x
s s b s= +   (3.129) 

Taking into account that 
2

,1/i eff iw s=  the problem is formally similar to the ordinary weighted 

regression Eq. (3.120) with solution in Eqs. (3.123)-(3.126), however, wi depends on b1.  

This problem might be solved iteratively by minimization of the weighted sum of squares, Eq. 
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(3.117) or (3.120), 
2 2

1

ˆ( )
N

i i i
i

S w y y

=

= − , assuming that in each iteration wi is constant, calculating 

the new parameters b0 and b1, ˆiy , and new values of weights and repeating this procedure until 

reaching the minimum, i.e. parameters which do not change anymore and the sum of squares 

reaches minimum.25 

 

Example 3.9 

Determine parameters and their standard deviations of the linear regression with error in x and 

y using data below.  

 

x y sy sx 

0 1.9 0.4 0.1 

1 2.3 0.5 0.1 

2 3.5 0.7 0.2 

3 4.5 0.9 0.3 

4 5.2 1.0 0.4 

5 6.0 1.2 0.5 

6 5.5 1.1 0.6 

 

This problem might be easily solved in Excel by minimizing the weighted sum of squares using 

Solver and, after finding the best values of regression parameters, calculating the standard 

deviations of the regression parameters using Eq. (3.125).26 

An example is presented in Examples3.xlsx, sheet Ex. 3.9 Values of the parameters were 

calculated using Solver and Eq. (3.123). 

3.17 Variances and covariances in error propagation 

In development of the equations concerning error propagation, it was assumed that all the 

parameters were completely independent that is their covariances were zero. We can recall that in 

the calculations of the error propagation in linear regression equations were rearranged in order to 

have only one regression parameter. For example Eq. (3.32) 0 1ˆi iy b b x= +  was rearranged into Eq. 

(3.33) ( )1ˆi iy y b x x= + − . This was done to avoid problem with covariances. The error 

propagation for Eq. (3.33) should be written as: 

 

22
2

1 1ˆ
1 1

ˆ ˆ ˆ ˆ
var( ) var( ) 2 cov( , )

i

i i i i
y

y y y y
s y b y b

y b y b

         
= + +      

         
  (3.130) 

but as 1cov( , )y b  = 0, Eq. (3.34) is obtained. However, for Eq. (3.32) one obtains: 

 

2 2
2

0 1 0 1ˆ
0 1 0 1

ˆ ˆ ˆ ˆ
var( ) var( ) 2 cov( , )

i

i i i i
y

y y y y
s b b b b

b b b b

         
= + +      

         
  (3.131) 

It is obvious from Eqs. (3.97) and (3.99) that cov(b0,b1) ≠ 0; it is equal, see Eqs. (3.97) and (3.99) 
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( )
2 2 2

0 1 2 2

2

cov( , )
( )

i
y y y

xx i i
i

x x x
b b s s s

NS x x x
x

N

= − = − = −
−

−


 



  (3.132) 

The variance of the calculated value of ˆiy , Eq. (3.32), might be correctly evaluated using Eq. 

(3.131) using var(b0) = 
0

2
b

s   and var(b1) = 
1

2
b

s  from Eqs, (3.27) and (3.24): 

 

( ) ( )

( ) ( )
( )

( ) ( )

( )

( )

2 2
2 2 2 2

2 2 2
ˆ 2 2

2
222 22

2 2 2
2 2

2

2

2

2 2

1

1

i

i i
i i i i

y yy
i i

i
ii i i

i

y y

i i
i

i

y
xx

x x
x x x x x x x x

N Ns s s
x x x x

x
xx x x x

x x N N
N N s s

x x x
x

N

x x
s

N S

+ − + − + −

= =
− −

 
 − + −
 − + −
 = =

−
−

 
− 

= + 
 
 

 

 


 

 


  (3.133) 

which is exactly Eq. (3.36). It should be kept in mind that a general form of Eq. (2.8) for function 

z of parameters pi, z = f(p1, p2,…,pp) is: 

 

22 2
2

1 2
1 2

1 2 1
1 2 1

2 3
2 3

var( ) var( ) ... var( )

2 cov( , ) ... 2 cov( )

2 cov( , ) ...

z n
n

k
k

f f f
s p p p

p p p

f f f f
p p p p

p p p p

f f
p p

p p

      
= + + +     

       

        
+ + +      

        

   
+ +  

   

  (3.134) 

or in another form: 

 

2 1
2

1 1 1

var( ) 2 cov( , )
n n n

z i i j
i i ji i j i

f f f
s p p p

p p p

−

= = = +

      
= +            

     (3.135) 

where summation runs over variances of all p parameters and all the covariances of each two 

parameters. The term “2” appears because cov( , ) cov( , )i j j ix x x x= , therefore, the covariances 

appear twice for each two parameters.  

3.18 Intersection of two straight lines 

In analytical chemistry often one has to determine a parameter from the intersection of two 

straight lines.15,27 For example, the end point in conductometric or spectrophotometric titrations is 



73 

determined in that way. It is simple to determine the intersection from equations of straight lines, 

but the problem is with the standard deviation of the obtained concentration/quantity.  

Assuming that there are two straight lines: y = b0,1 + b1,1 x determined using N1 points and y = 

b0,2 + b1,2 x determined using N2 points where the second index in regression parameters indicates 

the equation number. At the intersection both y and x for two lines are the same. From this 

condition one gets that the x-value (concentration) at the intersection, X, is: 

 0,2 0,1 0

1,2 1,1 1

b b b
X

b b b

− 
= − = −

− 
  (3.136) 

 

First, Eq. (3.136) may be rearranged into:  

 0 1 0b X b +  =   (3.137) 

 

and to obtain the confidence limits for X the Fieller’s theorem should be applied to Eq. (3.137)28,29 

which gives: 

 0 1 1 2( ", 4)b X b t N N s +  =  + −   (3.138) 

where variance 
2s  (left hand side of Eq. (3.138)) is: 

 
0 1

2 2 2 2
0 12 cov( , )

b b
s s X s X b b  

= + +     (3.139) 

and taking square of Eq. (3.138) and substituting Eq. (3.139) the following relation is obtained 

 
0 1

2 2 2 2 2 2 2
0 0 1 1 0 12 2 cov( , )

b b
b X b b X b t s X b b X s


  +   +  = +   +
  

  (3.140) 

It can be noticed that variances/covariances on the right correspond to the terms on left. 

Pooling variances, see Eq. (1.31) of the two lines and assuming that variances of the two regression 

lines are similar, 
1 2

2 2
y y

s s  gives the pooled variance, 2
ps : 

 
( ) ( )

1 2

2 22 2 1 22 1 2

1 2 1 2

2 2

4 4

y y
p

N s N sS S
s

N N N N

− + −+
= =

+ − + −
  (3.141) 

Eq. (3.140) gives the following second order equation: 

 ( ) ( )
1 0 1 0

2 2 2 2 2 2 2 2
1 0 1 0( ) 2 0

b b b b
X b t s X b b t s b t s

   
 − +   − +  − =   (3.142) 

and the roots Xi are the lower and higher confidence intervals for X. 

The variances and covariances are calculated from the error propagation equation. Variance of 

1b  is calculated using Eq. (3.24): 

 

( ) ( )
1 1,1 1,2 1 2

2 2 2 2

2 2
,1 1 ,2 2

1 1

1 1
pb b b N N

i i

i i

s s s s

x x x x



= =

 
 
 

= + = + 
 − −
 
 
 

  (3.143) 

covariance 
,0 1b b

s
 

 using Eq. (3.132) 



74 

 

( ) ( )
0 1 1 2

2 1 2
0 1 ,

2 2
,1 1 ,2 2

1 1

cov( , ) b b p N N

i i

i i

x x
b b s s

x x x x

 

= =

 
 
 

  = = − + 
 − −
 
 
 

  (3.144) 

and variance of 1b  using Eq. (3.27) 

 

( ) ( )
0 1 2

2 2
2 2 1 2

2 21 2
,1 1 ,2 2

1 1

1 1
pb N N

i i

i i

x x
s s

N N
x x x x



= =

 
 
 

= + + + 
 − −
 
 

 

  (3.145) 

 

The two roots of Eq. (3.142) describe the confidence intervals of the parameter X. Application 

of this method is illustrated in Example 3.10. 

 

Example 3.10. 

In the conductometric titration the following results were obtained,  

xA yA xB yB 

4 0.7254 18 0.3929 

6 0.6683 19 0.401 

8 0.6089 20 0.4104 

10 0.5522 22 0.4297 

12 0.4964 24 0.4505 

14 0.4406 26 0.4715 

15 0.4152 28 0.4915 

16 0.3961 30 0.513 

17 0.3894 32 0.5349 

  33 0.5449 

  34 0.5554 

 

where y is the analytical signal (e.g. conductivity or absorbance) and x is the volume, and the 

indices A and B correspond to the branches before and after the final point of titration. The titration 

curve is displayed in Fig. 3.12. 
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Fig. 3.12. Visualization of the data in Example 3.10 with the regression lines and the intersection 

in the final point. 

Because of the curvature of the experimental relation points for x = 4 to 16 and 18 to 34 were 

selected to regression analysis. The parameters of the linear regressions of these two lines are: 

A) 

b0 0.833525397 

b1 -0.027824743 

 

B) 

b0 0.205452 

b11 0.010265 

 

Using Eq. (3.136) gives X = 16.489. The value of t(0.05,8+11-4) = 2.13145, and using Eqns. 

(3.141)-(3.144) the following values are obtained: 
2
ps  = 8.4402210-6 

0

2 52.582 10
b

s −


=   , 
1

2 88.80166 10
b

s −


=  , 
0 1

6
, 1.31911 10b bs −

  = −   and the following 

equation for X: 

 20.00145041 0.0478341 0.394359 0X X− + =   (3.146) 

 

with two roots: X1 = 16.3499 and X2 = 16.6297 which are the lower and the higher confidence 

intervals. Therefore, with the probability of 95% the final result is: X = 16.49 ± 0.14. See 

calculations in Examples3.xlsx, sheet Ex. 3.8. 
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3.19 Numerical problems related to the regression analysis 

Polynomial regression analysis involves matrix inversion, Eq. (3.96), which is sensitive to 

numerical errors. To understand this problem let us consider example of the U.S. Census data. The 

statisticians tried to fit the U.S. population to a second order equation.30 The data were collected 

every 10 years and are presented below in Example 3.11. 

 

Example 3.11.  

Fit the following census data to second order polynomial. 

year (x)  population (y) 

1900   75994575 

1910   91972266 

1920   105710620 

1930   122775046 

1940   131699275 

1950   150697361 

1960   179323175 

1970   203235298 

 

The fit to y = b0 + b1x + b2x
2 was carried out using single (~7 significant digits) and double 

(~14 significant digits) precision on the IBM main frame computer. However, both methods gave 

two completely different sets of parameters which even had different signs.30 This problem is 

related to the precision of the calculations and might be shown using singular value 

decomposition.30,31,32  

In general, matrix A can be factorized into three matrices: 

 '=A u w v   (3.147) 

where u and v are the orthonormal matrices (for which u’ u = v’ v = I, where I is the unit matrix) 

and w is the diagonal matrix which contains ordered singular values 1 2 ... 0N      .  

The inverse of matrix A equals: 

 
-1 -1

A = vw u'   (3.148) 

It should be notices that for the orthonormal matrices u and v inversion is equivalent to 

transposition and for the diagonal matrix it is inversion of the diagonal values. It can also be added 

that the determinant of a diagonal matrix is simply a product of its singular values, det(w) = 

1 2

1

...
N

N i

i

   

=

   =  . Inversion of matrices involves division by the determinant. If its value 

is very large (inverse vary small) numerical problems arise and the problem is called ill-

conditioned. 

Let us look at the results obtained for our problem. X matrix is: 
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   (3.149) 

and X’X: 

 

 

                         (3.150) 

 

 

 

Inversion of this matrix may introduce numerical inaccuracies. Let us look at the singular value 

decomposition of this matrix producing three matrices: 

 

(3.151) 

 

 

  (3.152) 

 

 

 (3.153) 

 

In the matrix w the ratio of the largest to the smallest singular values is: 
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21 0

3

9.0911 10



=    (3.154) 

which is called matrix condition number. It is very large and during inversion the smallest 

singular value, σ3 = 1.234710-7 becomes the largest! However, this value is calculated with the 

largest error because of the computer internal precision. The above results were obtained using 

Maple version 13, but the results obtained using Mathematica version 9 are a little different and σ3 

= 1.1985610-7. 

It should be noticed that all these problems are related to values of x and not to y. This problem 

might be easily avoided by scaling the values of x, for example introducing new values: 

( ) / 10ix x−  where x  = 1935. Then, the matrix X is: 

  := X















































1 -3.5 12.25

1 -2.5 6.25

1 -1.5 2.25

1 -.5 .25

1 .5 .25

1 1.5 2.25

1 2.5 6.25

1 3.5 12.25

  (3.155) 

 

and X’X 

  := XTX



















8 0. 42.00

0. 42.00 0.

42.00 0. 388.5000

       (3.156) 

For this matrix the singular value decomposition gives w: 

 

   (3.157) 

 

and the condition number 

 
1

3

114.96



=   (3.158) 

is much smaller than the earlier value, Eq. (3.154), where the calculations might be carried out 

with large precision. The new version of Excel Regression must involve scaling because the results 

obtained using unscaled and scaled x values are essentially the same (large difference were 

obtained with older versions). See calculations in Examples3.xlsx, sheet Ex. 3.11 and in 

Mathematica SVD.nb and Maple svd.mw files. 

The professional programs use scaling of x values, e.g. between -2 and 2 for internal 

computing. Singular value decomposition is currently used in all problems demanding matrix 
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inversion. In ill conditioned problems truncated SVD is used31,32 where the smallest value(s) in w 

are neglected and replaced by zero in w-1. In polynomial approximations orthogonal polynomials 

are usually used where addition of a higher order polynomial term does not affect the terms with 

lower orders. 

3.20 Nonlinear regression 

Nonlinear regression is linear in the parameters. Let us consider two functions:8 

 ( )2
1 2expy b b x= +   (3.159) 

 ( )2 11

1 2

b x b xb
y e e

b b

− −
= −

−
  (3.160) 

The first equation (3.159) might be linearized by taking logarithm: 

 
2

1 2ln y b b x= +   (3.161) 

and it is called intrinsically linear. However, the second cannot be linearized and it is called 

intrinsically nonlinear.  

Let us suppose that the postulated nonlinear model is presented in the form: 

 ( , )y f= x b   (3.162) 

where x = (x1, x2,…,xN) is the independent variable and b = (b1, b2,…bp) are the unknown 

parameters. In the least-squares method the sum of squares is: 

 

  
22 2 2

1 1

ˆ( , ) ( ) min
N N N

i i i i i

i i i

S y y x y y

= =

= = − = − =  b   (3.163) 

see also Eq. (3.7). The minimum of the sum of squares occurs when its gradient versus parameters 

is zero: 

  
2

1

( , )
2 ( , ) 0 1,...,

N
i

i i
j ji

S y x
y y x j p

b b
=

 
= − − = =

 


b
b   (3.164) 

The nonlinear method proceeds iteratively. First, the initial guess of p parameters bi is chosen. 

These parameters are improved iteratively and new set of parameters bk+1 of k +1 iteration replaces 

values obtained in iteration k, that is parameter k
jb  is replaced by a new value: 

 1k k
j j jb b b+ = +   or 1k k

j j jb b b+ = −  (3.165) 

The nonlinear model (3.162) is linearized using Taylor expansion in b and keeping only the 

first order terms: 

 ( ) ( )
( )( )

( 1) ( )

1

,
, ,

kp ik k
i i j

jj

f x
f x f x b

b

+

=


= + 




b
b b   (3.166) 

Introducing Jacobian J, Eq. (3.107), Eq. (3.166) might be rewritten as: 
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( ) ( )( 1) ( )
,

1

,

1

, ,

or

p
k k

i i i i j j

j

p

i i i j j

j

f x f x J b

y J b





+

=

=

= − − 

=  − 





b b

  (3.167) 

where  

 ˆ ( , )i i i iy y y x = − b   (1.168) 

and matrix J is the Jacobian, Eq. (3.107), written for parameters b1 to bp is: 

 

1 1 1 1

1 2 3

2 2 2 2

1 2 3

3 3 3 3

1 2 3

1 2 3

...

...

...

... ... ... ... ...

...
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Substitution into Eqs. (3.164) gives:  
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  (3.170) 

which can be written in a matrix form: 

 ' ' = J J b J y   (3.171) 

This equation is an analog of Eq. (3.94) but written for Δ and the calculations are repeated until 

the differences are negligible. In the nonlinear problem the derivatives are usually calculated 

numerically using very small increments and iterations are continued until relative changes of 

parameters /j jb b  are very small. It is important to notice that if the initial guess of parameters 

is far from the system parameters the nonlinear least-squares method may diverge without 

producing results (singular matrix message). There are numerous programs which contain 

nonlinear regression (Origin, SigmaPlot) and source programs (e.g. in Netlib).5,833 

 

Example 3.12. 

There are 1024 points (see Excel file Examples3.xlsx, sheet Ex. 3.12) and the possible model 

describing them is the Gauss function: 
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   2
1 2 3exp ( )y b b x b= − −   (3.172) 

Using Origin nonlinear fit with user defined function the plot of the experimental points and 

calculated function is presented in Fig. 3.13. 
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Fig. 3.13. Experimental point, prediction using Gaussian model (black line) and confidence 

intervals for yi at the probability of 95%. Statistically, 5% of experimental points might be outside 

this confidence interval. 
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Fig. 3.14. Distribution of deviations of the experimental points from the calculated values. These 

deviations are randomly distributed. 

 

The fit results are: 

 

No b    sb    texp 

1  1.0044  0.0038   266.41 

2  0.004550 0.000020       229.51 

3  512.71  0.67   762.53 



82 

 

All the parameters are statistically important and texp are very large. For N = 1024, 

t(0.05, 1024-3) = 1.962 (because there are many points this value is close to that for normal 

distribution, z(0.975) = 1.960) one can write that with the probability of 95% the following values 

of the parameters were found: 

1

2

3

1.0044 0.0075

0.004550 0.000039

512.7 1.3

b

b

b

= 

= 

= 

  

 

These calculations are shown in Origin Ex3-120.opj file, see also calculations in Examples3.xlsx, 

sheet Ex. 3.12. 

Example 3.13. 

Approximate the experimental points displayed in the Excel file Examples3.xlsx, sheet Ex.3.13. 

They are displayed in Fig. 3.15. 
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Fig. 3.15. Experimental points, approximation – black line, and confidence intervals for the 

experimental values for the confidence interval of 95% using model in Example 3.13. 

The model proposed here is the Gaussian peak and the baseline approximated by a second 

order polynomial: 

 

2

22
1 4 5 6

3

exp 0.5
x b

y b b b x b x
b

  −
 = − + + + 
   

  (3.173) 

The results obtained in Origin are: 

   b  sb  texp 

206.5 3.6182 57.0859 

55.94 0.06946 805.3392 

3.56 0.07631 46.58896 

186.3 2.29131 81.31064 
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-2.30 0.11604 -19.7983 

0.0093 0.00111 8.34281 

 

All the parameters found are important and texp values are larger than t0.05, 94) = 1.985. 

With the probability of 95% the parameters found are: 

 

b1 = 206.5 ± 7.2 

b2 = 55.94 ± 0.14 

b3 = 3.56 ± 0.15 

b4 = 186.3 ± 4.5 

b5 = -2.30 ± 0.23 

b6 = 0.0093 ± 0.0022 

 

The calculations are shown in Origin Ex3-13.opj file, see also calculations in Examples3.xlsx, 

sheet Ex. 3.13. Such an analysis is used in chemistry and physics to determine the parameters of 

Gaussian peaks. 

3.21 Dealing with nonlinear regression with errors in y and x 

Linear regression with errors in x and y presented in Chapter 3.16 may be easily extended to 

nonlinear regression.26 Its application will be illustrated using approximation of the van Deemter 

equation for gaseous chromatography using data from Moody.34,35 This problem may be easily 

solved using Excel Solver.26,35 It should be added that van Deemter equation is linear versus the 

unknown parameters: 

 1 2 3/y b x b x b= + +   (3.174) 

where y is the plateau height, x is the flow rate and b1, b2, and b3 are the unknown parameters 

which must be determined using weighted regression. The total effective variance 
2

,eff is  is a sum 

of the variance of yi and the influence of variance of xi on the variance of y, see Eq. (3.127), 
2 2 2 2

, (d / d )
i i

eff i y x
s s y x s= + . The derivative dy/dx calculated from Eq. (3.174) is: 

 2
1 2

d

d

by
b

x x
= −   (3.175) 

and the weights wi = 1/
2

,eff is . Starting from the first guess of the parameters b1, b2, and b3 values of 

ˆiy , wi and the weighted sum of squares S2 were calculated, and the procedure repeated until the 

minimum of the weighted sum of squares was found. Details are presented in Example 3.14. 

 

Example 3.14 

Data below describe dependence of the plateau height, y, vs. the flow rate, x. Approximate this 

data by van Deemter Eq. (3.174). 

 

x y 

3.4 9.59 

7.1 5.29 

16.1 3.63 
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20.0 3.42 

23.1 3.46 

34.4 3.06 

40.0 3.25 

44.7 3.31 

65.9 3.50 

78.9 3.86 

96.8 4.24 

115.4 4.62 

120.0 4.67 

 

Assume standard deviations for x and y as proportional, 3% for x and 2% for y, that is 0.03
ix is x=  

and 0.02
iy is y= . Starting from the first guess of the parameters b1, b2, and b3 values of ˆiy , wi and 

the weighted sum of squares S2 were calculated, and the procedure repeated until the minimum of 

the weighted sum of squares was found. This procedure was carried out in Excel using Solver. 

After finding the optimal values of the regression parameters it is possible to determine their 

standard deviations from the variance/covariance matrix, Eq. (3.116), First, the value of the 

variance/covariance matrix (X’GX)-1, Eq. (3.116), must be calculated from xi, yi,, and weights wi 

(weights calculated in each iteration from new parameters and ˆiy ). This can be carried out in 

Excel36 or in any other program (Maple, Mathematica, Matlab). Example of the calculations is 

shown in Examples3.xlsx, sheet Ex. 3.14. The obtained results are: 

b1 = 0.0237  sb1 = 0.0012 

b2  = 26.2   sb2 = 1.1 

b3 = 1.628   sb3 = 0.087 
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4 Statistical tests on average(s)  

4.1 Introduction 

The main purpose of the statistical data analysis is to estimate the parameters and carry out 

statistical tests on them. A hypothesis is a statement about experimental data. For example, let us 

assume that the average concentration of the sample is μ0. We want to prove, by repeating the 

determination N times if our average x  is statistically equal to μ0 or there is a significant difference 

between these two values (bias).  

We have to pose two hypotheses H0 and H1 about the data. These hypotheses are exclusives 

i.e. only one of them is true. 

Null hypothesis, H0, states that the parameters compared (mean, variance) are the same or a 

value is zero, i.e. in the above example x  - μ0 = 0. 

Alternative hypothesis, H1, states that the parameters compared are different. 

Statistical test gives us a rule permitting to state which of two hypotheses is correct. This 

process is carried out with certain probability. One usually choses a level of confidence 

(significance level), α, in advance. This significance level shows a probability of rejecting the null 

hypothesis when it is true. Typically, these significance levels are 0.05 (or the probability of 95%) 

or 0.01 (probability 99%). Moreover, it is usually possible to calculate the probability, p, of H0 

being true. If p is smaller than α one should reject the hypothesis H0. For example if p < 0.05 

the probability of finding data consistent with H0 is less than 5% and this hypothesis should be 

rejected at such confidence level that is there is less than one chance in 20 of finding values in 

accordance with H0. The smaller is p the less probable is hypothesis H0. In such a case we can state 

that the null hypothesis is rejected at the 95% level of confidence. 

Carrying out such a procedure we can arrive at wrong conclusions (our conclusions are based 

on probability). There are two possible errors: 

 

Type I error occurs when we reject hypothesis H0 when it is true (that is we accept H1 when 

it is false). It is called false positive. 

Type II error occurs when hypothesis H0 is accepted while it is false (that is we reject H1 

when it is true). It is also called false negative. 

Types of decisions and errors are shown in Table 4.1. 

 

Table 4.1. Type of decisions in hypotheses testing and possible error. 

 

 

 

 

Decision 

 Situation 

H0 true H1 true 

Do not reject H0 Good decision 

Probability 1-  

Type II error 

Risk of error β= ??? 

False negative 

Reject H0 Type I error 

Risk of error  

False positive 

Good decision 
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To better understand these errors let us look at the example of HIV testing. Two hypotheses 

are formulated: 

H0 - the patient does not have HIV 

H1 - the patient has HIV 

A false positive is to reject H0 and to accept H1 when H0 is true that is to say that patient has 

HIV while he has not. 

A false negative is to accept H0 and reject H1 when H1 is true that is to say the patient does not 

have HIV while it has. 

Examples of the hypotheses testing for the mean(s) will be presented below. 

4.2 Test 
2  

This test is commonly used to compare observed data with data we would expect to obtain 

according to a specific hypothesis. In other words it can be used to compare the observed sample 

distribution with the expected probable distribution. In our case we will apply this test to check if 

the statistical weights for the average are normally distributed.37 The hypotheses tested are: 

 

H0: errors are normally distributed 

H1: errors are not distributed normally 

To check this hypothesis one should compare the experimental (calculated) value of 2
exp : 

 

2
2
exp 2

1

( )

i

N
i

i x

x x

s


=

−
=    (4.1) 

with the theoretical (critical) value of this distribution 
2
cr ( , 1)N  − . If 2 2

exp ( , 1)N   −  one 

should keep hypothesis H0 at the confidence level of 0.05 i.e. probability of 95%. 

 

Example 4.1.  

Simulate 2 distribution function and its integral for df = 2,4, and 8. 

The probability distribution function 2 and 2
2( , )P df


  are shown in Fig. 4.1, and in Excel file 

Examples4.xlsx, sheet Ex. 4.1 and Origin Fig4-1.opj. 
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Fig. 4.1. 
2 -probability distribution functions for 2, 4, and 8 degrees of freedom. The shaded area 

corresponds to the surface area of α = 0.05 and the critical values of 
2
cr ( , )df   are indicated with 

arrows. 

This test will be applied to the determination of the weighted mean. The values of 

2
2( , )P df


  are calculated in Excel using function: CHISQ.DIST(2, df, FALSE) and  

2( , )df   are calculated as: CHISQ.INV.RT(, df). 

 

Example 4.2. 

Calculate the weighted mean and its standard deviation using the following data: 

xi i 

2.10 0.20 

2.30 0.20 

2.15 0.22 

1.95 0.32 

4.00 0.20 

3.90 0.21 

Details of calculations are shown in Examples4.xlsx, sheet Ex. 4.2. The calculation are 

displayed below. 
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xi σi wi wi xi wi (xi-xm)2 

2.1 0.20 25 52.5 13.14352 

2.3 0.20 25 57.5 6.892718 

2.15 0.22 20.66116 44.42149 9.415964 

1.95 0.32 9.765625 19.04297 7.478169 

4 0.20 25 100 34.51094 

3.9 0.21 22.67574 88.43537 26.20076 

 sum 128.1025 361.8998 97.64207 

     
chi2(0.05,5)= 11.0705    
xm= 2.825    
s xm= 0.088    

 

One should notice that the experimental value of exp 97.64 =  while cr (0.05,5) 11.07 = . 

Because the experimental value is much larger than the critical value at 95% confidence level, 

distribution of errors is not Gaussian. The results displayed in Fig. 4.2.  

0 2 4 6 8 10
1

2

3

4

 

 

x
i

i

xm all points

xm points 1-4

 
Fig. 4.2. Plot of the data in Example 4.2. The means and their standard deviations were calculated 

from all six points and from the first four points. 

The average of all points: 2.825x =  but the standard deviation of the mean, xs  = 0.088, looks 

too small in comparison with the spread of the experimental points. We can also notice that the 

last two points have values much larger than the first four points. The calculations were repeated 

using only the first four points. The results obtained are shown below. 
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xi σi wi wi xi wi (xi-xm)2 

2.1 0.2 25 52.5 0.080655 

2.3 0.2 25 57.5 0.512658 

2.15 0.22 20.66116 44.42149 0.000955 

1.95 0.32 9.765625 19.04297 0.417638 

  80.42678 173.4645 1.011906 

 chi2(0.05,3)= 7.814728   

 x  = 2.16   

 xs = 0.11   
 

In this case the experimental value exp 1.012 =  is much smaller than cr (0.05,3) 7.81 =  and 

the distribution of errors is correct. The obtained result is: 2.16x =  and xs  0.11. 

 

Example 4.3. 

Calculate the weighted mean and its standard deviation using the following data: 

x σ 

2.50 0.20 

2.30 0.19 

3.20 0.30 

3.00 0.25 

3.10 0.20 

 

Carrying out calculations one can get the following results: 

xi σi wi wi xi wi (xi-xm)2 

2.50 0.20 25 62.5 1.449489  
2.30 0.19 27.70083 63.71191 5.382143  
3.20 0.30 11.11111 35.55556 2.343048  
3.00 0.25 16 48 1.075042  
3.10 0.20 25 77.5 3.225805 

 

 sum 104.8119 287.2675 13.47553 =χ2
exp 

x  = 2.741     

xs  = 0.098  t(0.05,4)= 2.776445  
χ2(0.05,4) = 9.487729     

      
corrected       

xs = 0.18     
CI= 0.50     

The following results are obtained: x  = 2.741, xs  = 0.098, 2
exp  = 13.48 and 

2
cr (0.05,4)  

= 9.49. In this case 2 2
exp cr (0.05,5)  , distribution of errors is not normal and the standard 

deviation is too small, see Fig. 4.3. 
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Fig. 4.3. Plot of the data and results in Example 4.3. The directly calculated standard deviation is 

too small and after correction for 2
exp  it is larger. 

After correction for 2
exp , Eq. (1.36), the standard deviation of the mean is xs  = 0.18. The 

confidence intervals are: 

2.74x =  ± 0.50 using t(0.05”,4) = 2.776. 

See calculations in Examples4.xlsx, sheet Ex. 4.3. 

4.3 Test for outliers, Dixon’s Q-test 

Outlier is a data point taken from a sample, assumed to be normally distributed, which lies 

beyond the mean at a stated probability. According to a statistical test it does not belong to the 

distribution of the rest of the data. However, points should not be rejected lightly. Good 

Manufacturing Practices (GMP) forbids such practices and rejecting data might lead to the process 

in court (although this is mainly in health sciences and testing production pharmaceutical). One 

should try to understand why such an outlier appeared. However, in the physicochemical sciences 

usually the experiments can be repeated to better understand the data distribution. 

The oldest test for outliers is Dixon’s Q – test.38 It answers the question: should we keep this 

point in the calculation of the mean and standard deviation. It is used to quickly check for outliers. 

Two hypotheses should be posed: 

 

H0  this point should be kept 

H1  this point should be rejected 

 

To use this test the points should be sorted from the smallest, x1, to the largest, xN, and then the 

experimental value of Qexp calculated: 

 11 2
exp

1 1

gap
or  

range

N N

N N

x xx x
Q

x x x x

−−−
= =

− −
  (4.2) 
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where gap is the absolute of difference between the suspected outlier and the closest number to it 

and gap is the difference between the maximal and minimal points of all data studied.  

When Qexp > Q(P,N), where P is the probability in %, the point should be rejected. Eq. (4.2) 

may be used for number of points from 3 to 7. The values of Q(P,N) are displayed in Table 4.2.  

For larger N the formula should be modified calculating the gap and range omitting the extreme 

points and using different table values39 but presently Grubbs test is recommended for such tests 

(see below). Caution should be used when working with small number of points. For example if 

three points are analyzed and two numbers are identical, e.g. 17.0, 17.0, 17.1 or 17.00, 17.00, 

17.01, Qexp test will always give the value of 1 forcing rejection although the spread of the results 

might be small. In such a case this test fails and more points should be acquired. 

 

Table 4.2. Theoretical values of the Dixon’s Q(P,N) test for different levels of confidence, P: 90%, 

95%, and 99%. 

Number of 

observations N 

Q (90%) Q (95%) Q (99%) 

3 0.941 0.970 0.994 

4 0.765 0.829 0.926 

5 0.642 0.710 0.821 

6 0.560 0.625 0.740 

7 0.507 0.568 0.680 

8 0.468 0.526 0.634 

9 0.437 0.493 0.598 

10 0.412 0.466 0.568 

 

Example 4.4. 

Is the greatest value in the following series an outlier? 

The data are set from the smallest to the largest and the gap and range calculated: 
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         gap = 0.11 

 
     range = 0.20 

 

Fig. 4.4. Use of the Q – test. 

The value of Qexp is: 

 exp
0.11

0.55
0.50

Q = =   (4.3) 

The value from the Table 4.2 is Qcr(95%,5) = 0.71. Because Qexp < Qcr(95%,5) this point should 

not be rejected. 

 

Example 4.5. 

Should the extreme values in the series be rejected?  

5.00 5.10 5.10 5.15 5.20 5.30 6.20 

 

 

Fig. 4.5. Distribution of points in Example 4.5. 

Calculations for the first and seventh point give the following results: 

 1 7
| 5.00 5.10 | 6.20 5.30

0.083 0.75
| 6.20 5.00 | 6.20 5.00

Q Q
− −

= = = =
− −

  (4.4) 

The value from the Table is: Q(95%,7) = 0.57 and Q(99%,7) = 0.68. The comparison shows 

that: 

Q1 < Qcr(95%,7) and Q7 > Qcr(95%,7) which means that the first point should be kept and the 

seventh (6.20) rejected. The same answer is obtained for the probability of 99%. This test is 

included in the Origin program. 
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4.4 Test for outliers, Grubbs’ G test 

Grubbs’ G’ test40 is recommended by ISO41 and ASTM42 and should be used instead of Q test 

although many analytical handbooks still recommend Q test. It is defined for deletion of one point 

at a time as: 

 max min
exp exp' or     '

x x x x
G G

s s

− −
= = −   (4.5) 

where s is sample standard deviation of the whole data set, including the suspected outlier and xmax 

and xmin are the suspected outliers. Critical values of one-sided test G’(α,N) are calculated using 

the following formula: 

 
( )

( )

2

2

/ ', 21
'( , )

2 / ', 2

t N NN
G N

N N t N N






− −  
=

− + −  

  (4.6) 

where one sided t-test was used. These values are easily calculated in Excel using T.INV(α/N, 

N - 2) function, see the Excel file.  

Similarly, the two sided t-test is also used to determine the largest absolute deviation from the 

mean as: 

 
suspected

exp'
x x

G
s

−
=   (4.7) 

where xsuspected is xmax or xmin. To calculate the critical values of G’(α,N) the two sided values of 

T.INV.2T(α/N, N - 2) should be computed using similar formula: 

 

( )

( )

2

2

/ ", 21
'( , )

2 / ", 2

t N NN
G N

N N t N N






− −  
=

− + −  

      (4.8) 

These values are shown in Table 4.3. If G’exp > Gcr’(α,N) this point is an outlier and can be 

rejected. It should be noticed that although Grubbs40, ASTM42, and Harris43
 recommend one-sided 

test, Hibbert and Gooding18, Thompson and Lowthian,44 Brereton,45 Ellison et al.46 recommend 

using two-sided test. The two-sided test is also included in Origin.  

 

Table 4.3. Critical values of the Grubbs’ test for outliers, G(α,N). 

   one-sided          two sided 

α = 0.1 0.05 0.01  α = 0.1 0.05 0.01 

N     N    

3 1.1484 1.1531 1.1546  3 1.1531 1.1543 1.1547 

4 1.4250 1.4625 1.4925  4 1.4625 1.4813 1.4963 

5 1.6016 1.6714 1.7489  5 1.6714 1.7150 1.7637 

6 1.7289 1.8221 1.9442  6 1.8221 1.8871 1.9728 

7 1.8280 1.9381 2.0973  7 1.9381 2.0200 2.1391 

8 1.9089 2.0317 2.2208  8 2.0317 2.1266 2.2744 

9 1.9773 2.1096 2.3231  9 2.1096 2.2150 2.3868 

10 2.0362 2.1761 2.4097  10 2.1761 2.2900 2.4821 

12 2.1341 2.2850 2.5494  12 2.2850 2.4116 2.6357 
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14 2.2132 2.3717 2.6585  14 2.3717 2.5073 2.7554 

16 2.2793 2.4433 2.7470  16 2.4433 2.5857 2.8521 

20 2.3853 2.5566 2.8838  20 2.5566 2.7082 3.0008 

30 2.5651 2.7451 3.1029  30 2.7451 2.9085 3.2361 

40 2.6840 2.8675 3.2395  40 2.8675 3.0361 3.3807 

50 2.7719 2.9570 3.3366  50 2.9570 3.1282 3.4825 

 

These values were calculated in Excel file Examples4.xlsx, sheet Grubbs Table. 

 

The problem described earlier discussing limited number of measurements when two points 

are identical and the third different also exists for Grubb’s test (e.g. 17.0, 17.0, 17.1 or 17.0, 17.0, 

18.0 give the same G –test values) and more data should be acquired or the standard deviation 

analyzed more closely before possible rejection. 

The above one or two sided G’ test was for the rejection of one extremal point. There are two 

more tests for rejection of two points, G” for rejection of two extremal points, x1 and xN and G’’’ 

for rejection of two points on the same side, that is x1 and x2 or xN-1 and xN. 

Test G” is defined as: 

 1" Nx x
G

s

−
=   (4.9) 

where the critical values are calculated using the following equation: 47 
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  (4.10) 

Similarly as for G’, when G”exp > Gcr’’(, N) the two extreme pints may be rejected. 

Experimental values of test G’’’ are calculated using standard deviation of all points, s, and 

standard deviation excluding these two extremal points: 

 

2 2
excluding 2 lowest excluding 2 highest''' '''

low high2 2

( 3) ( 3)
or  

( 1) ( 1)

N s N s
G G

N s N s

− −
= =

− −
  (4.11) 

In this case when G’’’exp < Gcr’’’(, N) the pair of points may be rejected because G’’’ becomes 

smaller as the suspected outliers become more extreme. The critical values of G” and G’’’ are 

presented in Table 4.4. 
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Table 4.4. Critical values of the Grubbs’ test for outliers, G”(α,N) and G’’’(α,N). 

 

G”(α,N)          G’’’(α,N) 

α =  0.05  0.01  0.05  0.01  

N  

3  1.999  2.000  –  –  

4  2.429  2.445  0.0002  0.0000  

5  2.755  2.803  0.0090  0.0018  

6  3.012  3.095  0.0349  0.0116  

7  3.222  3.338  0.0708  0.0308  

8  3.399  3.543  0.1101  0.0563  

9  3.552  3.720  0.1492  0.0851  

10  3.685  3.875  0.1864  0.1150  

11  3.803  4.012  0.2213  0.1448  

12  3.909  4.134  0.2537  0.1738  

13  4.005  4.244  0.2836  0.2016  

14  4.093  4.344  0.3112  0.2280  

15  4.173  4.435  0.3367  0.2530  

16  4.247  4.519  0.3603  0.2767  

17  4.316  4.597  0.3822  0.2990  

18  4.380  4.669  0.4025  0.3200  

19  4.440  4.737  0.4214  0.3398  

20  4.496  4.800  0.4391  0.3585  

21  4.549  4.859  0.4556  0.3761  

22  4.599  4.914  0.4711  0.3927  

23  4.646  4.967  0.4857  0.4085  

24  4.691  5.017  0.4994  0.4234  

25  4.734  5.064  0.5123  0.4376  

26  4.775  5.109  0.5245  0.4510  

27  4.814  5.151  0.5360  0.4638  

28  4.851  5.192  0.5470  0.4759  

29  4.886  5.231  0.5574  0.4875  

30  4.921  5.268  0.5672  0.4985  

40  5.201  5.571  0.6445  0.5862  

50  5.407  5.790  0.6966  0.6462  

60  5.568  5.960  0.7343  0.6901  

70  5.700  6.098  0.7630  0.7236  

80  5.811  6.213  0.7856  0.7501  

90  5.906  6.311  0.8040  0.7717  

100  5.990  6.397  0.8192  0.7896  

 

 

Values of G” calculated in Excel file Examples 4 sheet Grubbs Table, and values of G’’’ are 

from refs. 40 and 46. 
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In any case, one should be very cautious while rejecting a point from a small group of points, 

e.g. three points. Although the values are presented for number of points starting from 3, some 

authors recommend using it starting from 4 points. It is recommended46 that when one outlier is 

found, one should not proceed with the two-point tests until the origin of this outlier was studied. 

 

Example 4.6.  

Use two-tailed Grubbs’ test for the data in Example 4.4. 

 

x  = 12.542, s = 0.0804 

 exp
|12.67 12.542 |

' 1.591
0.0804

G
−

= =   (4.12) 

 exp cr'( , ) 1.591 (0.05,5) 1.715G N G =  =   (4.13) 

Therefore there are no reasons to reject this point. See calculations in Examples4.xlsx, sheet 

Ex. 4.6. 

 

Example 4.7. 

Use two-tailed Grubbs’ test for the data in Example 4.5. 

 

x  = 5.2929, s = 0.4107 

 exp
| 5.2929 6.2 |

2.209
0.4107

G
−

= =   (4.14) 

 '
exp cr' 2.209 (0.05,7) 2.020G G=  =   (4.15) 

and Gexp>G’cr, therefore this point (x = 6.20) should be rejected. This test is also included in the 

Origin program. See calculations in Examples4.xlsx, sheet Ex. 4.7. 

 

Example 4.8. 

Use the tests G’, G”, and G’’’ to check for one or two outliers using the following data: 

20.6 21.7 23.0 23.0 24.3 28.0 36.5 

 

First calculate x  = 25.3 and s = 5.4675 (see Excel file). Then, 

 

'
exp

'
cr

36.5 25.3
2.05

5.4675

(0.05,7) 2.02

G

G

−
= =

=

  (4.16) 

and because G’exp > Gcr'(0.05,7) point 36.5 should be rejected as an outlier. 

For the rejection of two extreme points (20.6 and 36.5), Eq. (4.9): 

 
exp

"
cr

36.5 20.6
" 2.91

5.4675

(0.05,7) 3.222

G

G

−
= =

=

  (4.17) 

Because G’’exp < G”(0.05,7) there is no reason to reject two extreme points x1 and x7. 

To calculate G’’’ first the standard deviation of the first 5 points (without 28.0 and 36.5) should 

be calculated. sexcluding 2 highests = 1.41315. Then, G’’’ is, Eq. (4.11): 
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2
'''
exp 2

(7 3) 1.41315
0.0445

(7 1) 5.4675

'''(0.05,7) 0.1101

G

G

− 
= =

− 

=

  (4.18) 

In this case ''' '''
exp cr (0.05,7)G G  and two largest points might be rejected. 

4.5  p-level test 

In statistical analysis a specific level of significance at which the test might be rejected is 

calculated.37 This probability is called p-level or p-probability. It should be compared with the 

confidence level, α. If p < α the hypothesis H0 should be rejected and when p > α it should be kept. 

This p values are included in professional software, e.g. Minitab and also calculated automatically 

by Excel in several tests. It will be shown below how these values are calculated when discussing 

specific tests. 

4.6 Test u 

Test u is used to compare the experimental mean value, x , with the true value, μ, when the 

standard deviation of the population, σx, is known. This might happen during massive production 

allowing determination of the standard deviation of the population by pooling all the data. 

There are two hypotheses: 

H0: x =  (or x -  = 0) 

H1: x   (or x -   0) 

 

Let us use two-tailed test. In this case one should compare value of u 

 
x x

x x
u N

 

 

− −
= =   (4.19) 

with |z(α)| of the normal distribution. If u < |zcr(/2)| there are no reasons to reject H0 and the 

experimental mean is statistically equal to the true value at the level of confidence α. p-value of 

this test is: 

 2[1 NORM.S.DIST(| |,TRUE)]p u= −   (4.20) 

If p <  H0 should be rejected. Function NORM.S.DIST(|u|,TRUE) calculates the integral of the 

Gaussian probability function: 

 

2
||

G

||

2
1

( ,0,1) d
2

d

zuu

P z ez z


−

−

−

=    (1.21) 

and p is the two-sided probability, Fig. 4.6. 
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Fig. 4.6. Calculation of the probability p by the integration of the Gauss probability function. 

 

Example 4.9. 

The manufacturer produces volumetric flasks of V0 = 100.0 ml. To check if the production 

goes well a volume of a sample flask was measured 5 times and the following results were 

obtained: 99.89, 100.42, 100.11, 99.96, 100.33 ml. The standard deviation of the population 

(determined previously on a large sample of data) is σx = 0.2 ml. Can one say that the volume of 

the flask is 100.0 ml at the confidence level of 0.05? Use the two-tailed test. 

 

One should formulate two hypotheses: 

 

H0: V  = 100.0 ml 

H1: V   100.0 ml 

 

V  = 100.142 ml 

 
exp

cr

100.142 100.00
5 1.59

0.2

(0.975) | (0.025) | 1.96

u

z z

−
= =

= =

  (4.22) 

In this case the total probability is 95% or  = 0.025 on both sides of the Gaussian curve. 

Because it is the two-tailed test the values of |z(0.025)| = z(0.975) should be used. In this Example 

u = 1.59 < zcr(0.975) = 1.96 and one can say that the volume is (statistically) equal to 100.0 ml. 

There are 5 chances in 100 (one in 20) that the volume is not 100.0 ml. Besides p = 0.112 >  = 

0.05 and H0 should not be rejected. See Examples4.xlsx, sheet Ex. 4.9. 
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4.7  Test t, comparison with the standard 

This test is used to compare the mean value, x , with the true value, μ, when the standard 

deviation of the population, σx, is unknown. In this case one can estimate only the standard 

deviation of the sample, sx (not population). The test below is two-tailed. The null and alternative 

hypotheses are: 

 

H0: x  =  

H1: x     

 

and one should compare value of texp defined as: 

 

 exp
| | | |

x x

x x
t N

s s

 − −
= =   (4.23) 

with the value of tcr(α”,df) = T.INV.2T(,df) where df = N – 1. When texp < tcr(”,df) there are no 

reasons to reject the hypothesis. p-value for this test is calculated in Excel as: 

 expT.DIST.2T( , )p t df=   (4.24) 

 

Example 4.10. 

The true value is  = 0.123. Experimental measurements gave the following results: 0.112, 

0.118, 0.115, and 0.119. Can one say that the mean of the experimental measurements is 

statistically equal to the true value at the confidence levels of 0.05 and 0.01? Use the two-tailed 

test. 

 

x  = 0.116, xs  = 0.00158 (using Descriptive Statistics) 

 exp
| 0.116 0.123 |

4.43
0.00158

t
−

= =   (4.25) 

From Excel, tcr(0.05”,3) = 3.18 and tcr(0.01”,3) = 5.84. That is at the confidence level of 95% 

(α = 0.05”) texp = 4.43 > tcr(0.05”,3) = 3.18 and the hypothesis H0 should be rejected which means 

that the mean value is different from the true value at the probability of 95%. 

However, at the confidence level of 99% (α = 0.01”) texp = 4.43 < tcr(0.01”,3) = 5.84 and the 

hypothesis H0 cannot be rejected which means that if we assume that there is only one chance in 

100 that the mean is not equal to the real value we have to accept our experimental x . The same 

conclusions are obtained using p-values. The calculated p = 0.0214 is lower than  = 0.05 (reject 

H0) but larger than  = 0.01 (keep H0). The calculations are in the Excel sheet Ex4.10 in the file 

Examples4.xlsx. 

 

Example 4.11. 

Taking data from Example 1.6 and assuming that  = 0.08 answer the following questions: 

a) using two-tailed t-test is the mean value different form ? 

b) using right one-tailed t-test is the mean value larger than ? 

c) using left one-tailed t-test is the mean value smaller than ? 
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Repeat all these tests using test u and assuming that the standard deviation of the population is 

known x  = 0.005. 

All the calculations are shown in Examples 4, sheet Ex. 4.11. 

 

t-tests 

Re. a). 

We have to test the following hypotheses: 

H0 x   =  

H1 x    

The experimental texp value is: 

 exp
| | | 0.0840 0.080 |

1.386
0.002887x

x
t

s

− −
= = =   (4.26) 

the critical value tcr: 

 tcr(”,df) = tcr(0.05”,2) = T.INV.2T(0.05,2) = 4.303 (4.27) 

and the probability p: 

 expT.DIST.2T( , ) T.DIST.2T(1.386, 2) 0.300p t df= = =   `` 

Student PS distribution function for df = 2 is displayed in Fig. 4.7. The surface of the shaded 

area outside tcr is  = 0.05 (0.025 on each side). The experimental value of texp = 1.386 and the 

surface area outside  texp is p = 0.300. In this case texp < tcr and p >   therefore H0 should not be 

rejected and the mean is not different form the true value at the confidence level of 0.05 (or 95%). 

-6 -4 -2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

tcr = 4.303

texp = -1.386

 

 

P
S

t
texp = 1.386

tcr = -4.303

 
Fig. 4.7. Student distribution function for df = 2 (continues black line), the black surface area 

outside tcr is  = 0.05 and the surface area outside texp is p = 0.300. 

Re. b) 

We have to test the following hypotheses: 

H0 x   =  

H1 x  >  
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The experimental texp value is: 

 exp
0.0840 0.080 |

1.386
0.002887x

x
t

s

− −
= = =   (4.28) 

the critical value tcr(’, df) for the right one-tailed test is: 

 tcr(’,df) = tcr(0.05’,2) = T.INV(0.95,2) = 2.920 (4.29) 

and p-value is: 

 expT.DIST.RT( , ) T.DIST.RT(1.386,2) 0.150p t df= = =   (4.30) 

The Student probability distribution function is displayed in Fig. 4.8. 
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Fig. 4.8. Student distribution function for df = 2 (continues black line), the black surface area right 

to tcr is  = 0.05 and the surface area right to texp is p = 0.15. 

The surface of the shaded area right of tcr is  = 0.05. The experimental value of texp = 1.386 

and the surface area right to texp is p = 0.150. In this case texp < tcr and p >   therefore H0 should 

not be rejected and the mean is not larger than the true value at the confidence level of 0.05 (or 

95%). 

 

Re. c) 

We have to test the following hypotheses: 

H0 x   =  

H1 x  <  

Of course because numerically x  >  we already know it cannot be smaller. This test is shown 

only to demonstrate how to carry out the calculations. 

The experimental texp value is: 

 exp
0.0840 0.080

1.386
0.002887x

x
t

s

− −
= = =   (4.31) 

the critical value tcr(’, df) for left one-tailed test is: 
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 tcr(’,df) = tcr(0.05’,2) = T.INV(0.05,2) = -2.920 (4.32) 

and p-value is: 

 
exp expT.DIST( , ,TRUE) 1 T.DIST.RT( , )

T.DIST.(1.386,2,TRUE) 0.850

p t df t df= = −

= =
  (4.33) 

The Student probability distribution function is displayed in Fig. 4.8. 
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Fig. 4.9. Student distribution function for df = 2 (continues black line), the black surface area left 

of tcr is  = 0.05 and the surface left of texp is p = 0.85. 

The surface of the shaded area left of tcr is  = 0.05. The experimental value of texp = 1.386 and 

the surface area left to texp is p = 0.850. In this case texp > tcr (left-tailed t-test) and p >   therefore 

H0 should not be rejected and the mean is not smaller than the true value at the confidence level of 

0.05 (or 95%). 

In general, one can state that if texp is outside the shaded area defined by tct hypothesis H0 

cannot be rejected. 

 

u-tests 

Re. a) 

For two-tailed test we have to examine the following hypotheses: 

H0 x   =  

H1 x    

The standard deviation of the mean is: 

 
0.05

0.002887
3

x
x

N


 = = =   (4.34) 

The experimental uexp value is: 

 exp
| | | 0.0840 0.080 |

1.386
0.002887x

x
u





− −
= = =   (4.35) 

the critical value zcr: 

 zcr(”) = zcr(0.05”) = |NORM.S.INV(0.05/2)| = NORM.S.INV(1-0.05/2) = 1.960 (4.36) 
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and the probability p: 

exp2(1 NORM.S.DIST( ,TRUE) 2(1 NORM.S.DIST(1.386,TRUE) 0.166p z= − = − =   (4.37) 

In the above case uexp < zcr and p >  therefore hypothesis H0 cannot be rejected, and one can 

say that at the confidence level of 0.05 (95%) the experimental mean is statistically equal to the 

true value.  

 

Re. b) 

For right one-tailed test we have to examine the following hypotheses: 

 

H0 x  =  

H1 x  >  

The experimental uexp value is: 

 exp
0.0840 0.080

1.386
0.002887x

x
u





− −
= = =   (4.38) 

the critical value zcr: 

 zcr(,df) = zcr(0.05,2) = NORM.S.INV(1-0.05) = 1.645 (4.39) 

and the probability p: 

exp1 NORM.S.DIST( ,TRUE) 1 NORM.S.DIST(1.386,TRUE) 0.0829p z= − = − =   (4.40) 

In the above case uexp < zcr and p >  therefore hypothesis H0 cannot be rejected, and one can 

say that at the confidence level of 0.05 (95%) the experimental mean is not larger than the true 

value; it is statistically equal to the true value.  

 

Re. c) 

For left one-tailed test we have to examine the following hypotheses: 

H0  x  =  

H1 x  <  

As described earlier, this test does not make any sense as x  > 0.08 but it is presented for 

illustration purposes. 

The experimental uexp value is: 

 exp
0.0840 0.080

1.386
0.002887x

x
u





− −
= = =   (4.41) 

the critical value zcr: 

 zcr(,df) = zcr(0.05) = NORM.S.INV(0.05) = -1.645 (4.42) 

and the probability p: 

expNORM.S.DIST( ,TRUE) NORM.S.DIST(1.386,TRUE) 0.917p z= = =   (4.43) 

In this case uexp > zcr and p >>  therefore hypothesis H0 cannot be rejected, and one can say 

that at the confidence level of 0.05 (95%) the experimental mean is not smaller than the true value; 

it is statistically equal to the true value.  

The plots in this test are similar to those for t-test above. 

4.8  Comparison of two means 

Very often in analytical or physical chemistry we ask ourselves a question: are these two 

averages statistically equal? This question may arise when two different analytical or 



104 

physicochemical methods are compared or when comparing results of different analysts or labs. 

To answer this question, one should use a t-test. There are two tests used in in two cases: 

a) when the variances of two sets (methods) are statistically the same 

b) when the variances of two sets (methods) are statistically different. 

 

In these cases we have to decide between the following hypotheses: 

H0: 1 2x x=   

H1: 1 2x x  

4.8.1 Test of equality of two means when the variances are the same 

When the variances or standard deviations  of two sets of data are the same the value of texp is 

calculated as: 

 
1 2

exp

1 2

1 1

x x
t

s
N N

−
=

+

  (4.44) 

where N1 and N2 are the number of points and 1x  and 2x  are the means of the two sets of data. 

The average variance, s2, is: 

 
2 2

2 1 1 2 2

1 2

( 1) ( 1)

2

N s N s
s

N N

− + −
=

+ −
  (4.45) 

with the number of degrees of freedom, df: 

 1 2 2df N N= + −   (4.46) 

The value of texp must be compared with tcr(α”, N1 + N2 – 2). If texp < tcr(α”, N1 + N2 – 2) one 

should keep hypothesis H0. p-test is calculated using Eq. (4.24). 

This comparison might be also performed using t-Test: Two-Sample Assuming Equal 

Variances in Data Analysis in Excel which automatically calculated all the necessary values. 

 

4.8.2 Test of equality of two means when the variances are different 

In this case texp is defined as: 

 1 2

2 2
1 2

1 2

x x
t

s s

N N

−
=

+

  (4.47) 

with the number of degrees of freedom calculated as: 

 

2
2 2

1 2

1 2

2 2
2 2

1 2

1 1 2 2

1 1

1 1

s s

N N
df

s s

N N N N

 
+ 

 
=

   
+   

− −   

  (4.48) 

rounded to the whole number. As above one should compare texp with tcr(α”, df). 

Example 4.12. 
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Moisture in two samples was determined by two different methods with different variances 

(see test F below for the determination of the equality of variances). Are there systematic 

differences at the confidence level of 95% between these methods? Use the following data and 

assume unequal variances. 

x1i x2i 

6.4 6.5 

6.2 6.7 

6.2 6.5 

6.5 6.1 

6.3 6 

6.4 6.8 

6.4 6.2 

 

The values of texp and k might be calculated manually but there is a program in Excel in Data 

Analysis, t-Test: Two-Sample Assuming Unequal Variances which can calculate Eqns. (4.47)-

(4.48) automatically. Using this test the following screen is produced and the corresponding values 

must be filled. 

 

 
 

Fig. 4.10. Screen for the t-test for comparison of two samples assuming unequal variances, 

confidence level 0.05 (see the Excel file Examples4.xlsx sheet Ex. 4.12). 

Using this program the following results are obtained: 
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Table 4.5. t-test for comparison of two samples assuming unequal variances for the above data. 

t-Test: Two-Sample Assuming Unequal Variances  

   

  Variable 1 Variable 2 

Mean 6.342857 6.4 

Variance 0.012857 0.093333 

Observations 7 7 

Hypothesized Mean Difference 0  
df 8  
t Stat -0.46395  
P(T<=t) one-tail 0.327524  
t Critical one-tail 1.859548  
P(T<=t) two-tail 0.655049  
t Critical two-tail 2.306004   

 

In the above table “t Stat” is our texp. It should be taken as the absolute value, texp = 0.464, and 

the mean number of degrees of freedom df is 8. The value of tcr(0.05”,8) = 2.306 (calculated 

automatically, see the last line, using two-tailed test) and texp < tcr(0.05”,8) and one can say that 

two methods give the same result. Besides, the probability that H0 is true, “P(T<=t) two-tail”, p = 

0.655, which is much larger than α = 0.05 which confirms that H0 cannot be rejected. The value of 

p is calculated using Eq. (4.24). See calculations in Examples4.xlsx, sheet Ex. 4.12. 

 

4.9 Paired t-test for comparing individual differences of two samples 

Let us suppose that two different methods are used to make single measurements of several 

different samples. The measurements are carried only once for each sample. The question is if the 

two methods give the same results i.e. the differences between them are statistically unimportant. 

In such a case the differences between two measurements di = ai – bi represents our variable with 

the average d  and the standard deviation sd: 

 

( )

i i

1

2
i

1
d

( )

1

N

i

N

i

a b
d

N

d d

s
N

=

=

−
=

−

=
−




  (4.49) 

where N is the number of measurements. The hypothesis studied are: 

 

H0: differences between two series are negligible  

H1: differences between two series are not negligible 

 

The t-test for the differences is defined as: 
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 exp
d d

| | | |d d
t

s s

N

= =   (4.50) 

This value should be compared with t(,N-2). If texp < t(,N-2).  

Let us look at the example. 

 

Example 4.13. 

Two methods a and b were used to measure concentration of the analyte. Eight samples were 

analyzed using these methods. The results are shown below: 

a b 

1.79 2.01 

1.78 2.51 

6.14 5.94 

5.82 7.23 

1.73 1.41 

5.37 4.95 

6.41 6.59 

2.37 2.50 

 

Although parameters in Eq. (4.49) are easily calculable there is a program in Excel Data 

Analysis: “t-Test: Paired Two Sample for Means” which calculates all the necessary results. 
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The obtained results are: 

 

t-Test: Paired Two Sample for Means 

   

  Variable 1 Variable 2 

Mean 3.92625 4.1425 

Variance 4.736541 5.254707 

Observations 8 8 

Pearson Correlation 0.964646  
Hypothesized Mean Difference 0  
df 7  
t Stat -1.01075  
P(T<=t) one-tail 0.172896  
t Critical one-tail 1.894579  
P(T<=t) two-tail 0.345791  
t Critical two-tail 2.364624   

 

The calculated value |texp (t Stat)| = 1.01 and the tcr(0.05”,7) = 2.36. In this case |texp| < 

tcr(0.05”,7) therefore with the confidence of 95% one can say that these two method give the same 

results. The same result is obtained using two-tail p-test, p = 0.346 therefore H0 should not be 

rejected. See the calculations in Examples4.xlsx, sheet Ex. 4.13. 

4.10 Test F for the comparison of variances 

Test F proposed by Fisher and Snedecor is used to determine the equality of variances. The 

null and alternative hypotheses studied are: 

H0: 
2 2
1 2s s=   

H1: 
2 2
1 2s s  

 

Example 4.14. 

Simulate the probability distribution function PF(f, df 1, df 2) versus parameter f (where df 1 and 

df 2 are the numbers of degrees of freedom) for the degrees of freedom: 1, 9 and 5, 9 and its 

integrals. 

The simulations are in Excel file Examples4.xlsx, sheet Ex. 4.14 and the plots of probability 

distribution function PF(f, df 1, df 2) versus f are displayed in Fig. 4.11 for the degrees of freedom: 

1, 9 and 5, 9. 
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Fig. 4.11. Probability F-distribution for two different sets of degrees of freedom: 1,9 and 5,9. 

The integral of the F-distribution probability function is chosen to give the confidence level α: 

 

1 2

1 2

( , , )

( , , )dF

F df df

P f df df f







=    (4.51) 

This integral is illustrated in Fig. 4.12. The values of the probability PF(f,df1,df2) may be 

obtained using Excel function F.DIST(f, df1,df2,FALSE) and the values of the critical values using: 

F(, df1, df2) = F.INV.RT(α, df1, df2). The integral: 

 1 2

0

( , , )d

F

FP f df df f   (4.52) 

is calculated using F.DIST(F, df1,df2,TRUE). To better understand these functions an example for 

 = 0.05 and the number of degrees of freedom df1 = 5 and df2 = 9 is presented. 

The values in Fig. 4.12 were calculated using: 

P = F.DIST(f,5,9,FALSE) and for f = 0.1, P = F.DIST(0.1,5,9,FALSE) = 0.232008, 

F(0.05,5,9) = F.INV.RT(0.05,5,9) = 3.48166, 

 = F.DIST.RT(F,5,9) = F.DIST.RT(3.48166,5,9) = 0.05, 

1 -  = F.DIST(3.48166,5,9,TRUE) = 0.95. 
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Fig. 4.12. The integral under the F-distribution function, corresponds to the confidence level, in 

this case 0.05 and the value corresponding to the beginning of integration is Fcr(α, df 1, df 2). 

To test it function Fexp is determined: 

 

2
2 21

exp 1 21
2

1 for  
s

F s s
s

=     (4.53) 

Function Fexp must always be larger than 1 and if s1 < s2 the numerator and denominator in Eq. 

(4.53) must be exchanged. Fexp must be compared with the calculated critical value Fcr(α, df1,df2) 

where df1 and df2 are the numbers of degrees of freedom of the numerator and denominator, 

respectively. In the case of the comparison of means they are simply dfi = Ni – 1. If Fexp < 

Fcr(α, df1, df2) there are no reasons to reject hypothesis H0 and the variances are equal at the 

confidence level α. It should be mentioned that F(α, df1, df2)  F(α, df2, df1). 

 

The value of probability, p, that H0 is true is calculated as: 

 1 2 1 2

0

( , , )d 1 ( , , )d

F

F F

F

p P f df df f P f df df f



= = −    (4.54) 

It can be evaluated as F.DIST.RT(F, df1,df2) = 1- F.DIST(F, df1,df2,TRUE). When p < α, 

hypothesis H0 should be rejected because it is very little probable.  

 

Example 4.15. 

Let us verify if the two sets of data in  

Example 4.12 have the same variances. Function Fexp might be calculated manually or using 

F-test Two-Samples for Variances from Data Analysis. Taking the first data column to numerator 

and the second to denominator the following results are obtained using F-Test Two-Sample for 

Variances in Data Analysis. 
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Table 4.6. Results of the F-test for the data in Example 4.15 taking the first data column to 

numerator and the second to denominator. 

F-Test Two-Sample for Variances 

   

  

Variable 

1 Variable 2 

Mean 6.342857 6.4 

Variance 0.012857 0.093333 

Observations 7 7 

df 6 6 

F 0.137755  
P(F<=f) one-tail 0.014682  
F Critical one-tail 0.233434   

 

The above results indicate that the experimental F value, Fexp = 0.138 is lower than one. As 

Fexp should always be greater than or equal to one, Fexp  1, the columns should be inversed, i.e. 

the second to numerator and the first to denominator. The following results are obtained: 

 

Table 4.7. Results of the F-test for the data in Example 4.15 taking the first data column to 

denominator and the second to numerator. 

F-Test Two-Sample for Variances     

       

  

Variable 

1 

Variable 

2     

Mean 6.4 6.342857     

Variance 0.093333 0.012857 0.093333 0.012857 =VAR.S(A3:A9) 

Observations 7 7     

df 6 6     

F 7.259259      

P(F<=f) one-tail 0.014682  0.014682 =F.DIST.RT(D19,6,6)  
F Critical one-tail 4.283866   4.283866 =F.INV.RT(0.05,6,6)  

 

In this case Fexp = 7.259. This program also calculates the critical one-tailed value of the test 

for the assumed value of α, in this case for α = 0.05, which is Fcr(0.05, 6, 6) = 4.284. In this example 

Fexp > Fcr(0.05, 6, 6) and the hypothesis H0 must be rejected and the two variances are different. 

In the table there is another value called: “P(F<=f) one tail” which is the parameter p discussed 

earlier (probability of H0). In the above case p = 0.01468 <0.05 which confirms that H0 should be 

rejected.  

See calculations in Examples4.xlsx, sheet Ex. 4.15. 
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Example 4.16. 

Two analytical methods were used to determine titanium in a sample. Determine if these two 

methods give the same results and have the same precision at the confidence level of 95%. The 

obtained data are displayed below. 

 

x1,i x2,i 

1.00 1.12 

1.22 1.05 

1.29 1.19 

1.11 1.06 

1.10 1.10 

1.24 1.24 

1.16 1.127 

 

First, the test F of the equality of variances should be performed. The following hypotheses 

are tested: 

H0 : s1
2 = s2

2 

H1 : s1
2  s2

2 

 

The test F in Excel gives the following results: 

 

F-Test Two-Sample for Variances 

   

  Variable 1 

Variable 

2 

Mean 1.16 1.126714 

Variance 0.009767 0.004656 

Observations 7 7 

df 6 6 

F 2.097845  
P(F<=f) one-tail 0.194529  
F Critical one-

tail 4.283866   

 

The value of Fexp = 2.098 < Fcr(0.05,6,6) = 4.284 therefore there are no reasons to reject H0. 

Besides, p = 0.194 > α = 0.05 which confirms that the variances of two experiments are statistically 

the same and the two methods have the same precision. 

Next, let us perform t test for the equality of means assuming equal variances. 
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t-Test: Two-Sample Assuming Equal Variances 

   
  Variable 1 Variable 2 

Mean 1.186667 1.127833 

Variance 0.005747 0.005576 

Observations 6 6 

Pooled Variance 0.005661  
Hypothesized Mean Difference 0  
df 10  
t Stat 1.354321  
P(T<=t) one-tail 0.102722  
t Critical one-tail 1.812461  
P(T<=t) two-tail 0.205444  
t Critical two-tail 2.228139   

 

It is evident that texp = 1.354 < tcr(0.05”,10) = 2.228 and H0 cannot be rejected. The p test gives 

p = 0.205 > α = 0.05 and confirms the two methods have statistically the same means. The two 

methods give the same results and have the same means and variances. See calculations in 

Examples4.xlsx, sheet Ex. 4.16. 

 

 

 



114 

5 Test of regression parameters  

Below, different tests used in regression analysis are presented. 

5.1 Rejection of the point in regression, outliers 

Sometimes it happens that one (or more) point(s) lie further from the regression line than the 

others. In such a case one poses a question: should I keep this point in the calculation of the 

regression parameters? The points which lie far from the predicted are called outliers. Operation 

of removing such points must be applied with great care to avoid removing important 

information.48,49,50 See also remarks in Section 4.3. 

Let us look at the example below.  

 

Example 5.1.  

Compare the following data and look if the points exceed confidence limits for the 

experimental values. 

  x    y 

0.0  -0.9 

0.5  -0.6 

1.0  0.2 

1.5  0.4 

2.0  2.0 

2.5  1.5 

3.0  1.8 

3.5  2.5 

4.0  2.9 

4.5  3.7 

5.0  4.0 

 

Performing regression analysis with 95% and 99% confidence intervals are displayed in Fig. 5.1 

(see also Origin file outliers band.opj). The prediction line of experimental yi corresponds to 

testing with Eq. (3.40). Assuming confidence intervals of 95% one point lie outside this interval 

while for confidence intervals of 99% all the experimental points are inside the interval.  The 

results are in Excel file Examples 5, sheet Ex. 5.1-5.2. 
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Fig. 5.1. Experimental (points), calculated regression (black line), confidence intervals of ˆiy  

(dashed lines) and of yi (continuous red lines) for α = 0.05 and 0.01, that is 95% and 99% 

confidence intervals. Calculated using Origin. 

5.1.1 Simple t-test 

As it can be seen from Fig. 5.1 one point lies outside 95% confidence level for experimental 

points, which means that is there is one chance in 20 that it lies outside the 95% prediction band. 

However, it is inside 99% confidence level. 

Deviations of the experimental points from the calculated regression line are plotted in Fig. 

5.2. 
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Fig. 5.2. Plot of the deviations of the experimental points from the regression line. 

Intuitively, one point seems to be an outlier. Comparison of the point versus confidence limit 

corresponds to the t-test for Δ, Eqs. (3.38) and (3.40): 
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This value should be compared with tcr(α,df) or, in Example 5.1, tcr(0.05, 9) = 2.262. The 

experimental value of texp= 2.500 which is larger than t(0.05, 9) at 95% confidence level. However, 

in this test the standard deviation is calculated with the possible outlier(s) which increases its value 

and lowers texp. This can be corrected using standardized residuals.48,50 

5.1.2 Internally studentized residuals 

To detect outliers it was proposed to use the standardized or internally studentized residuals: 

 
ˆ

1

i i
i

ii y

y y
s

h s

−
=

−
  (5.2) 

where hii is the diagonal element of the hat matrix, (3.96), sy is the regression standard deviation, 

and ˆiy  is the calculated value using full regression for N points. Diagonal elements of the hat 

matrix can be easily found as: 

 
( )

( )

2

2

1

1i
ii N

i

i

x x
h

N
x x

=

−
= +

−

  (5.3) 

Standardized residuals are useful in detecting of outliers. Specific calculations for the regression 

are presented in Example 5.1. This value for a suspected outlier is si = 2.764. Usually, values of si 

> 2 indicate possibility of an outlier. 

5.1.3 Jack-knifed or externally studentized residuals 

The problem with standardized residuals is that they also depend on the estimated standard 

deviation which is affected by outliers. To avoid this problem one can use standard deviation 

calculated omitting the suspected outlier.  

The Student t test used here is:  

 

( )

( )

ˆ

ˆ

i i i

i i i
i

y y

y y
t

s −

−
=  (5.4) 

where ( )ˆi iy  is the value of point i calculated using regression without the suspected outlier (i) that 

is using N - 1 points and 
( )ˆi i iy ys −  its standard deviation. The difference ( )ˆi i iy y−  may be 

calculated without performing new regression analysis without point i: 

 ( )

ˆ
ˆ

1

i i
i i i

ii

y y
y y

h

−
− =

−
  (5.5) 

where ˆ
iy  is calculated from regression using N points. The value calculated using Eq. (5.4) is 

called Jack-knifed residual, externally studentized residual, or studentized deleted residual:  

 

( )

ˆ

1
i i

i i
i

ii y

y y
t

h s

−
=

−
  (5.6) 

where 
( )i iys  is the standard deviation calculated using N – 1 points i.e. without the suspected 

outlier (i). This equation might be transformed to a simpler form: 



117 

 
2

1
i i

i

N n
t s

N n s

− −
=

− −
  (5.7) 

where si is the standardized deviation calculated using N points, Eq. (5.2), and n is the number of 

parameters in the regression (n = 2 for the linear regression). It could be compared with 

tct(”, N – n – 1) = tcr(0.05”,8) = 2.31. However as we do not know in advance which point has the 

largest |ti| we should carry out N tests and the critical value should be48,50 tcr(α/N”, N - n - 1) where 

the confidence level was divided by the number of points and the number of degrees of freedom 

is calculated using N - 1 experimental points and n parameters. It of course gives much larger 

values than t(α”, N - n - 1). In our example experimental value ti = 6.70, tcr(0.05, 8) = 2.305 and 

tcr(0.05/11”, 8) = 3.90. In this case the experimental value ti > tcr(0.05/11”,8) and this point looks 

like an outlier. Removing this outlier from the regression reduces the standard deviation, sy, from 

0.34 to 0.14. 

This means that the point (2, 2) is an outlier and the regression should be carried out it without 

it. Removal of the outlier gives the following results at the confidence level of 95% ( = 0.05): 

b0 = -0.99 ± 0.19 

b1 = 0.996 ± 0.062 

This test is also calculated in Origin. 

5.1.4 Cook’s distance 

There is a statistical method proposed by Cook48,50-52 which helps to decide if the point should 

be rejected. It is based on the comparison of the regression with and without the suspected outlier 

and inspection how much the estimation would change after such operation. It is a normalized 

measure of the influence of point i on all predicted values The Cook’s distance for point i, Di, is 

defined as: 

 
( )( )

2
1

ˆ ˆN
j j i

i
j y

y y
D

n s=

−
=    (5.8) 

where ˆ jy  is the predicted (calculated) value using full regression containing N points and ( )ˆ j iy  is 

the predicted value calculated from regression excluding point i (using N – 1 points). Di can be 

calculated using a simpler relation:  
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2
2

2 2

ˆ
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i iii ii
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y yh h
D s

h n n s h

−
= =

− −
  (5.9) 

where n is the number of parameters used in regression (n = 2 for linear regression) and si is 

calculated using Eq. (5.2). 

Cook’s test is not strictly speaking a statistical test. The threshold for data rejection is not well 

fixed and different statisticians proposed different criteria. Data point can be rejected if Di >153, Di 

> 0.754, Di > 4/N55, or Di > 4/(N-p-1).56,57 The Cook’s test will be illustrated in the following 

example. 

 

Example 5.2. 

Apply the standardized residual and Cook’s test to the data in Examples 5, sheet Ex. 5.1-5.2.  

First, linear regression should be used for all 11 points. The obtained results at 95% are: 
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b0 = -0.850.44; b1 = 0.980.15, sy = 0.34. 

Using Excel the following parameters were calculated: 

x y residuals       hii si ti Di 

0.0 -0.9 -0.04545 0.318182 0.160706 0.151733 0.006026 

0.5 -0.6 -0.23455 0.236364 0.783561 0.765314 0.095019 

1.0 0.2 0.076364 0.172727 0.245105 0.231862 0.006272 

1.5 0.4 -0.21273 0.127273 0.664773 0.642732 0.032224 

2.0 2.0 0.898182 0.1 2.763963 6.70235 0.424416 

2.5 1.5 -0.09091 0.090909 0.278351 0.263569 0.003874 

3.0 1.8 -0.28 0.1 0.86164 0.848096 0.041246 

3.5 2.5 -0.06909 0.127273 0.215909 0.20409 0.003399 

4.0 2.9 -0.15818 0.172727 0.507717 0.485686 0.026911 

4.5 3.7 0.152727 0.236364 0.510226 0.488158 0.040289 

5.0 4.0 -0.03636 0.318182 0.128565 0.121324 0.003857 

Dtheor=4/(11-2-1)= 0.5     
Dtheor = 4/11= 0.363636     

 

For the suspected point No 5, (2.0,2.0) the value of si = 2.76, Eq. (5.2), it is >2 which suggests 

that it is an outlier. The Jack-knifed value of ti = 6.70, Eq. (5.6), is much larger that t(0.05/11”,8) 

= 3.90 and this point looks like an outlier. 

The Cook’s distance for this point, is 0.424 that is lower than one. However other threshold 

values are 0.5 or 0.364, depending on criterion used. Based on Cook’s distance in social and 

bio/medical sciences this point probably would not be rejected. In physical sciences where we are 

much stricter (better correlations expected) this point should be rejected using Jack knifed test. 

The regression should be repeated without this outlier and the obtained results at the confidence 

level of 95% are: b0 = -0.99±0.19, b1 = 0.996±0.062, sy = 0.14. It can be noticed that the confidence 

intervals of the regression parameters and the standard deviation are largely reduced after 

elimination of the suspected outlier. 

 

The Cook’s test is more often used in social and biomedical sciences. In sciences it is usually 

possible to repeat the experiment to see if the outliers are always the same. To check for outliers 

one can use Jack-knifed or studentized residuals ti-test (see above) which is a modified t-test. 

 

5.2 Statistical importance of the regression parameters 

In sciences the regression parameters have a physical meaning therefore it is important to 

decide if the obtained parameters are statistically important i.e. if they should be kept or 

rejected.8,18 For a linear regression model: 

 0 1y b b x= +   (5.10) 

two simpler models are possible: 

 
0

1

1)

2)

y b y

y b x

= =

=
  (5.11) 
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The general rule in statistics is that in the analysis of experimental data the number of 

adjustable parameters should be kept at minimum. This is so called Occam’s Razor (adapted 

for statistics): Select the simplest model that describes the data sufficiently well. 

In the first case above the slope, b1, is negligible and the data can be described by the arithmetic 

mean and in the second case the origin is small i.e. does not have statistical meaning, therefore 

only slope should be used.  

There are two tests which can be used to check importance of parameters: t and F. They will 

be discussed below. 

5.2.1 t-test of the importance of regression parameters 

Fist, let us look into importance of the slope, b1. One should write two hypotheses: 

 

H0 :  b1 = 0   0y b y= =  

H1 :  b1  0.   0 1y b b x= +  

 

Student t-test is defined as: 

 

1

1
exp

b

b
t

s
=   (5.12) 

This value should be compared with tcr(”, N-2). If texp > tcr(”, N-2) i.e. the value of the parameter 

is much larger than its standard deviation H0 should be rejected and the slope is important. 

Similarly, one should proceed in the determination of the importance of b0. The hypotheses 

tested are: 

 

H0 :  b0 = 0   1y b x=  

H1 :  b0  0.   0 1y b b x= +  

 

Student t-test is: 

 

0

0
exp

b

b
t

s
=   (5.13) 

and the hypothesis H0 should be rejected if texp > tcr(”, N-2). 

 

5.2.2 F-test of the importance of regression parameters 

F-test is defined as a ratio of variances. When a parameter is important, then starting form a 

simpler model and adding this parameter should significantly decrease the residual sum of squares. 

This is the base of the sequential F-test. Let us start with studying of the importance of the slope, 

b1. The hypotheses studied are: 

H0 :  b1 = 0   0y b y= =  

H1 :  b1  0.   0 1y b b x= +  

 

Let us determine the sum of squares for both models: 
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S1
2 (sum of squares corrected for mean) for the model: 0y b y= =  is 2 2

1 0( )iS y b= −  

( )
2

iy y= −  which has N-1 degrees of freedom. 

 

S2
2 (sum of squares about regression) for the model: 0 1y b b x= +  is ( )

22
2 ˆi iS y y= −  which 

has N-2 degrees of freedom. 

 

Then, we can construct sequential F-test function which describes decrease of the sum of 

squares due to addition of one parameter: 

 

2 2
1 2

2 2 2
1 1 2

exp 2 2 2
2 2

1

2
y

S S
s S S

F
s S s

N

−
−

= = =

−

  (5.14) 

where the difference in s1 has one degree of freedom as inly one parameter, b1, is added to the 

regression: (N - 1) - (N - 2) = 1 

 

2 2 2 2
2 2 21 2 1 2
1 1 2

( 1) ( 2) 1

S S S S
s S S

N N

− −
= = = −

− − −
  (5.15) 

and 

 
2

2 2
2

2

S
s

N
=

−
  (5.16) 

For the parameter b1 to be important, decrease of the sum of squares 2 2
1 2S S−  must be statistically 

significant in comparison with 2 2 2
2 2 / 2ys s S N= = − . Fexp must be compared with F(α, 1, N – 2). 

If Fexp > Fct(α, 1, N – 2) hypothesis H0 must be rejected which means that parameter b1 is important 

(large improvement after adding it to the regression). It should be value stressed that the test t is 

formally identical with the test F because F(,1,df2) = t2(”,df2). The values of Fexp are calculated 

in the table of analysis of variances ANOVA. 

In a similar way one can determine importance of the parameter b0 (intercept). The hypotheses 

are: 

H0 :  b0 = 0   1y b x=  

H1 :  b0  0.   0 1y b b x= +  

and test F is calculated using:  

 

S1
2 (sum of squares corrected for mean) for the model: 1y b x= , 2 2

1 1( )i iS y b x= −  with N - 1 

degrees of freedom, 

 

S2
2 (sum of squares about regression) for the model: 0 1y b b x= + , 

( ) ( )
2 22

2 0 1ˆi i i iS y y y b b x= − = − −   which has N-2 degrees of freedom, and the subsequent 

formulas are identical. 
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In certain more complex cases (nonlinear regression) two (or more) parameters must be added 

in one step. Assuming that the first model contains p parameters and the second one p+k 

parameters the test-F is defined as: 

 

2 2 2 2
1 2 1 2

2
1

exp 2 2 2
2 2

( ) ( )

y

S S S S
s N p N p k kF
s S s

N p k

− −

− − − −
= = =

− −

  (5.17) 

It should be stressed that the number of added parameters should be kept to a strict minimum, 

typically one. 

 

Before showing examples the table of Analysis of Variances, ANOVA, which is calculated 

automatically by the regression programs, will be discussed in detail. 

 

5.3 ANOVA 

Deviations of the experimental yi from the mean value can be decomposed into two parts: 

 ( ) ( ) ( )ˆ ˆi i i iy y y y y y− = − + −   (5.18) 

that is: 

 

Total difference corrected for mean = residual difference + difference explained by regression  

  (5.19) 

The following equation may be also written for sum of squares: 

 ( ) ( ) ( )
2 2 2

1 1 1

ˆ ˆ
N N N

i i i i

i i i

y y y y y y
= = =

− = − + −     (5.20) 

where the total sum of squares corrected for mean equals sum of squares about regression (residual 

sum of squares) plus sum of squares due to regression. Number of degrees of freedom of these 

terms are: (N – 1) = (N – 2) + 1. These sums of squares and mean sums of squares are displayed 

in the table of ANOVA. 
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Table 5.1. Table of analysis of variances, ANOVA, for linear regression. 

Source of 

variation 

Degrees of 

freedom 

Sum of Squares Mean square Test F 

Due to 

regression 

 

 

About 

Regression 

(residual) 

1 

 

 

 

N - 2 

2ˆ( )iy y−  
 

 

SS=
2ˆ( )i iy y−  

MSR = 
2ˆ( )iy y− /1 

 

 

2

2
y

SS
s

N
=

−
 

2
R

y

MS
F

s
=  

Total, 

corrected for 

mean, y  

 

N - 1 2( )iy y−  
  

 

Test-F in the table of ANOVA is the test of importance of the slope, b1. It is given here as: 
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  (5.21) 

which is equivalent to Eq. (5.14) because: 
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  (5.22) 

It can be added that there is a simple relation between F and r2: 

 

2

2
( 2)

1

r
F N

r
= −

−
  (5.23) 

The following hypothesis will be tested: 

 

H0 :  b1 = 0   0y b y= =  

H1 :  b1  0.   0 1y b b x= +  

 

which should be compared with F(α, 1, N – 2). ANOVA analysis will be explained in the following 

example. 

It should be added that for the model with the origin equal to zero, that is y = b1x ANOVA is 

calculated differently.1,2,58 This is because regression is forced through origin (0,0) and it is 

generally inconsistent with the best fit. In this case ( )ˆ 0i iy y−   and ˆ
i iy y= . This leads to a 

different table of ANOVA (see below). 
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Table 5.2. Table of ANOVA for the regression through the origin: y = b1x. 

Source of 

variation 

Degrees of 

freedom 

Sum of Squares Mean square Test F 

Due to regression 

 

 

About Regression 

(residual) 

  1 

 

 

N - 1 

2ˆ( )iy  
 

SS=

2ˆ( )i iy y−  

MSR = 
2ˆ( )iy /1 

 

2

1
y

SS
s

N
=

−
 

2
R

y

MS
F

s
=  

Total, corrected 

for mean, y  

 

N  
2( )iy  

  

 

In earlier versions of Excel this table was calculated incorrectly. The coefficient of 

determination for this model is calculated as: 

 

2
2

2

ˆi

i

y
r

y
=




  (5.24) 

and it can be absurdly large even when the correlation between x and y is weak. Because it is 

meaningless it should not be used in this case.2 

 

Example 5.3. 

Carry out regression analysis for the following data. 

 

      x        y 

-2.0 -0.93 

-1.8 -0.93 

-1.6 -0.68 

-1.4 -0.47 

-1.2 -0.38 

-1.0 -0.23 

-0.8 -0.52 

-0.6 -0.22 

-0.4 0.01 

-0.2 -0.11 

0.0 0.03 

 

Using regression analysis in Excel gives the results shown in Fig. 5.3 and Table 5.3. 
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Fig. 5.3. Plot of the experimental points and predicted regression line for the data in Example 5.3. 
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Table 5.3. Excel output for the regression analysis in Example 5.3 assuming model: y = b0 + b1x. 

SUMMARY 

OUTPUT      

y=bo+b1 x      

Regression Statistics     

Multiple R 0.931131854     

R Square 0.86700653     
Adjusted R 

Square 0.852229478     

Standard Error 0.130824503     

Observations 11     

   F(0.05,1,9)= 5.11735503  

ANOVA   F.DIST.RT(58.6725,1,9) 3.12689E-5  

  df SS MS F 

Significance 

F 

Regression 1 1.004182727 1.004182727 58.6724957 3.12689E-5 

Residual 9 0.154035455 0.017115051   

Total 10 1.158218182       

 

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 0.075 0.073794972 1.016329406 0.33601429 -0.091935824 0.241935824 

X Variable 1 0.477727273 0.062368135 7.659797367 3.1269E-05 0.33664075 0.618813795 
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These results should be compared with those in Table 5.1. In the Table of ANOVA SS means 

sum of squares and MS (mean square) is the mean sum of squares that is SS divided by the number 

of degrees of freedom, df. In that table there is a value of test for the importance of parameter b1, 

Fexp, that is the ratio of MS in Regression and MS Residual: 1.004183 / 0.017115 = 58.67. This 

value is much larger than F(0.05, 1, 9) = 5.117 that is the slope is important at the confidence level 

of 95%. This is also confirmed by the test p of Significance of F equal to p = 3.126910-5 <<  = 

0.05. This value is the probability that the slope is zero i.e. of hypothesis H0 being true (not 

significant). This probability is very small. It is calculated using Excel function F.DIST.RT(F, 

df1,df2) here equal to F.DIST.RT(58.67,1,9). The value of 2
ys  is the MS Residual equal to 0.017115 

and sy = 0.13. Besides, r2 called R Square is the ratio of SS in Regression to SS Total, r2 = 

1.004183/1.158218 = 0.867. 

 

The plots of deviations in Eq. (5.18) are presented in Fig. 5.4 -Fig. 5.6. 
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Fig. 5.4. Plot of the total difference corrected for mean, iy y− . 
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Fig. 5.5. Plot of the residual difference unexplained by regression, ˆi iy y− . 
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Fig. 5.6. Plot of the differences explained by regression corrected for mean, ˆiy y− . 

Let us now check importance of regression parameters using t-test. These values are displayed 

as t Stat. They are: 

for intercept b0: texp = 1.016, p = 0.3360 

for slope b1:  texp = 7.660, p = 3.126910-5 

while the value of t(0.05”, 9) = T.INV.2T(0.05, 9) = 2.262. It is evident that for b0: 

texp < tcr(0.05”,9) and this parameter is not important in regression while for b1: texp > tcr(0.05”,9) 

and the slope is important. This is confirmed by the values of the probabilities for b0 which is p = 

0.3360, much larger than the assumed here value  = 0.05 which confirms that the hypothesis b0 

= 0 cannot be rejected. This means, that the regression must be repeated using simpler model y = 

b1 x.  
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Table 5.4. Regression results assuming simpler model y = b1x. 

SUMMARY OUTPUT     

Regression 

Statistics      

Multiple R             0.970381124      

R Square 0.941639525     
Adjusted R 

Square 0.841639525     
 

Standard Error 0.131039699     

Observations 11     

      

  Fexp(b0)= 1.032925461 F(0.05,1,10)= 5.117355029  
ANOVA  t^2(b0)= 1.032925461 sy= 0.13  

  df SS MS F 

Significance 

F  
Regression 1 2.770585974 2.770585974 161.348845 4.73643E-07  
Residual 10 0.171714026 0.017171403    

Total 11 2.9423 F.DIST.RT(161.348845,1,10)= 1.70818E-07  
 

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 0 #N/A #N/A #N/A #N/A #N/A 

X Variable 1 0.424 0.033 12.70231652 1.7082E-07 0.350 0.499 
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Now, the test F for the importance of the parameter b0 can be carried out. Using Eq. (5.17) 

where S1
2 corresponds to the simpler model and S2

2 to the full model: 

 exp
0.171714026 0.154035455

1.03292546
0.017115051

F =
−

=   (5.25) 

This value should be compared with F(0.05,1,9) = 5.117355. Because Fexp < Fcr(0.05,1,9) term b0 

is not statistically important an cannot be determined from the experimental data.  

It should be noticed that the value of p: Significance F is calculated incorrectly in Excel. 

This value should be F.DIST.RT(F,1,10) = F.DIST.RT(161.3488,1,10) = 1.7081810-07 and not 

4.73643129110-7 as it is in Excel (F = H49= 161.3488). The latter value was calculated with 

wrong number of degrees of freedom (9 instead of 10) as F.DIST.RT(F,1,9). With this correction 

the significance value for t-test and F-test are the same (1.708210-7)! 

 

The final model describing the data is: 

y = b1x with: 

r2 = 0.9416, b1 = 0.424, 
1b

s =  0.033, 2
ys =  0.017171, sy = 0.13,  

and the confidence interval for the regression parameter assuming 95% confidence is: 

0.350 ≤ b1 ≤ 0.499 or b1 = 0.4240.074. 

The confidence intervals are directly displayed as Lower 95% and Upper 95% while standard 

deviation of b1 (X Variable 1) is called Standard Error. 

As it has been seen t and F tests give the same answer. It is because: 

 
2( ", ) ( ,1, )t df F df =   (5.26) 

In fact, texp = 1.0163294056275, and t2
exp = 1.03292546 which is the value Fexp calculated in Eq. 

(5.25). Besides, t(0.05”,9) = 2.262157, t2(0.05”,9) = 5.117355 = F(0.05,1,9). 

All the calculations are in Examples4.xlsx, sheet Ex. 5.3. 

 

Example 5.4. 

Calculate regression coefficients for the following data: 

   x     y 

-2.0  0.27 

-1.8  0.19 

-1.6  0.36 

-1.4  0.49 

-1.2  0.50 

-1.0  0.57 

-0.8  0.20 

-0.6  0.42 

-0.4  0.57 

-0.2  0.37 

 0.0  0.43 
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The results of the regression analysis in Excel are given below. 

SUMMARY OUTPUT      

       

Regression Statistics      

Multiple R 0.383636      

R Square 0.147176      
Adjusted R 

Square 0.052418      

Standard Error 0.130825      

Observations 11      

       

ANOVA       

  df SS MS F 

Significance 

F  
Regression 1 0.026583 0.026583 1.553178 0.244129  
Residual 9 0.154035 0.017115    

Total 10 0.180618        

       

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 0.475 0.073795 6.436753 0.00012 0.308064 0.641936 

X Variable 1 0.077727 0.062368 1.246266 0.244129 -0.06336 0.218814 

  tcr(0.05,9)= 2.262157    
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The plot of the experimental and regression data (from Origin) is displayed in Fig. 5.7. 
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Fig. 5.7. Plot of the experimental points, calculated regression (black line), confidence intervals 

for the calculated data (dashed red lines), and the confidence intervals for the experimental points 

(continuous blue lines) for data in Example 5.4. 

First of all one can notice that the determination coefficient r2 = 0.142, which is a very low 

meaning that only 14.2% of the total variation of y can be explained by the regression.  

Then, the F-test for the importance of slope, Fexp = 1.553 is much lower than the value 

Fcr(0.05,1,9) = 5.117. The Significance F equals p = 0.224, much larger than the assumed value 

of the significance level of 0.05. This suggests that the hypothesis H0: b1 = 0 cannot be rejected 

and the slope is not statistically important. 

Finally, test t reveals texp = 1.246, much lower than the value tcr(0.05”, 9) = 2.262. 

All these tests indicate that the parameter b1 is not statistically significant and there is no 

statistically important relation between y and x. In this case the data should be described by an 

arithmetic mean. The results obtained using Descriptive Statistics in Excel are shown below. 

 

Column1 

  

Mean 0.397 

Standard Error 0.040 

Median 0.42 

Mode 0.57 

Standard Deviation 0.13 

Sample Variance 0.018062 

Kurtosis -1.02408 

Skewness -0.32632 

Range 0.38 

Minimum 0.19 
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Maximum 0.57 

Sum 4.37 

Count 11 

Confidence 

Level(95.0%) 0.090 

 

The results may be presented as: 

y  = 0.397, ys  = 0.13, ys  = 0.04 (11 points, df = 10) 

Confidence intervals (95%) 

0.397 - 0.090 ≤ y  ≤ 0.397 + 0.090 

that is: 

0.307 ≤ y  ≤ 0.488 or y  = 0.397  0.090 

 

Example 5.5. 

Analyze the data below and find the model describing them. 

 

x      y 

0    0.4 

1    0.7 

2    1.3 

3    1.7 

4    2.1 

5    2.5 

6    2.4 

7    2.9 

8    3.3 

9    3.3 

10    3.6 

11    3.7 

12    3.9 

13    4.1 

14    4.3 

15    4.3 

 

Usually, the first step is to visualize the data. They are presented in Fig. 5.8. 
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Fig. 5.8. Plot of data in Example 5.5. 

The plot displays relation between y and x. One should start with the simplest model in this 

case a linear regression. The results of the linear regression in Excel are presented in Table 5.5.  
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Table 5.5. Results of the linear fit to the data in Example 5.5. 

SUMMARY OUTPUT      

       

Regression Statistics      
Multiple R 0.978149      
R Square 0.956775      
Adjusted R 

Square 0.953688      
Standard Error 0.270645      
Observations 16      

       
ANOVA       

  df SS MS F Significance F  
Regression 1 22.69889 22.69889 309.8869 6.02E-11  
Residual 14 1.025485 0.073249    
Total 15 23.72438        

       

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 0.843382 0.129215 6.526982 1.34E-05 0.566244 1.12052 

X Variable 1 0.258382 0.014678 17.6036 6.02E-11 0.226902 0.289863 
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The plot of the regression results together with the confidence intervals is shown in Fig. 5.9. 
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Fig. 5.9. Plot of the experimental points, regression line (black), confidence intervals for ˆiy  

calculated (red dashed lines), and that for yi experimental (continuous blue lines) assuming linear 

model: y = b0 + b1x. 

Inspection of the regression results reveals r2 = 0.9568 (good correlation).  

F-test of the regression Fexp = 309.9 shows that the hypothesis y = b0
 i.e. b1 = 0 must be rejected, 

Fcr(0.05,1,14) = 4.600 and the Significance of F, p = 6.0210-11 is very low, much lower than 0.05. 

t-tests of the significance of the parameters b0 and b1 are 6.53 and 17.60, respectively, much 

larger than tcr(0.05”,14) = 2.145 therefore both parameters are statistically important. 

However, inspection of the residuals reveal that they are not randomly distributed and show a 

parabolic dependence, Fig. 5.10. This might suggest that our model is not adequate. In fact, the 

experimental data could be approximated by a second order equation: 
2

0 1 2y b b x b x= + + . Let us 

use this model to analyze the experimental data. Another column of x2 must be added to data in 

the Excel file: 

 

x x^2 y 

0 0 0.4 

1 1 0.7 

2 4 1.3 

3 9 1.7 

4 16 2.1 

5 25 2.5 

6 36 2.4 

7 49 2.9 

8 64 3.3 

9 81 3.3 
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10 100 3.6 

11 121 3.7 

12 144 3.9 

13 169 4.1 

14 196 4.3 

15 225 4.3 

 

In the Regression in Excel two first column (x and x2) must be chosen in “Input X Range”. The 

results obtained are displayed below in Table 5.6. 
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Fig. 5.10. Plot of residuals yi - ˆiy  for linear regression model. 
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Table 5.6. Results of the parabolic regression approximation of the data in Example 5.5. 

SUMMARY OUTPUT     

      

Regression Statistics     
Multiple R 0.996305     
R Square 0.992624     
Adjusted R 

Square 0.99149     
Standard Error 0.116017     
Observations 16     

      
ANOVA      

  df SS MS F Significance F 

Regression 2 23.5494 11.7747 874.7951 1.38E-14 

Residual 13 0.174979 0.01346   
Total 15 23.72438       

 

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 0.416299 0.077167 5.394798 0.000122 0.24959 0.583008 

X Variable 1 0.441418 0.02387 18.49245 1.02E-10 0.38985 0.492986 

X Variable 2 -0.0122 0.001535 -7.94908 2.4E-06 -0.01552 -0.00889 
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Then plot for parabolic model is displayed in Fig. 5.11 and the residual plot in Fig. 5.12. 
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Fig. 5.11. Plot of the parabolic fit to the data in Example 5.5, experimental points, regression line 

(black), confidence intervals for ˆiy  calculated (red dashed lines), confidence interval for yi 

experimental (continuous blue lines) assuming parabolic model: y = b0 + b1x + b2x
2. 
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Fig. 5.12. Plot of residuals for the parabolic model fit to data in Example 5.5. 

Visual inspection suggests that parabolic plot is better and the residuals are distributed more 

randomly, Fig. 5.12. The determination coefficient is r2 = 0.9926, larger than for the linear plot 

(0.9568). 
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The F-test value is large Fexp = 874.8 and Significance of F, p = 1.3810-14 very small therefore 

model y = b0 is very little probable. 

t-tests for the parameters b0, b1, and b2, called Intercept, X Variable 1, and X Variable 2, 

respectively are: 

0
0

0 5.395b
b

b
t

s
= =   

1
1

1 18.49b
b

b
t

s
= =  

2
2

2 7.949b
b

b
t

s
= =  

All these values are larger than the value of tcr(0.05”,13) = 2.160 (df – N – 3 = 13), therefore 

all the parameters are statistically important.  

It is also possible to assess the importance of the parameter b2 using F test for addition of the 

parameter b2, Eq. (5.14), where 
2
1S  corresponds to the residual sum of squares for the linear 

approximation and 
2
2S  residual sum of squares for the parabolic approximation. Taking the values 

of sums of squares from ANOVA one can obtain: 

 exp 2
1.025485 0.174979

( ) 952.8
0.01346

F b
−

= =   (5.27) 

which should be compared with F(0.05,1,13) = 4.667. These results indicate that the parameter b2 

is highly significant. The regression results with probability 95% might be presented as: 

r2 = 0.9926 

b0 = 0.416, 
0bs  = 0.077,   0.25 ≤ b0 ≤ 0.58  or    b0 = 0.42 ± 0.17  

b1 = 0.441, 
1bs   = 0.0240,   390 ≤ b1 ≤ 0.493  or    b1 = 0.441 ± 0.052 

b2 = -0.0122, 
2bs  = 0.0015,   -0.01552 ≤ b1 ≤ -0.00899    b1 = -0.0122 ± 0.0033. 

All the calculations are in Excel file Examples5.xlsx, sheet Ex. 5.5 linear and Ex. 5.5 parabolic. 

5.4 Tests in multiple regression 

Let us start first with the example of multiple regression. 

 

Example 5.6. 

Find equation describing the following data: 
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x1 x2 y 

35.3 20 10.98 

29.7 20 11.13 

30.8 23 12.51 

58.8 20 8.40 

61.4 21 9.27 

71.3 22 8.73 

74.4 11 6.36 

76.7 23 8.50 

70.7 21 7.82 

57.5 20 9.14 

46.4 20 8.24 

28.9 21 12.19 

28.1 21 11.88 

39.1 19 9.57 

46.8 23 10.94 

48.5 20 9.58 

59.3 22 10.09 

70.0 22 8.11 

70.0 11 6.83 

74.5 23 8.88 

72.1 20 7.68 

58.1 21 8.47 

44.6 20 8.86 

33.4 20 10.36 

28.6 22 11.08 

 

First, we can check two simpler regressions: 

 0,1 1,1 1y b b x= +   (5.28) 

 0,2 1,2 2y b b x= +   (5.29) 

where the regression parameters in both equations are different. This can be simply done and the 

results are shown below for Eq. (5.28), variable x1: 
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SUMMARY OUTPUT y=f(x1)     

       

Regression Statistics      
Multiple R 0.845244      
R Square 0.714438      
Adjusted R 

Square 0.702022      
Standard Error 0.890125      

Observations 25      

       
ANOVA   F(0.05,2,23) 3.422132   

  df SS MS F Significance F  
Regression 1 45.5924 45.592402 57.54279 1.05495E-07  
Residual 23 18.2234 0.7923217    

Total 24 63.8158        

       

  Coefficients 

Standard 

Error t Stat P-value Lower 95% 

Upper 

95% 

Intercept 13.62299 0.581463 23.428795 1.5E-17 12.42014039 14.82584 

X Variable 1 -0.07983 0.010524 -7.585697 1.05E-07 -0.101598379 -0.05806 

 t(0.05,23)= 2.068658     
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and for Eq. (5.29), variable x2: 

 

SUMMARY OUTPUT y=f(x2)     

       

Regression Statistics      
Multiple R 0.536122      
R Square 0.287427      
Adjusted R  

Square 0.256446      
Standard Error 1.406095      

Observations 25      

       
ANOVA       

  df SS MS F Significance F  
Regression 1 18.3424 18.3424 9.277409 0.005736  
Residual 23 45.4734 1.977104    

Total 24 63.8158        

       

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 3.560549 1.945473 1.830171 0.080215 -0.46397 7.585067 

X Variable 

1 0.289696 0.095111 3.045884 0.005736 0.092945 0.486448 
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In first case, Eq. (5.28), the t-test indicates that parameters b0,1 and b1,1 are important and texp 

> tcr(0.05”,23) = 2.07. One can also notice that in the second case, Eq. (5.29) the parameters b0,2 is 

not important while parameter b1,2 is significant. However, both correlation coefficients are low, 

for the first equation it is r2 = 0.714 and for the second very low, 0.287 which means that simple 

equations can explain 71.4% and 28.7% of the total variation of y = f(xi). 

We can now postulate a multiple linear regression: 

 0 1 1 1 2y b b x b x= + +   (5.30) 

The results using Excel are: 

 

SUMMARY OUTPUT y=f(x1,x2)    

       

Regression Statistics      
Multiple R 0.921476      
R Square 0.849117      
Adjusted R 

Square 0.835401      
Standard Error 0.661565      

Observations 25  sy= 0.661565   
 

 

       
ANOVA       

  df SS MS F Significance F  
Regression 2 54.1871 27.09355 61.90429 9.23E-10  
Residual 22 9.628704 0.437668    

Total 24 63.8158        

       

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 9.126885 1.102801 8.276096 3.35E-08 6.839816 11.41395 

X Variable 1 -0.07239 0.007999 -9.04982 7.19E-09 -0.08898 -0.0558 

X Variable 2 0.202815 0.045768 4.431417 0.00021 0.107899 0.297732 

 tcr(0.05,22 = 2.073873       
 

First, we can notice that the determination coefficient increased to 0.849. However, 

determination (and correlation) coefficient increases always with the increase of the number of 

parameters. To compare correlations which have different number of variables one can use 

adjusted correlation coefficient: 

 ( )2 21
1 1

1
a

N
r r

N df

−
= − −

− −
  (5.31) 

where df is the number of degrees of freedom in regression, that is number of parameters, n, minus 

one, df = n – 1. This value is displayed in ANOVA and in our case it is 1 for the simple linear 

regression (n = 2) and 2 for multiple regression (n = 3), see sheet Ex.5.6 in Examples5.xlsx). In our 
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case the adjusted correlation coefficient is 0.702 for Eq. (5.28), 0.256 for Eq. (5.29) and it increases 

to 0.835 for the multiple regression, Eq. (5.30). 

Next one can notice that the test texp for all three parameters: 8.28, 9.05, and 4.43, is larger than 

the critical value for tcr(0.05, 22) = 2.074. This is confirmed by p-level tests; these values for all 

the parameters are much lower than the value 0.05 which confirms that all three parameters are 

important. 

One can also perform sequential test F for the importance of adding variable x2 (parameter b2) 

to Eq. (5.28). There are two hypotheses: 

H0  y = b0,1 + b0,1 x1 

H1  y = b0 + b1 x1 + b2 x2 

then the sequential F test is: 

 exp
18.223 9.629

19.64
0.4377

F
−

= =   (5.32) 

which is larger than Fcr(0.05,1,22) = 4.30. Similarly, test of adding variable x1 to Eq. (5.29) for 

testing hypotheses: 

H0  y = b0,2 + b0,2 x2 

H1  y = b0 + b1 x1 + b2 x2 

 

 exp
45.473 9.629

81.90
0.4377

F
−

= =   (5.33) 

This confirms importance of the multiple regression, Eq. (5.30). 

In the case of more parameters the analysis demands to verify more correlations.  

5.5 Akaike information criterion 

Akaike information criterion, AIC, is used to compare statistical models in order to choose the 

best one.59-62 It is based on the information theory. It deals with the risks of over and underfitting 

and finding the optimal model. However, it tells nothing about the absolute quality of a model, it 

gives only the quality relative to other models. But when all the models give poor fits, AIC will 

not give any warning. 

AIC contain two components. First, characterizes goodness of fit and the second gives penalty 

for the number of adjustable parameters in the model:   

 ˆAIC 2ln( ) 2L df= − +   (5.34) 

where L̂  is the likelihood function which characterises goodness of fit and contains the residual 

sum of squares of the model and df is the number of estimated parameters. The preferred model is 

the one with the smallest AIC value. If errors are normally distributed the model has df = p + 1 

degrees of freedom where p is the number of parameters determined and one degree is for 2.  

5.5.1 General equation 

Maximum likelihood function is defined as: 
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where N is the number of points, i  is the standard deviation of point i, yi is the experimental value 

of the approximated function and ˆiy  is the value calculated using the studied model. For the 

optimal values of the parameters this function reaches maximum. Logarithm of L̂  is: 
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and  
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AIC is then: 
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5.5.2 Unit weights 

When unit weights are used all the standard deviations are the same:  
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where RSS is the residual sum of squares. Then 
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and AIC for unit weights is: 

 2ln(2 ) ln( ) 2( 1)AIC N N N p = + + + +   (5.42) 

or 

 ln(2 ) ln ln( ) 2( 1)AIC N N N N RSS N p= − + + + +   (5.43) 

5.5.3 Proportional weights 

Let us consider another case of proportional weights, i.e. standard deviation proportional to the 

estimated value of ˆiy ,  

 ˆi iy =   (5.44) 

Eq. (5.37) may be written as: 
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To determine optimal value of 2 let us calculate the derivative 
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Substitution gives: 
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and AIC is 
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5.5.4 General weights problem 

Let us consider a case of weighted regression where the standard deviation of each yi is si. In 

such a case 

 i is =   (5.50) 

where parameter  corrects for the quality of fit. Substitution in Eq. (5.37) gives: 
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  (5.51) 

To determine the value of 
2  one should find the derivative of ˆ2 ln( )L−  and its minimum: 
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which gives: 
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Substitution into Eq. (5.51) gives: 
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and AIC is: 
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5.5.5 Corrected AIC 

When the number of points in the sample is small there is a danger that AIC as defined in Eq. 

(5.34) will select models with too many parameters (overfit). In such cases a corrected AIC, AICc, 

should be used: 
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which adds penalty when N is small; when N →  the second term decreases to zero. When 

comparing models, the one with the smallest AIC (AICc) should be selected.  

5.5.6 Akaike weights 

To help with such selection Akaike weight were introduced. First, when comparing few 

different models (AIC) should be calculated: 

 min( ) =  - i iAIC AIC AIC   (5.57) 

where AICmin is the smallest value for all the models. Next, the relative weights of models are 

calculated: 
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  (5.58) 

The model with the largest weight is the most probable. It should be noticed that there is no 

clear criterion (statistical test) which would say if the difference between models is significant. 

All these values might be calculated in Excel, but they are already included in free statistical 

software R. The calculations of the AICc and weight is correct in package AICcmodavg and 

incorrect in qpcR (wrong number of degrees of freedom). One can calculate these parameters in 

AICcmodavg (rather complicated method for weights) but otherwise, after calculation of AICc, 

one can change the package and calculate weights using qpcR. Below, three examples are 

presented, the details of calculations are in the Excel file. 
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Example 5.7 

Compare which model better describes the data (data file ‘10’): y = b1 x or y= b0 + b1 x. Use 

classical statistics and AIC criterion. The results are in Examples5.xls, sheet Ex. 5.7. 

        x          y 

-2.0 -0.838 

-1.8 -0.838 

-1.6 -0.588 

-1.4 -0.378 

-1.2 -0.288 

-1.0 -0.138 

-0.8 -0.428 

-0.6 -0.128 

-0.4 0.102 

-0.2 -0.018 

0.0 0.122 

The results of fits are displayed in Fig. 5.13. Fit of the experimental data (points) to the models: 

y = b1 x (black line) and y= b0 + b1 x (red line) in Example 5.7.. 

 

-2 -1 0
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-0.5

0.0

 

 

y

x
 

Fig. 5.13. Fit of the experimental data (points) to the models: y = b1 x (black line) and y= b0 + b1 

x (red line) in Example 5.7. 

The classical analysis may be performed using the sequential F-test, Eq. (5.14), for adding a 

new parameter: 

 1 2
exp 2

,2

1
0.241686597 0.15RSS  RSS

5.
1

5
1

4035

0.0171 5
2

y

F
s

− −
= = =   (5.59) 

which should be compared with Fcr(0.05, 1, 9) =5.117. Because Fexp and Fcr are practically the 

same one cannot say that full linear model is better than that without b0 and, with the probability 

of 95%, one should reject full linear model and accept the simpler one y = b1 x. 
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However, using the AIC criterion the following results are obtained: 

model  y=b1 x y=b0+b1 x 

AIC -6.781 -9.736 

AICc -5.281 -6.308 

AICc rel. weights 0.598 1 

 

AIC criterion indicates that the linear model is better (AICc is lower) and its weight is larger (1 

vs. 0.598). The ratio of AIC weights is 1.67 times larger for the full linear model than for the 

simpler without b0. However, it does not say which model should be kept. Classical F-test suggests 

that at  = 0.05 the simper model should be kept. 

The detailed calculations are presented in Excel Examples5.xlsx, sheet Ex. 5.7 and compared 

with the results of the calculations in R. The R program is ‘b0’. 

 

Example 5.8 

Another example will be for comparing linear and parabolic regressions using classical and 

AIC criterions. Data are in file ‘5’. Results are in Examples5.xlsx sheet Ex 5.8. 

 

x y 

0 0.40 

1 0.71 

2 1.34 

3 1.78 

4 2.24 

5 2.72 

6 2.72 

7 3.34 

8 3.87 

9 4.02 

10 4.49 

11 4.77 

12 5.18 

13 5.60 

14 6.04 

15 6.30 
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Fig. 5.14. Fit of the experimental data (points) to the linear (black line) and parabolic (red line) 

models in Example 5.8. 

 

Regression in Excel shows that  

 
lin parab

exp 2
,parab

0
8

6RSS  RSS .23760470 0.17467

0.013436
4.6

y

F
s

− −
= = =   (5.60) 

the value of Fcr(0.05,1,13) = 4.67 which is practically the same as Fexp. 

The results of AIC criterion are shown below: 

 

model linear parabolic 

AIC -15.950 -18.873 

AICc -13.950 -15.237 

AICc rel. weights 0.52546 1 

 

These results indicate that parabolic model shows lower value of AICc and its weight is 1.9 

time larger. It looks better and displays lower s2, but it is not statistically more important at the 

confidence level of 95%. 

 

Example 5.9 

This example shows calculation of the AIC parameters for weighted regression. Compare 

which model: linear or parabolic is better? Use classical statistics and AIC criterion. Data are in 

file dataw in E5-9 and the results in Examples5.xlsx sheet Ex 5.9. 
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x y si 

0 1.9 0.4 

1 2.3 0.5 

2 3.5 0.7 

3 4.5 0.9 

4 5.2 1.0 

5 6.0 1.2 

6 5.5 1.1 

 

In this case the regression parameters cannot be simply calculated in Excel but one can also 

use program polfit.exe (in exercises to Error analysis and data modeling, Part 1), Origin or R. 

Comparison of the results obtained using polfit and in R for weighted regression is shown in 

sheet Ex. 5.9. 
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Fig. 5.15. Weighted fit of the experimental data (points) to the linear (black line) and parabolic 

(red line) models in Example 5.9. 

Use of F-test for addition of the parabolic term b2 is: 

 
lin parab

exp 2
,parab

RSS  RSS
0.76373

1.4465 1.2146

0.30364
y

F
s

−
= = =

−
  (5.61) 

Fexp is much smaller than the critical value of F(0.05,1,4) = 7.709 which indicated that addition of 

a new term is statistically unimportant. This is of course confirmed by the t-test for b2 which is texp 

= 0.874 while t(0.05,4) = 2.776 as these two tests are identical(texp
2.= Fexp because t(,k)2 = 

F(,1,k). These tests confirm that parabolic model is not justified and linear model should be kept. 
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The AIC criterion gives the following results: 

 

model  Linear Parabolic 

AIC  11.24 12.02 

AICc  19.24 32.02 

AICc relative 0 12.78 

Rel. weights 1 0.001681 

 

The relative weight of the parabolic model is very small (595 time less important than the linear 

one) which suggests that linear weighted model should be kept. 

Data, program in R and the results are also in the folder E5-9. 

 

Example 5.10. 

Let us consider more complex example of model selection. For the data file parab-comp: 

x     y 

0     0.4 

1    2.0 

2     2.9 

3     5.7 

4     7.0 

5   13.5 

6   15.1 

7   20.5 

8   18.7 

9   37.1 

10  44.9 

11  70.0 

12  63.7 

13  50.5 

14     115.5 

15     113.6 

 

find the best model describing it between the following: 

 

1 y = b0 + b1 x 

2 y = b0 + b1 x + b2 x
2 

3 y = b0 + b2 x
2 

4 y = b2 x
2 

5 y = b1 x + b2 x
2 

 

Use classical statistics and AIC criterion. 

The results in Examples5.xlsx sheet Ex3.10 obtained using R program parab-comp-model 

using t- test show that in models 2, 3, and 5 there are statistically unimportant parameters for which 

texp < tcr(0.05, df): 
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Model

1 t(0.05,14)= 2.144787

glm(formula = y ~ x)

Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-25.300  -10.103   -4.534    9.503   32.522  

Coefficients:

 Estimate  Std. Error t value Pr(>|t|)

(Intercept) -17.5191 7.8606 -2.229 0.0427 *

x 7.1784 0.8929 8.039 1.29E-06 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 271.0775)

    Null deviance: 21315.0  on 15  degrees of freedom

Residual deviance:  3795.1  on 14  degrees of freedom

AIC: 138.91  
 

Model

2 t(0.05,13)= 2.160369

glm(formula = y ~ x + I(x^2))

Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-30.791   -1.211    0.861    2.142   19.710  

Coefficients:

 Estimate  Std. Error t value Pr(>|t|)

(Intercept) 3.8332 7.5368 0.509 0.61956

x -1.9726 2.3314 -0.846 0.41279

I(x^2) 0.6101 0.1499 4.069 0.00133 **

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 128.399)

    Null deviance: 21315.0  on 15  degrees of freedom

Residual deviance:  1669.2  on 13  degrees of freedom

AIC: 127.77  
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Model

3 t(0.05,14)= 2.144787

glm(formula = y ~ I(x^2))

Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-30.443   -2.038    1.276    2.839   21.389  

Coefficients:

 Estimate  Std. Error t value Pr(>|t|)

(Intercept) -1.47768 4.12944 -0.358 0.726

I(x^2) 0.4877 0.03912 12.468 5.72E-09 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 125.7934)

    Null deviance: 21315.0  on 15  degrees of freedom

Residual deviance:  1761.1  on 14  degrees of freedom

AIC: 126.62  
 

Model

4 t(0.05,15)= 2.13145

glm(formula = y ~ 0 + I(x^2))

Deviance Residuals: 

     Min        1Q    Median        3Q       Max  

-30.1840   -2.8549   -0.1194    1.5331   21.9257  

Coefficients:

 Estimate  Std. Error t value Pr(>|t|)

I(x^2) 0.47742 0.02578 18.52 9.57E-12 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 118.4811)

    Null deviance: 42419.8  on 16  degrees of freedom

Residual deviance:  1777.2  on 15  degrees of freedom

AIC: 124.77  
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Model

5 t(0.05,14)= 2.144787

glm(formula = y ~ 0 + x + I(x^2))

Deviance Residuals: 

     Min        1Q    Median        3Q       Max  

-30.8223   -0.1586    1.4942    3.2036   20.1245  

Coefficients:

 Estimate  Std. Error t value Pr(>|t|)

x -0.9851 1.2559 -0.784 0.445882

I(x^2) 0.557 0.1047 5.318 0.000109 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 121.6)

    Null deviance: 42419.8  on 16  degrees of freedom

Residual deviance:  1702.4  on 14  degrees of freedom

AIC: 126.08  
 

The two possible models are 1 and 4. One can use F-test for variances, Eq. (4.53), to decide if 

there is a statistical difference between them: 

 
2
1

exp 2
4

271.077
2.288

118.48

s
F

s
= = =   (5.62) 

 

The critical value Fcr(0.05,14,15) = 2.424 is larger than the experimental and one cannot say 

that one model is better than the other. Models 1 and 4 are probable at the probability 95%. The 

results of fitting models 1 and 4 to the experimental data are displayed in Fig. 5.16. 
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Fig. 5.16. Fit of the experimental data (points) to the linear model 1 (black line) and parabolic 

model 4 (red line) in Example 5.10. 

 

Now, let us look at the results of AICc test. The results are shown below. 

 

Model 1 2 3 4 5 

AICc 140.908 131.402 128.624 125.693 128.081 

rel. AICc 15.2155 5.7099 2.93125 0 2.38878 

rel. weights 0.0005 0.05756 0.23093 1 0.30289 

 

These results indicate that the most probable model is number 4, i.e. y = b2 x
2 and the next is 

number 5, y = b1 x + b2 x
2. However, this test cannot tell us if it is much (statistically) better than 

others. 
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6 Interpolation  

Interpolation is a method of obtaining new data points within the range of known discrete data 

points. Sometimes we know the values of the function in some points but would like to know the 

intermediate values between them and the cost of obtaining more data values is high. This might 

be necessary for plotting smooth functions, its differentiations or integration. The interpolating 

function must pass by all the known values and interpolate in between. There are few methods 

of interpolation discussed below. Of course, such interpolation introduces errors because it tries to 

interpolates the unknown function by some simple models. 

6.1 Polynomial interpolation 

Given a set of N+1 data points: (x0,y0), …, (xi,yi), …, (xN,yN) there is a polynomial of the degree 

N which passes exactly through these points. To obtain such a polynomial it recommended to use 

Lagrange interpolating polynomial: 

0 0 1 1( ) ( ) ( ) ... ( )N N NL x y l x y l x y l x= + + +       (6.1) 

where li(x) are the polynomials of degree N defined as: 

 0 1 1 1

0 1 1 1

( )( )...( )( )...( )
( )

( )( )...( )( )...( )

i i N
i

i i i i i i i N

x x x x x x x x x x
l x

x x x x x x x x x x

− +

− +

− − − − −
=

− − − − −
    (6.2) 

where in each li(x) the point i was omitted. These polynomials have a property: 

 
1

( )
0

i j ij

i j
l x

i j


=
= = 


          (6.3) 

therefore 

 ( ) ( )N i i i i iL x y l x y= =            (6.4) 

It passes exactly through all the data points and it interpolates the values between these points. 

 

Example 6.1 

Let us interpolate data ex shown in Table 6.1 and Fig. 6.1 using Lagrange interpolation. 

 

Table 6.1. Example data (7 points) for the Lagrange interpolation. 

x    y 

0  0.0  

1  0.9 

2  1.0 

3  0.1 

4      -0.8 

5      -1.0 

6  0.2 

 

This interpolation can be carried out using program polfit.exe with 6th degree polynomial. The 

polynomial passes exactly by all the points and interpolates smoothly between the points. The 

results are in file ex2 (x, ycalculated). Yet, as we do not know the functional dependence it is difficult 
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to judge the quality of interpolation. The results are displayed in Excel file Examples6.xlsx, sheet 

Ex. 6.1 and data file ex2 in folder E6-1. 
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Fig. 6.1. Example of the interpolation of 7 points by the Lagrange polynomial of 6th degree.  

However, in some cases such an approximation is not correct and Lagrange polynomial 

oscillates above and below the true function. Sometimes, such deviations are very large.  

 

Example 6.2. 

Let us consider so called Runge’s phenomenon i.e. approximation of the Lorentzian-type 

function of the form: 

 
2

1

1 25
y

x
=

+
            (6.5) 

by the polynomial. Data set (11 points) in Table 6.2 (data file runge) were fitted to the Lagrange 

polynomial of 10th degree and the results are displayed in Fig. 6.2. 

 

Table 6.2. Example of 11 data points obtained using Eq. (6.5). 

   x              y 

-1.0 0.03846154 

-0.8 0.05882353 

-0.6 0.10000000 

-0.4 0.20000000 

-0.2 0.50000000 

 0.0 1.00000000 

 0.2 0.50000000 

 0.4 0.20000000 

 0.6 0.10000000 

 0.8 0.05882353 

 1.0 0.03846154  
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Fig. 6.2. Example of the interpolation of 11 data points in Table 6.2 using Lagrange polynomial 

of 10th degree; points – symbol, continuous line – function in Eq. (6.5), dashed line – Lagrange 

approximating polynomial. 

 

It is evident that although the polynomial interpolates exactly all the points it oscillates between 

these points and such an interpolation is incorrect. To avoid these problems interpolation by the 

piecewise polynomials of low degree called splines are used. 

6.2 Splines 

Splines are formed by joining polynomials together at fixed points. The most popular are cubic 

splines that is polynomials of third degree: 
3 2

i i i i i( )p x a x b x c x d= + + +          (6.6) 

Cubic spline interpolation of function S(x) is defined by a series of cubic polynomials pi(x): 
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= 
 




 

         (6.7) 

This indicated that between each two points a different cubic polynomial pi(x) is ued. To obtain 

smooth continuous function S(x) two consecutive polynomials must join at point i and their first 

and second derivatives should be the same:  
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            (6.8) 

The coefficients in Eq. (6.6) for all the cubic polynomials might be obtained following the 

procedure below. 

The second derivative of Eq. (6.6) is: 

 "
i I i( ) 6 2p x a x b= +             (6.9) 

Let us call the second derivative in point i: Mi. The coefficients ai and bi can be found from the 

second derivatives in i and i-1: 
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Then "( )ip x  can be expressed as: 
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To find other coefficients ci and di let us integrate "( )ip x  
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Now, we can use conditions 1 1( ) and ( )i i i i i ip x y p x y− −= =  which give which give: 
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Using the polynomial coefficients one can write the cubic spline i: 
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The only unknown parameters in Eq. (6.16) are the second derivatives Mi at i=1,…,N-1. To 

determine Mi let us calculate the derivatives p’i(x):  
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and evaluate them at xi-1 and xi:  
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but because ' '
1( ) ( )i i i ip x p x+=  the above expressions lead to: 
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Multiplication by 1 1 16 / ( ) 6 / ( )i i i ih h x x+ + −+ = −  and rearranging produces: 
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where ddi is known 
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Eq. (6.20) forms a tridiagonal matrix which permits to determine the second derivatives Mi. 

There are N-1 equations with N+1 unknowns. To determine all the unknowns, we have to get 

additional equations for x0 and xN. There are few conditions which assume additional information 

about boundary conditions: 

a) setting second derivatives to zero 0 0NM M= =  (so called natural boundary condition) 

b) using known values of 
'
1 0( )p x   and 

'
1( )N Np x−  or setting them equal to zero (so called 

clamped boundary condition). 
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c) assuming 1 0 0M M− =  and 1 0N NM M− − =   

 

For the natural boundary condition (a) 0 0NM M= =   the following tridiagonal matrix is obtained: 
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All Mi values are obtained by solving Eq. (6.22) and the splines are calculated using 

Eq. (6.16). Let us look at an example of the application of cubic splines in interpolation. 

Example 6.3. 

Use cubic splines to interpolate data in Table 6.2. 

The program which uses cubic splines is spl.exe with ITYPE=1. It reads the data file, runge, 

containing data from Table 6.2, then asks for the number of points and the name of the output data 

file containing interpolation and its first derivative, The results for interpolating 200 points are 

included in runge_int. The results are also shown in Fig. 6.3. They are included in Excel file 

Examples6.xlsx sheet Ex. 6.3 and folder E6-3. 
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Fig. 6.3. Plot of the data in Table 6.2 and their interpolation by cubic splines. 

 

The first derivative of the cubic splines is shown in Fig. 6.4. 
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Fig. 6.4. First derivative of the cubic spline in Fig. 6.3. 

 

Finally, the difference between the cubic spline interpolation and the exact function calculated 

using Eq. (6.5) is displayed in Fig. 6.5. 
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Fig. 6.5. Plot of the differences between cubic spline interpolation and the function calculated 

using Eq. (6.5). 

Although the spline function passes through all the points in Table 6.2, the differences appear 

in between these points. This is not surprising as there are few points in the fast changing zone for 

x between -0.5 and 0.5 and the program tries to fit cubic function to the Lorenzian type relation, 

Eq. (6.5). Of course, with the increasing number of points the interpolation becomes better. 
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In some cases, the cubic spline interpolation may lead to overshoot or wiggles of the 

approximating functions. Two methods were proposed to avoid these problems, one by Akima64 

and another to preserve convex and concave regions.65,66 An example below illustrates applications 

of these methods. 

Example 6.4. 

Use spline, Akima, and concave interpolations of the data in Table 6.3. 

 

Table 6.3. Data for interpolation in Example 6.4. 

x y     

0.00 0.00 

0.10 0.90 

0.20 0.95 

0.30 0.90 

0.40 0.10 

0.50 0.05 

0.60 0.05 

0.80 0.20 

1.00 1.00 

 

These data are in data file concave. The interpolations were carried out using program spl.exe 

with ITYPE=1 for cubic spline, ITYPE=2 for Akima method, and ITYPE=3 for concave producing 

100 interpolation points. These results containing interpolated functions and its first derivative are 

in data files concave_1, concave_2, and concave_3, respectively. The corresponding plots are 

shown in Fig. 6.6. The results are also included in Excel file Examples6.xlsx sheet Ex. 6.4. 

In this case spline interpolation produces wiggles visible for x = 0.26, 0.44, and 0.53. Akima 

and concave algorithms remove these problems but in different ways. One should check use of 

these programs and decide which method is the best. 

Finally, besides cubic splines one can use interpolating B-splines (explained in Section 7.6) of 

different order. Such interpolations are shown in Example 6.5. 
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Fig. 6.6. Interpolation of data (points) in Table 6.3 using cubic splines, Akima, and concave 

algorithms. 

Example 6.5. 

Use B-splines of the order 2 to 5 to interpolate data in file runge (11 points), Table 6.2 and Fig. 

6.3, and determine error of such a procedure. Program bsint.exe was used to generate files 

containing 200 points, r_2, r_3, r_4, and r_5 (for orders 2 to 5). The errors of such interpolation 

i.e. difference between interpolated and calculated, Eq. (6.5), values yinterpolated - ycalculated are 

displayed in Fig. 6.7. Of course, interpolation of the exact values with piecewise polynomials must 

introduce some errors. In this case one can notice that the smallest errors are observed for the 

second order B-spline and this error increases with the degree of the B-spline. It can also be noticed 

that using interpolating B-spline of the third order is equivalent to the interpolation using cubic 

splines. The results are included in Excel file Examples6.xlsx sheet Ex. 6.5. 

However, such propagation of errors is not a rule. Let us look into Example 6.6 where the same 

Eq. (6.5) was used to generate 21 data points (instead of 11). 
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Fig. 6.7. Comparison of the values interpolated using interpolating B-splines of the second to fifth 

order with the values calculated using Eq. (6.5) (used to generate 11 points data file in Table 6.2). 

 

Example 6.6. 

Use interpolating B-splines of the order 2 to 5 to interpolate data in file rungea (21 points), 

Table 6.4 generated using Eq. (6.5) and displayed in Fig. 6.8, and determine error of such a 

procedure. Program bsint.exe was used to generate files containing 200 points, ra_2, ra_3, ra_4, 

and ra_5 (for orders 2 to 5). The errors of such interpolation i.e. difference between interpolated 

and calculated, Eq. (6.5), values yinterpolated - ycalculated are displayed in Fig. 6.9. 

It can be noticed that increasing the interpolating B-spline order from 2 to 5 leads to decrease 

of the interpolation errors that is the best interpolation is obtained for the order 5. This result is 

different from that obtained in Example 6.5. However, in Example 6.6 there are more points used 

as a base for interpolation. The results are in Excel file Examples6.xlsx sheet Ex. 6.6. This means 

that the interpolation must be used with prudence. Interpolation with the splines cannot exactly 

reproduce the unknown data behavior. 
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Table 6.4. Example of 21 data points obtained using Eq. (6.5). 

-1.0 0.038462 

-0.9 0.047059 

-0.8 0.058824 

-0.7 0.075472 

-0.6 0.100000 

-0.5 0.137931 

-0.4 0.200000 

-0.3 0.307692 

-0.2 0.500000 

-0.1 0.800000 

0.0 1.000000 

0.1 0.800000 

0.2 0.500000 

0.3 0.307692 

0.4 0.200000 

0.5 0.137931 

0.6 0.100000 

0.7 0.075472 

0.8 0.058824 

0.9 0.047059 

1.0 0.038462 
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Fig. 6.8. Plot of the data in Table 6.4. 
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Fig. 6.9. Comparison of the values interpolated using interpolating B-splines of the second to fifth 

order with the values calculated using Eq. (6.5) (used to generate 21 points data file in Table 6.4, 

Fig. 6.8). 
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7 Smoothing  

Data obtained experimentally are acquired with some experimental noise. In such a case we 

do not want to interpolate the all the noisy data points but to eliminate noise. Let us look into an 

example in Fig. 7.1. 

It is not very probable that the approximating line should pass through all the experimental 

points. In such a case some smoothing must be introduced. There are many different methods 

which can be used, and one should choose the most appropriate. Of course, the best way is to 

increase number of experimental points but this is not always possible. 

It should be stressed that smoothing is a semi-quantitative method and the amount of smoothing 

depends on the operator. In the case when we “know” what the data behavior should be, e.g. linear 

behavior, Gaussian or Lorentzian peaks on a linear or parabolic base line, exponential behavior, 

etc., we should use fitting the experimental data to the appropriate mathematical model (see e.g. 

Example 3.12.-Example 3.13.). But in general, we do not know what the data behavior should be 

and we use smoothing as a graphical technique to guide us through the noisy data. Smoothing is 

also necessary when determining derivative of the noisy data which increases noise, while 

integration averages the noise. It is obvious that too much smoothing distorts the tendency in data 

while too little smoothing leaves the noise. The choice is always a little ambiguous.  

Few popular methods will be presented below with the corresponding programs, some are 

incorporated in the popular plotting software (Origin, SigmaPlot, etc.). 
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Fig. 7.1. An example of the interpolation of the noisy data by cubic splines; the approximating line 

passes through all the experimental points (which contain some noise). 

7.1 Simple data reduction 

To acquire data an analog to digital converter at high speed (at equal intervals) might be used 

and produces large amount of data. To reduce their amount the data acquisition program usually 

averages periodically blocks of data. For example, if the experiment lasts 1 min and the data 

acquisition rate chosen is 1000 Hz (one point every 1 ms) an average might be calculated every 

100 points i.e. every 100 ms. This reduces 60,000 data points to 600 with important noise 

reduction. Such method works well when the signal is changing relatively slowly, the experiment 

is long, and a lot of data points are acquired, otherwise a deformation might be observed. This 

procedure also allows reduction of the number of points acquired and consequently stored. An 

example of such averaging illustrated in Example 7.1.  

Example 7.1. 

Carry out averaging of the noisy data file data6, acquired by the data acquisition system (A/D 

analog to digital converter) and containing 60,000 points, every 100 points. The average should 

appear at the end of each averaging window. 

The plot of the data is shown in Fig. 7.2a. The averages of 100 points were calculated in Excel 

and the number of points was reduced to 600 improving the signal to noise ratio. Plot of the 

averages is displayed in Fig. 7.2b, in data file data6_averaged and in Excel file Examples7.xlsx 

sheet Ex. 7.1. The data files are in the folder E7-1. An important noise reduction was obtained. 
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Fig. 7.2. (a) 60,000 raw data points acquired by the A/D convertor; (b) data averaged every 100 

points reducing number of points to 600 and reducing noise. 

7.2 Simple digital filters 

Simple digital filters are based on a weighted average of the data. Below, data smoothing 

techniques of already acquired data using simple digital filters are presented. 

The most popular digital filters are displayed in Fig. 7.3. 
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Fig. 7.3. Examples of simple digital filters: simple square 5 points filter (central average of 5 

points), 9 points triangle filter, 5 points exponential, 9 points bi-exponential. 

7.2.1 Moving central average square filter 

Square filter is a simple central average. It has an advantage that it does not cause any 

horizontal shift although it can attenuate quickly changing signal. This filter calculates an average 

value in a central point is described by equation: 
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           (7.1) 

where number of averaged points np = 2m+1 is the length of the filter and the data are acquired 

with the constant rate. In this case each average is calculated after acquiring np points. 

For example, for averaging 5 points Eq. (7.1) is: 
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This filter is analog to that in Section 7.1, the difference is that the former method provides the 

average at last point np of the interval while Eq. (7.1) determines the central average at the central 

point m+1 of the interval np. An example of Excel calculations is shown in Example 7.2. 

Example 7.2.  

Calculate the central averages 21 points of data in file data3 containing 401 points. These 

averages were calculated in the file Excel file Examples7.xlsx sheet Ex. 7.2 which explains how 

the calculations were carried out. The smoothed data are in file data3_cent. Data files are also in 

the folder E7-2, see Fig. 7.4.  

Such a procedure works well when the number of points is large but it attenuates the peak 

when too wide filter or too few data points are used. 
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Fig. 7.4. Plot of the noisy 401 data points (black symbols) in file data3 and 21 point central 

averages (red line). 

In general, weighted average filters are used. They are applied after data acquisition process 

and are described by the general equation: 
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         (7.3) 

where wj is the smoothing weighting parameter and w is the normalization factor.  

7.2.2 Exponential filter 

The exponential filter corresponds to the analog data averaging using R-C filter, however, it 

can distort the fast changing signal. An example is shown in Example 7.3. 

Example 7.3. 

Use 5 points exponential filter to smooth data in file data2 containing 51 noisy points. They 

are displayed in Fig. 7.5 and are in folder E7-3. 

0 20 40

0.0

0.5

1.0

 

 

y

x
 

Fig. 7.5. Plot of the data in data2 (symbols) and the exponential smoothing using 5 points 

exponential filter (red line). 

 

The filter used contained weights exp( /1.5)iw i= −  and the sum of weights was w = 1.981933. 

It is displayed in Fig. 7.6.  

The smoothing was carried out in Excel file Examples7.xlsx sheet Ex. 7.3 and the smoothed 

data are in data2_exp. It is clear that applying this filter to a very small data file (51 points) causes 

attenuation of the peak and its shift to the higher values. However, when number of points is very 

large it works very well. It can be used online because it uses only information on the previous 

points. 
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Fig. 7.6. Example of the 5 points exponential filter used for data smoothing. 

7.2.3 Symmetrical triangular filter 

An example of the symmetrical triangular or bi-triangular filter is shown in Fig. 7.3. Let us 

look at its application in Example 7.4, the files are in folder E7-4. 

Example 7.4. 

Apply 11 points symmetrical triangular filter to data file data2. The filter weights were 

calculated as 1 | / 6 |iw i= −  and they are shown in Fig. 7.7. 

The results of the application of this bi-triangular filter to data smoothing is shown in Fig. 7.8 

and in file data2_bitri. The details of calculations are in the Excel file Examples7sheet Ex. 7.4. 

It is evident that the calculated curve is smooth but the peak is attenuated although its position 

is unchanged. Of course, this is related to the fact that there are too few experimental points, 51, 

for the filter size, 11. But using less points in the filter would leave more unfiltered noise. 

-5 0 5
0.0

0.2

0.4

0.6

0.8

1.0

 

 

w
i

i
 



175 

Fig. 7.7. Symmetrical triangular 11 points filter weights calculated as: 1 | / 6 |iw i= − . 
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Fig. 7.8. Plot of the noisy data in data2 (black symbols) and the result of smoothing using 11 points 

bi-triangular filter with weights 1 | / 6 |iw i= −  (red line). 

7.2.4 Bi-exponential filter 

Bi-exponential digital filter is more often used as it puts greater emphasis on the central point. 

An example of application of such a filter is shown below.  

Example 7.5. 

Let us assume filtering using 15 points bi-exponential filter, centered at m = 8 (i = 0), shown 

in Fig. 7.9. It was defined as in Eq. (7.3) with: 

 7
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7.8057
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           (7.4) 

This filter is displayed in Fig. 7.9. Raw data in data3 (see folder E7-5) containing 401 points are 

displayed in Fig. 7.10a and the calculations are shown in Examples7.xlsx, sheet Ex. 7.5. The results 

of smoothing are shown in Fig. 7.10b where the majority of noise was removed. 
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Fig. 7.9. Example of the bi-exponential digital filter, for 15 points, Eq. (7.4). 
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Fig. 7.10. (a) Raw noisy data and (b) smoothed by application of the bi-exponential filter using 15 

points to data file data3, Eq. (7.4). 

Manual application of this filter was used in Excel file but computer programs are usually used 

to carry out such calculations. Of course, one could try different number of points and weight 

parameters wi to get the best results. 

The above presented filters are very simple and work when many data points are acquired and 

large averaging can be used. 

7.2.5 Adjacent-averaging filter 

Finally, adjacent-averaging filter is a moving weighted average filter where the weights of 

point j corresponding to uniformly distributed np data points: j = 1, 2…np are defined as: 
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where i is the central point where smoothed value is calculated and np is the total number of points 

in the filter. An example of a plot of these weights for np = 11 (central value i = 6) is displayed in 

Fig. 7.11. The smoothed values are calculated using Eq. (7.3). 
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Fig. 7.11. Plot of the weights in adjacent-averaging for 11 points (i = 6), Eq. (7.5). 

Application of this filter to data smoothing is illustrated in Example 7.6. 

Example 7.6. 

Use adjacent-smoothing with 11 points window to data data3 containing 401 points, Fig. 7.12; 

see also folder E7-6.  

These calculations were carried out in Excel and the results are in Examples7.xlsx, sheet Ex. 7.6. 

The weights were calculated using Eq. (7.5) and the values of the smoothed function using Eq. 

(7.3). The results are displayed in Fig. 7.12, red line; they are also in file data3_adj. Good 

smoothing was obtain using 11 points window. 
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Fig. 7.12. Plot of the data3 data, points, and 11 points adjacent-averaging filter, red line. 

7.3 Savitzky-Golay filter 

Savitzky and Golay67 have proposed moving second order polynomial to smooth the 

experimental data. It consists of applying the least-squares method to smooth a subset of data, then 

it is moved to next points. A parabola passes exactly through 3 points therefore more points must 

be used to smooth the data. In practice odd number of points: 5, 7, 9… are used. Below, an example 

of approximation of 5 points by a second order polynomial will be shown but in a similar way 

other formulas might be obtained. It should be stressed that the points are acquired in equal 

distances therefore x are not important and only yi values will be considered. 

The second order polynomial is 2

2 1 0ŷ b x b x b= + +  and the parameters bi must found. The data 

points used locally are: x-2,y-2; x-1,y-1; x0,y0; x1,y1; x2,y2. Using general method of the least squares 

we have to create matrix X for 5 points from -2 to 2, Eqns. (3.106)-(3.107). Matrix X contains the 

derivatives /i jy b  . The central point for which the approximation is calculated corresponds to x 

= 0: 

1 2 4

1 1 1

1 0 0

1 1 1

1 2 4

− 
 

−
 
 =
 
 
  

X               (7.6) 

The matrix of the values of yi is: 
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Y                (7.7) 

The solution of the problem is b = (X’X)-1X’Y where  

 

0
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b
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b                 (7.8) 
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b         (7.9) 

The smoothed values of the function and its derivatives calculated at x = 0 from the 

approximating polynomial are: 
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y x b y y y y

y x b y y y y y

− −
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− −

= = = − + + + −

= = = − − + +

= = = − − − +

      (7.10) 

This smoothing, in practice, corresponds to multiplication of yi by some coefficients (weights). 

Savitzky and Golay have published such coefficients for the second and fourth order smoothing 

for 5 to 25 points. Coefficients for the parabolic smoothing are shown for the function, its first 

and second derivative are shown in Table 7.1-7.3.  
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Table 7.1. Savitzky-Golay coefficients used to calculate smoothed values of ˆiy  using 5 to 25 

points. 

 

POINTS 25 23 21 19 17 15 13 11 9 7 5 
            

-12  -253           

-11  -138 -42          

-10  -33 -21 -171         

-9  62 -2 -76 -136        

-8  147 15 9 -51 -21       

-7  222 30 84 24 -6 -78      

-6  287 43 149 89 7 -13 -11     

-5  342 54  204 144 18 42 0 -36    

-4  387 63 249 189 27 87 9 9 -21   

-3  422 70 284 224 34 122 16 44 14 -2  

-2  447 75 309 249 39 147 21 69 39 3 -3 

-1  462 78 324 264 42 162 24 84 54 6 12 

0  467 79 329 269 43 167 25 89 59 7 17 

1  462 78 324 264 42 162 24 84 54 6 12 

2  447 75 309 249 39 147 21 69 39 3 -3 

3  422 70 284 224 34 122 16 44 14 -2  

4  387 63 249 189 27 87 9 9 -21   

5  342 54 204 144 18 42 0 -36    

6  287 43 149 89 7 -13 -11     

7  222 30 84 24 -6 -78      

8  147 15 9 -51 -21       

9  62 -2 -76 -136        

10  -33 -21 -171         

11  -138 -42          

12  -253           

NORM 5175 805 3059 2261 323 1105 143 429 231 21 35 
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Table 7.2. Savitzky-Golay coefficients to calculate the first derivative 'ˆ jy .  

 

POINTS 25  23  21  19  17  15  13  11  9  7  5  

-12  -12            

-11  -11  -11           

-10  -10  -10  -10          

-9  -9  -9  -9  -9         

-8  -8  -8  -8  -8  -8        

-7  -7  -7  -7  -7  -7  -7       

-6  -6  -6  -6  -6  -6  -6  -6      

-5  -5  -5  -5  -5  -5  -5  -5  -5     

-4  -4  -4  -4  -4  -4  -4  -4  -4  -4    

-3  -3  -3  -3  -3  -3  -3  -3  -3  -3  -3   

-2  -2  -2  -2  -2  -2  -2  -2  -2  -2  -2  -2  

-1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  

0  0  0  0  0  0  0  0  0  0  0  0  

1  1  1  1  1  1  1  1  1  1  1  1  

2  2  2  2  2  2  2  2  2  2  2  2  

3  3  3  3  3  3  3  3  3  3  3   

4  4  4  4  4  4  4  4  4  4    

5  5  5  5  5  5  5  5  5     

6  6  6  6  6  6  6  6      

7  7  7  7  7  7  7       

8  8  8  8  8  8        

9  9  9  9  9         

10  10  10  10          

11  11  11           

12  12            

NORM 1300  1012  770  570  408  280  182  110  60  28  10  
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Table 7.3. Savitzky-Golay coefficients to calculate the second derivative "ˆ jy . 

 

 POINTS 25  23  21  19  17  15  13  11  9  7  5  

-12  92            

-11  69  77           

-10  48  56  190          

-9  29  37  133  51         

-8  12  20  82  34  40        

-7  -3  5  37  19  25  91       

-6  -16  -8  -2  6  12  52  22      

-5  -27  -19  -35  -5  1  19  11  15     

-4  -36  -28  -62  -14  -8  -8  2  6  28    

-3  -43  -35  -83  -21  -15  -29  -5  -1  7  5   

-2  -48  -40  -98  -26  -20  -44  -10  -6  -8  0  2  

-1  -51  -43  -107  -29  -23  -53  -13  -9  -17  -3  -1 

0  -52  -44  -110  -30  -24  -56  -14  -10  -20  -4  -2  

1  -51  -43  -107  -29  -23  -53  -13  -9  -17  -3  -1  

2  -48  -40  -98  -26  -20  -44  -10  -6  -8  0  2  

3  -43  -35  -83  -21  -15  -29  -5  -1  7  5   

4  -36  -28  -62  -14  -8  -8  2  6  28    

5  -27  -19  -35  -5  1  19  11  15     

6  -16  -8  -2  6  12  52  22      

7  -3  5  37  19  25  91       

8  12  20  82  34  40        

9  29  37  133  51         

10  48  56  190          

11  69  77           

12  92            

NORM 26910 17710  33649  6783  3876  6188  1001  429  462  42  7  

 

In simple cases smoothing can be performed manually in Excel. This is illustrated in Example 7.7. 

Example 7.7. 

Perform Savitzky-Golay smoothing of the data in file sg1 (folder E7-7), containing 101 points, 

using 15 points formula and the values from Table 7.1.  

The values of yi were multiplied by the values from Table 7.1 for 15 point filter (-78, -13, 42, 

87, 122, 147, 162, 167, 162, 147, 122, 87, 42, -13, -78), added, and divided by the norm 1105 to 

obtain the smoothed value for point number 8. The details of calculations are in Excel file 

Examples7.xlsx, sheet Ex. 7.7. The raw (sg1) and smoothed data (sg1_15) are compared in Fig. 

7.13. 
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Fig. 7.13. Comparison of the raw and smoothed data (101 points) using Savitzky-Golay 15 point 

filter.  

 

While the results are smoothed they still contain some noise and may be larger filter should be 

applied. 

Although Savitzky-Golay smoothing can be carried out manually it is easier to use a computer 

program, especially for larger number of points. For such smoothing program sg.exe is provided. 

An example is shown in Example 7.8.  

 

Example 7.8. 

Program sg.exe can accommodate up to 40000 points and smooth locally up to 99 points. It 

should be pointed out that using very large windows may cause distortions and decrease of peaks. 

Program sgd.exe may also be used to calculate the first derivative. 

An example of Savitzky-Golay smoothing is presented in application to data in data3a 

containing 401 data points, see Fig. 7.14. To choose the number of points and the degree of the 

polynomial the first derivative was inspected. It is important to choose the smallest number of 

points in the filter and the lowest order of polynomial. Using program sgd.exe to calculate dy/dx it 

was found that 49 filter points and the second order of the polynomial is sufficient to obtain 

relatively smooth derivative (derivative is much more sensitive to the noise than the smoothed 

function). Then, the smoothed function was calculated using program sg.exe. The raw data are in 

the file data3a. The results are displayed in Fig. 7.14 and in Excel file Examples7.xlsx sheet Ex. 

7.8. They are also in files data3a_sg49 and data3a_sgd49 in folder E7-8. 



184 

0 100 200 300 400

0.0

0.2

0.4

 

 

y

x

0 100 200 300 400
-0.005

0.000

0.005

 

 

d
y
/d

x

x
 

Fig. 7.14. Application of the Savitzky- Golay filter to smooth data in Fig. 7.10a; (a) raw data and 

smoothed function, (b) first derivative, obtained using 49 points filter and second order 

polynomial. 

 

It should be noticed that because Savitzky- Golay filter calculated values in the center of the 

window, m points on two extreme sides of the data are not smoothed. In the example presented np 

= 49 then m = 24 points on both sides of the data file are not smoothed. 

Limits and applicability of the simple central average and Savitzky-Golay filters are presented 

in Fig. 7.15. The noisy data (top) contain several peaks of decreasing width. Application of the 

simple central average for 216+1=33 points effectively filters noise of the large peak but narrow 

peaks are deformed and lose their amplitude. On the other hand, application of the Savitzky-Golay 

filter to 33 points and using fourth order polynomial smoothes the sharp peaks but leaves noise at 

the large peak and flat area.  

The use of a wider window of 65 points and different orders of smoothing polynomials is 

displayed in Fig. 7.16. Good smoothing is obtained for the flat initial part and a large peak when 

using second order polynomial. However, sharp peaks practically disappear. Increase of the 

polynomial order to 4 or 6 leave larger noise at the initial part and the wide peak but better 

reproduces sharp peaks. These examples show that it is impossible to smooth both the flat part and 

wide and narrow peaks.  
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Fig. 7.15. Smoothing of the noisy data (top) using square central average (middle) and Savitzky-

Golay filter of the second degree for 33 points.68 
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Fig. 7.16. Application of a wider 65 points Savitzky-Golay filter to the data set in Fig. 7.15 (top) 

and polynomial orders of the second, fourth, and sixth order.68 

 

All above smoothing techniques demand that data points are acquired at equal intervals that is 

at constant sample spacing x. Bellow, other methods for varying sample spacing will be 

presented. 

 

7.4 Polynomial approximation 

As it was mentioned in the section 6.1 polynomial of high degree can interpolate exactly the 

data points but it usually oscillates between. Therefore, one should use the lowest polynomial 

degree which can smooth well the raw data without oscillations. It must also be added that not all 

functions can be well approximated by polynomials. 

In general, least squares approximation involves matrix inversion and with the increase if the 

polynomial order such an operation becomes instable (determinant too small). To avoid these 

problems the modern programs use orthogonal polynomials. Orthogonal polynomials are defined 

as: 
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b

i j

a

p x p x x i j=            (7.11) 
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       (7.12) 

where parameters aj and bj are calculated from the orthogonality condition, Eq. (7.11). The whole 

data set is approximated by: 

 0 1 1 2 3ˆ( ) ( ) ( ) ... ( )n ny x p x p x p x   = + + + +      (7.13) 

where n is the highest order of the polynomial. The parameters i  are determined by the least-

squares method. Usually, x values are scaled between -2 and 2 to avoid subtraction of very large 

values and problems found in U.S. Census data, where two completely different sets of coefficients 

were obtained using single and double precision data, see Section 3.19.30 The advantage of 

orthogonal polynomials is that addition of the next order of polynomial does not change the earlier 

polynomials and problems of matrix inversion are avoided. The basis of the classical orthogonal 

polynomials are Hermite, Laguerre, Jacobi, Chebyshev, or Legendre polynomials. 

For example, a series of Hermite orthogonal polynomials are: 
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         (7.14) 

Let us look at the application of the approximation by orthogonal polynomials to smoothing 

of the data file d3. 

 

Example 7.9. 

Use orthogonal polynomials of different orders to approximate data in file d3. Generate 200 

points of approximating function and compare the results. 

The lowest polynomial order which can be used here is the third. Increasing order from 3 to 10 

changes a little the approximation, see Fig. 7.17. In polfit.exe, first option for equal statistical 

weights should be chosen because d3 contains only two columns x and y (unit weights, wi = 1, are 

assumed). Two files were produced for the 3rd and 10th orders, first containing approximations at 

the original xi points and the approximation parameters recalculated into classical polynomials 

(d3_3, d3_10) and the second containing function generated at 200 equally spaced x values 

(d3_3_200, d3_10_200 for graphing). The results are in Examples7.xlsx, sheet Ex. 7.9 and in folder 

E7-9. 

However, when the polynomial order is too high, although the polynomial passes closer to the 

experimental noisy points, it starts to oscillate for between the points. This is illustrated in Fig. 

7.18 where 13th polynomial order was used. The results are in the files d3_13 and d3_13_200. It 
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is evident that this order is too large and the polynomial starts produce large deviations between 

the points. 
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Fig. 7.17. Results of the approximation of the data file d3 using orthogonal polynomials of the 

order 3 and 10. 

 

 

 

 

 

 

 

 

 

 

Fig. 7.18. 

Results of 

the 

approximation of the data file d3 using orthogonal polynomials of 13th order. 

 

As it was mentioned earlier in the Section 6.1 on interpolation, polynomials cannot reproduce 

some shapes, e.g. Runge’s Eq. (6.5). The results for approximation of such a function are presented 

in Example 7.10. 
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Example 7.10.  

Use orthogonal polynomials to approximate data in file rungea, Table 6.4.  

The approximations were performed using polfit.exe for two polynomial degrees 8 and 13 and 200 

points of smoothed function were generated. The results are in the files r_8, r_8_200 and r_13, 

r_13_200. The results are also in Excel file Examples7.xlsx, sheet Ex. 7.10. The plots are displayed 

in Fig. 7.19.  
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Fig. 7.19. Results of use of the polynomial approximation to the data file rungea in Table 6.4; 

points – raw data, black line – approximation by the polynomial of 8th order, red line – 

approximation by 13th order. 

 

It is clear that the 8th order is not sufficient to approximate the data because the peak of the 

curve is attenuated and 13th order reproduces better the peak but it increases oscillations between 

points. In this case polynomial approximation cannot be used for such a function. 

However, the approximation is improved when many more experimental points are used. This 

is illustrated in Example 7.11. 

 

Example 7.11.  

Use polynomial approximation for data file data3 containing 401 noisy data points. 

Approximations were carried out for few polynomial orders and order 13 was chosen (see data file 

data_13_401 and Excel file Examples7 sheet Ex. 7.11 and folder E7-11. The results of such 

approximation are displayed in Fig. 7.20. In this case the approximating line is quite smooth 

because number of points is large. 
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Fig. 7.20. Results of the polynomial smoothing of 401 points in data file data by the polynomial 

of 13th order. 

 

Polynomial smoothing using orthogonal polynomials is a powerful technique which works 

well for very dense data files and might not work for certain functions especially when number of 

data points is low. 

7.5 FFT smoothing 

In section 6.1 it was pointed out that each series of discrete points, xi, can be described exactly 

by a polynomial. Such a series of points can also be exactly described by the Fourier series. Fourier 

transform69-71 is a linear integral transform which converts function of time, f(t), into the complex 

function of the parameter called (angular) frequency, , F(): 

 ( ) ( ) j tF f t e dt


−

−

=              (7.15) 

Although historically parameter t is called time it might be any x value. 

In practice a finite time interval, 0 to T, is considered (in which data are acquired) and it is 

assumed that the same function is repeated between T and 2T, 2T and 3T, and so on. Then, Eq. 

(7.15) becomes: 

 

0 0 0

( ) ( ) ( ) cos( ) ( )sin( )

T T T
j tF f t e dt f t t dt j f t t dt  −= = +      (7.16) 

where Euler’s formula was used: 

 cos( ) sin( )j te t j t  − = −            (7.17) 

In data analysis we are interested in the discrete Fourier transform, DFT, applied to the series 

uniformly distanced N points numbered from 0 to N-1: 

 ( )(0), ( ), (2 ),..., ( ),..., ( 1)f f t f t f i t f N t   −         (7.18) 
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Because all points are uniformly distributed the value of t is not important and Eq. (7.18) might 

be written as: 

 (0), (1), (2),..., ( ),..., ( 1)f f f f i f N −           (7.19) 

Application of Eq. (7.16) to the data in Eq. (7.19) leads to the formula for the DFT: 

 ( )
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1 1 2
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N N
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      (7.20) 

where 
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        (7.21) 

2k kv = , /k k T =  is the frequency. Eq. (7.20) transforms points f(i) into complex function 

F(): 
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− −

           (7.22) 

The fundamental frequency (k = 1) is: 

 1
1 1

T N t
 = =


            (7.23) 

and the harmonic frequencies are: 21, 31, 41…Therefore, each frequency is 

 k
k

N t
 =


             (7.24) 

Although the DFT produces N points in the frequency space the new information is included only 

for frequencies from 0 to k = N/2 that is N/2 = 1/(2t) and further the same values of F are repeated 

(with the same sign for the real and negative sign for the imaginary part). This largest frequency, 

N/2, is called Nyquist frequency. 

The FT programs accept one column of data only and they are internally numbered from 0 to 

N – 1. The first value of F(0) is real and it is simply the average of all the data points. 

From Fourier transformed values the original data might be calculated using inverse Fourier 

transform: 
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          (7.25) 

This equation might be also written using real values of the modulus |F| and phase angle : 
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       (7.26) 

and indices  and  denote real and imaginary functions, respectively. 

It can be noticed that the presence of discontinuities (producing so called leakage69) or the 

noise introduces high frequencies but the main shape of the function might be usually 

approximated with a few low frequencies. This leads to the smoothing based on DFT. It should be 

added that so called fast Fourier transform, FFT, avoids repetition of many calculations and the 

calculations are performed more quickly. However, FFT demands that the number of points is 

N = 2n where n is an integer number. 

The idea of FFT smoothing72 is to take noisy experimental data, make FT, cut out high 

frequencies responsible for noise, and carry out inverse transform. Then, compare the original 

noisy and the smoothed data. The highest frequency to be cut must be found experimentally. Two 

main types of filters in Fourier space are square and parabolic.72 The square filter cuts data abruptly 

but the parabolic filter does this more smoothly. These filters for 12 points are shown in Fig. 7.21. 

Parabolic filter was calculated using: 
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Fig. 7.21. Comparison of the square (black) and parabolic (red) 12 points filters used in FT 

smoothing. 
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This filter is multiplied by the FT values F(k) which cuts-off high frequencies. This procedure 

is illustrated in Example 7.12. The calculations are carried out using DFT/FFT program fftsm.exe.  

 

Example 7.12. 

Use FT smoothing of the data in file data1a (containing one column of 401 points) using square 

and parabolic filters. These data are displayed in Fig. 7.22. (Because initial and final data values 

are the same, data rotation to avoid discontinuities is not necessary, see Example 7.13). 
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Fig. 7.22. Raw data to be smoothed, in file data1a. 

 

The Fourier transform of these points is displayed in Fig. 7.23. 
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Fig. 7.23. Magnitude (modulus) of the Fourier transform of the data in Fig. 7.22, black points, for 

k = 0 to 400; inset – zoom for k  4, data filtered using parabolic filter for 6 points – red points. 
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The Fourier transform contains few larger values at low frequencies followed by the uniformly 

distributed noisy data at higher frequencies. These data are responsible for the observed noise. 

Using parabolic filter only 6 first points of the Fourier transform were conserved, they are 

attenuated by multiplication by the filter, Eq. (7.27), but with the number of points 6 instead of 12. 

This operation puts zero value for all the frequency points for k > 6, Fig. 7.23, red points. 

Next, inverse Fourier transform was carried out to obtain the results in Fig. 7.24. It can be 

notices that only few frequencies are sufficient to reproduce the shape of data. However, using 6 

points parabolic filter deformed slightly the obtained curve and the peak values lay below the 

experimental points and are attenuated. Increasing filter to 20 points causes some oscillation at the 

foot of the peak, see the inset. It seems that using 12 point parabolic filter presents a smooth line 

without attenuation. The results are in data files dp6, dp12, and dp20. 

However, when using square filter less points could be used in smoothing. The results of using 

5 and 12 point square filter are shown in Fig. 7.25. It seems that good smoothing is obtained using 

5 point filter while using 12 points displays some small oscillation at the foot of the peak. The 

results are in the data files ds5, ds12, and ds20 and also in Excel file Examples7.xlsx sheet Ex.7.12. 
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Fig. 7.24. FT smoothing of the data in Fig. 7.22 using parabolic filter for 6, 12, and 20 points. 
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Fig. 7.25.  FT smoothing of the data in Fig. 7.22 using square filter for 5 and 12 points. 

 

Of course FT smoothing does not work well when only few data points are used.  

Next example will be shown for smoothing of the S-shape curve. 

 

Example 7.13. 

Carry out FT smoothing of the data in the data file ss, containing 501 points, Fig. 7.26. 
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Fig. 7.26. Plot of raw data ss (symbols) and the smoothed red line obtained by FT smoothing with 

10 points parabolic filter (after rotation of the data). 

 

It is obvious that the first and the last points are very different which creates discontinuity of 

the FT (and introduces high frequencies which are important for reproduction of the initial shape), 

therefore, rotation of the spectrum must be first performed (to get the initial and the final data the 

same). The program used is fftsm.exe. The rotated data are displayed in Fig. 7.29. 
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Fig. 7.27. Rotated spectrum of raw data from Fig. 7.26. 

 

Now, FT can be applied to the rotated spectrum using parabolic filter. It was found that 

choosing 10 points filter is optimal. The FT spectrum (modulus) is shown in Fig. 7.28. 
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Fig. 7.28. Fourier transform of the data in Fig. 7.27 (black symbols) and filtered spectrum using 

10 points parabolic filter (red symbols). 

 

The results of FT smoothing are shown in Fig. 7.26. Only 10 frequencies are sufficient to 

reproduce the shape of the original data. The results are in file ss_10 and in Excel file 

Examples7.xlsx sheet Ex. 7.13 and folder E7-13. 
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FT is a very powerful technique, but it is applicable to the uniformly distributed data without 

discontinuities. It works better for larger data files. 

7.6 Smoothing splines 

In Section 6.2 approximating splines which pass a third order polynomial through all the points 

were presented. There are also smoothing splines can be used to approximate the data, but the 

approximating line does not necessarily pass by all the points. The smoothing spline minimizes 

the second derivative S”(x)  of the spline described in Eq. (6.7): 
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subject to the constraint: 
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where  is the assumed smoothing parameter corresponding to the standard deviation and wi is the 

weight of the point. If we know the weights of the individual points we can use them, however, 

usually unit weights are assumed. The use of smoothing splines is illustrated in the examples 

below. 

 

Example 7.14. 

Take data file d3 from Example 7.9, they are non-uniformly distributed with noise. Let us try 

with some standard deviations . First, let us try  = 2, the results (function and its first derivative) 

were generated for 200 points and are in the file d3_2. This file contains 4 columns: x, y smoothed, 

dy/dx, and d2y/dx2. These results are displayed in Fig. 7.29. 
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Fig. 7.29. Application of smoothing splines to data, d3, represented as symbols assuming 

smoothing parameter  = 2; left function and right its first derivative. 

 

It is obvious that the assumed smoothing parameter is too small, and the approximating spline 

tries to follow too closely the experimental points therefore little smoothing is done. Moreover, 

the first derivative oscillates which confirms the presence of the noise. 
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Next, larger value  = 15 was chosen. The results are in Fig. 7.30. Now, although the first 

derivative is smooth, the approximating line is passing below or above some groups of points 

indicating that there is too much smoothing.  

Finally, after several trials the optimal value of  = 7 was chosen, see Fig. 7.31. In this case 

the first derivative looks smooth and the smoothing line is passing close to the experimental points. 

But as it was mentioned this smoothing contains some subjectivity. These results are also displayed 

in Examples7.xlsx sheet Ex. 7.14 and folder E7-14. 
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Fig. 7.30. Application of smoothing splines to data represented as symbols assuming smoothing 

parameter  = 15; left function and right its first derivative. 
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Fig. 7.31. Application of smoothing splines to data represented as symbols assuming smoothing 

parameter  = 7; left function and right its first derivative. 

7.7 Cross-validation 

Finally, when there is large amount of noisy data one can use method which tries to 

automatically find the optimal value of the smoothing factor by cross-validation. This method uses 

cubic smoothing splines and tests the model's ability to predict new data that was not used in its 

estimation. 

An example is shown below. 
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Example 7.15. 

Let us apply spline smoothing with the automatically found optimal value of the smoothing 

parameter to 1024 data points. Noisy data are file data1 and the program smsplcv.exe. The results 

displaying the smoothed line and its derivative are displayed in Fig. 7.32. It is evident that the 

calculated line is smooth without any distortions and its first derivative is also smooth. These 

results are also shown in Excel file Exercises7.xlsx sheet Ex. 7.15 and folder E7-15.  

It should be added that applying this program to the data in Example 7.14 (file d3) does not 

produce good smoothing because the number of points is too small. 
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Fig. 7.32. Application smoothing splines with the computer optimization of the smoothing 

parameter by cross-validation; left: experimental data (black points) and the computed smoothed 

line (red); right: computed first derivative of the smoothed function. 

7.8 B-splines 

B-splines or basic splines are the type of spline functions that demand minimal operator 

support necessary for the calculations.73 Any spline function of a given degree can be expressed 

as a linear combination of B-splines of the same degree. B-splines are used in curve fitting and 

numerical differentiation of the experimental data. 

B-splines, Bi,k(x), of the order k and interval xi to xi+1, are defined recursively. The B-spline of 

the order 0 is defined as:  
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Higher order B-splines are obtained by recurrence: 
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These equations indicate that Bi,0(x) is a step function of 1 defined between xi and xi+1, Bi,1(x) is 

piecewise linear function going from 0 to 1 and back to 0, defined between xi and xi+2, Bi,2(x) is a 

piecewise quadratic function defined between xi and xi+3, etc.  

Assuming xi = i the first three B-splines are: 



200 

1,0

2,0

3,0

1,   for 1 2
( )

0,   otherwise

1,   for 2 3
( )

0,   otherwise

1,   for 3 4
( )

0,   otherwise

x
B x

x
B x

x
B x

 
= 



 
= 



 
= 



          (7.32) 

 

1,1

2,1

1,   for 1 2

( ) 3 ,   for 2 x 3

0,         otherwise

2,   for 3 3

( ) 4 ,   for 3 x 4

0,         otherwise

x x

B x x

x x

B x x

−  


= −  



−  


= −  



         (7.33) 

 

2

1,2

2

( 1)
,                           for 1 2

2

( 1)(3 ) (4 )( 2)
,       for 2 3

( ) 2 2

(4 )
,                                        for 3 4

2

0,                                                    o

x
x

x x x x
x

B x

x
x

−
 

− − − −
+  

=

−
 

therwise













  (7.34) 

and so on for higher order splines. The first three B-splines are displayed in Fig. 7.33. 
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Fig. 7.33. Plot of the first three B-splines calculated assuming xi = i. 
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Finally, the approximating B-spline function of the order n is the sum of individual B-splines: 
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where j  are coefficients which should be found by minimization of the sum of squares (least-

squares method): 
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The approximated function values might be calculated for any x producing a smoothed 

function. The approximation might be carried out for different spline orders, usually between 2 

and 4. Often a weighted lest-squares are used: 
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where wi must be supplied by the operator. 

Application of B-splines to smoothing data is shown in Example 7.16. 

 

Example 7.16. 

Apply B-spline smoothing to the data in Example 7.9. They are included in data file d3.  

The program used is bssm.exe and the second order (parabolic) and third order (cubic) 

approximations were used producing 200 calculated points. The obtained results are in files d3_2 

for parabolic and d3_3 for cubic smoothing. These results are displayed in Fig. 7.34. 

It is evident that parabolic B-splines produce smoother curve while their derivative consists of 

segments of straights line while cubic B-splines follows closer the data and display some overshoot 

(for x ~17.5) while the first derivative consists of smooth second order parabolas. 
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Fig. 7.34. Application of B-splines to smooth the experimental data using parabolic and cubic 

splines; approximations and the first derivatives are shown. 

 

7.9 LOESS/LOWESS 

Sometimes one has to deal with fairly large and densely sampled data to find a trend in such 

plots. These problems appear in biology, climatology, social sciences, etc., but more rarely found 

in physical sciences. Very often in such cases the classical procedures do not work well. 

LOESS/LOWESS techniques are new non-parametric methods which combine local regression 

models: LOESS (LOcal regrESSion) and LOWESS (LOcally Weighted regrESSion or locally 

weighted scatterplot smoothing).74,75 In these methods local polynomials usually of the first (or 

second order) are used to fit a fraction of the data using a weighted moving average. In each case 

a window x is chosen to calculate the smoothed value at a chosen x0. 

The regression weights, wi, for each point inside a given subset (window) are defined as: 
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          (7.38) 

where x0 is the point in which the function is smoothed, xi are the points in the defined window, 

and d(x) is the distance from xi to the most distant x value in the window. It is clear, that the data 
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close to the point x0 are the most important in regression and those which are further are less 

important. The plot of w as a function of the parameter u = (x0-xi)/d(x) is shown in Fig. 7.35. 
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Fig. 7.35. Plot of the weights in LOWESS method versus parameter u = (x0-xi)/d(x), Eq. (7.38). 

 

It is obvious that the highest weights are around the central point: u  0, i.e. x  x0 and they 

decrease rapidly with the distance from x0. After calculating weights in the window, the weighted 

linear (or parabolic) regression is performed and the value of smoothed function at x0 is calculated. 

This procedure does not produce any function describing the data. An example of such calculations 

is shown in Example 7.17. 

 

Example 7.17. 

Use LOWESS to smooth data in file d3 (see Example 7.16). The manual calculation is shown 

in Excel file Examples7, sheet Ex. 7.17. Data file contains 21 points and 7 point window was 

chosen for linear smoothing. For each data subset first the distance |x0 – xi| is calculated then the 

distance is scaled by division by |x0 – xmax|, u = (x0-xi)/d(x), where xmax is the most distant point in 

the window (it might be situated before or after x0). Finally, the weights of all the points in the 

window are calculated as 
3 3(1 )u− . Then a weighted linear regression is applied to each window. 

The program polfit.exe has an option 2 to read x, y, i. therefore standard deviations were calculated 

as 1/i iw =  and are included in the last column. Such data files are shown in the columns P to 

Q and are in the files t1 to t8. In polfit.exe polynomial order of 1 was chosen and the results are in 

files t1r to t8r. The intercept and slope of the straight line were copied and used to calculate the 

value at x0. Following these steps allows to better understand how the LOWESS works but are not 

practical for large data files. The program lowess.exe was supplied to calculate automatically the 

smoothed values. Instead of asking for the number of points in the window it asks for the fraction 

of all data. In our example number of points is 7 and the fraction is 7/21 = 0.3333333.  

The program allows also to use either classical least squares regression (option 0) or the 

iterative robust regression (option 2) which is less sensitive to outliers (which can affect the 

results). In this case classical linear least-squares method was used. The results are included in file 
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d3res, displayed in Fig. 7.36, and are included in Excel file Examples7.xlsx, sheet Ex. 1.17. The 

obtained line is smooth and passes close to the original data. 
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Fig. 7.36. Plot of the raw (black) and the smoothed (red) data using LOWESS for 7 pints window 

with linear approximation. 

 

Another example of a very noisy data with possible outliers are considered in Example 7.18. 

 

Example 7.18. 

Use LOWESS to find the trend in the raw data (file dat), see Fig. 7.37.  

Two methods were used: non-robust linear least-squares and robust linear regression methods. 

It can be noticed that at larger values of x there are several outliers. LOWESS was used for the 

data fraction 0.6 and these two methods. The non-robust method shows increase of the smoothed 

data at higher values of x while the robust method shows a decreasing line in that zone, Fig. 7.37. 

The results of calculations are included in file dat_nr_0_6 for non-robust (option 0) and 

dat_rob_0_6 for robust regression (option 2). These results are also included in Excel file 

Examples7.xlsx, sheet Ex. 7.18 and folder E7-18. 
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Fig. 7.37. Plot of the raw data dat (black symbols) and smoothing lines using LOWESS and non-

robust (black) and robust (red) regression. 

 

LOWESS is included in popular graphing programs like Origin. However, use of the supplied 

program gives more control on the smoothing procedures. 

7.10 Digital differentiation and integration 

7.10.1 Digital differentiation 

The derivative of the function f(x) in the point x0 is defined as the limit for h → 0: 

 0 0
0 0

( ) ( )
'( ) lim "( )

2
h

f x h f x h
f x f

h
→

+ −  
= + − 

 
  (1.39) 

that is the error is proportional to the function increment h and x0    x0 + h. This is so called 

forward differencing or one-sided differencing. 

A better description might be a central difference 
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where the error is proportional to h2. There are also other formulas, e.g. four point formula:   
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With the error proportional to h4. As the value of h is small bacause h > h2 > h4 and the error of 

estimation of the derivative decreases. 

Such formulas are used if function f(x) might be calculated for any value of x. However, in 

experimental sciences we acquire limited number of experimental points which contain some 

noise. Differentiation of the noisy data leads to oscillations of the derivative. Therefore, a 



206 

smoothing must be used before calculation the derivative. Of course, too much smoothing distorts 

the function while too little leaves some noise (oscillations). 

In earlier chapters it was shown that smoothing methods using Savitzky-Golay filter, 

polynomial approximation, spline and B-spline smoothing furnish the first derivative. They can be 

easily used for such a purpose. However, the extent of smoothing influences strongly the obtained 

results and minimal smoothing threshold must be found by the experimentalist. 

7.10.2 Numerical integration 

Numerical integration is an easier operation than differentiation because integration reduces 

the random errors. This is because the integral of the random noise approaches zero as the number 

of points increases. Let us consider few simple integration formulas called quadratures. 

The simplest method is the method of rectangles. Starting with the first point the surface area 

is calculated assuming that it is equal to that of a rectangle: y1h, y2h,…yN-1h and the total surface 

area is the sum of the areas of these rectangles: 
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This is a very simple method which can be used during data acquisition of many points because 

it is a simple sum of the values. An example of such an operation is illustrated in Example 7.19 

where function y = x3 is integrated for x between 0.5 and 3 with the choice of only 6 points. First 

of all, it is clear that the sum of rectangles underestimates the integral. This is observed always on 

the increasing function while it is overestimating the integral for the decreasing part. 

 
Fig. 7.38. Integration of the function y = x3 defined at 6 points, using method of rectangles.  

In this case the numerical integral is 14.0625 while the analytical integral is 20.2344 which 

produces relative error of -30.5%. The calculations are illustrated in Example 7.19. However, 

decreasing the step h to 0.02 produces error of -1.32% and further decrease to 0.005 produces error 

of -0.33%. When h → 0 the error also → 0. 

Of course, method of rectangle is a very crude method and a very simple improvement is the 

trapezoidal rule. In this case two adjacent points are connected by a straight line and a trapezium 
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is constructed. Its surface area 1 2( ) / 2A x y y=  +  approximates the integral. The total surface 

area is obtained by summation: 

 
1

2 3 11 2 1

21

( ) ...
2 2 2 2 2

Nx N
N N N

i
ix

y y y y yy y y
f x dx h y h

−
−

=

 + ++ 
= + + + = + +  

    
   (1.43) 

This method is illustrated in Fig. 7.39.  

 
Fig. 7.39. Integration of the function y = x3 defined at 6 points, using trapezoidal rule. 

Integration in Fig. 7.39 produces value of 20.781 which gives the error of 2.7%, a very 

important decrease from -30.5% for method of rectangles. Decreasing the step h to 0.02 gives error 

of 0.0043% and further decrease to 0.005 produces error of 2.710-4%. It is evident that the error 

of numerical integration decreases very quickly with decrease of the integration step.  

One more improvement is obtained using interpolation by piecewise polynomials. Let us 

consider interpolation using second order polynomial. Such a polynomial passes exactly by three 

points. The surface area under such parabola is easily found as: 
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and for N = 3+2i points it is: 
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which can also be written as: 
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This is so called Simpson’s rule. 

In the data above, Example 7.19, there were 6 points and in accordance with the condition 

above the number of points for i = 2 should be N = 3 + 22 = 7 points therefore the distance 
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between points was recalculated to (3 - 0.5)/6 = 0.4166667. Using this new set of points and using 

Simpson’s rule the integration error is zero, because the integrated function is cubic and the error 

of this procedure is proportional to the fourth derivative (h4/180(xN – x1)f
(4)()), which here is zero. 

There are other modifications as Simpson’s rule (3/8 rule), Romberg rule, Gauss quadrature, etc., 

which yield greater precision.76 Increasing number of points increases precision of the procedures. 

 

Example 7.19. 

Integrate data using method of rectangles, trapezoidal and Simpson’s rule. Use 6 data points 

in Table 7.4 calculated using formula: y = x3. The results are shown in Examples7.xlsx, sheet Ex. 

7.20. 

Table 7.4. Data calculated using y = x3. 

x y 

0.500 0.125 

1.000 1.000 

1.500 3.375 

2.000 8.000 

2.500 15.625 

3.000 27.000 

 

The analytical integral is: 

 

33 4
3

0.5 0.5

20.23438
4

x
Int x dx= = =   (1.47) 

Applying method of rectangles, Eq, (1.42), the estimated integral is 14.0625, which shows 

error of -30.5%. This integration is shown in Fig. 7.38. Of course, the surface area of rectangles 

underestimates integral of the function. However, decreasing the step h from 0.5 to 0.02 or 0.005 

decreases the error to -1.33% and -0.33%, respectively. Even such a primitive method might lead 

to reasonable results. 

Using the method of trapezes, Fig. 7.39, reduces the error for the steps 0.5, 0.02 and 0.005 to 

2.70%, 0.0043% and 0.00027%, respectively. 

Finally using the Simpson’s rule gives the exact answer because of the nature of the 

approximation by the parabola which after integration gives the cubic function. Of course, in other 

cases only reduction of error will be observed. 

 

Example 7.20. 

Integrate numerically exponential function: 

3.5

0.5

exp( / 2) dx x  from 0.5 to 3.5 step 0.5, using 

methods of rectangles, trapezes, and Simpson’s rule. 

The value of the integral calculated using Maple is 8.941154519. Calculations are shown in 

Examples7.xlsx, sheet Ex. 7.20 give the following results: 
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Method value of integral err % 

rectangles 7.87003028 -11.979708 

trapezes 8.98767459 0.520292 

Simpson's 8.94134712 0.002154 

 

It is obvious that the Simpson’s rule gives quite good results even for a large step of h = 0.5 

although the shape of the exponential function is quite different form the parabolic function. 

However, in above described methods, the values of function must be available at desired 

intervals. When fewer points are available, and they contain noise, approximations must be carried 

out and integration of the approximating function carried out. One of the useful methods is spline 

interpolation with subsequent integration of splines. The data file used might be the raw noisy data 

or smoothed by one of the smoothing methods. Below, an example of spline integration is 

presented. 

 

Example 7.21. 

Use spline integration of the raw data file from Example 7.15 (file raw) and of the smoothed 

data by splines with cross-validation (file smoo). 

The program used for spline integration is splint.exe in folder E7-21. The results are included 

in files rawint and smooint. The total integral in the x range [1, 1024] is 390.751 for the raw and 

390.742 for the smoothed function. The difference between these two integrals is only 0.0023% 

which confirms that integration reduces the noise. Of course, if the integral should be determined 

from 1 to any x the integration of the noisy data shows initially oscillations which decrease with 

the increase in x and the integration of smoothed data is preferred.  

7.11 Conclusion 

The procedures presented above are used to smooth the experimental noisy data or to find 

general trend in the noisy data. As it was mentioned above smoothing is a little subjective 

procedure. It is mainly used in plotting the data, but it is indispensable when a derivative of the 

noisy data must be estimated. The methods using simple digital filters, Savitzky-Golay or FT 

demand uniformly distributed data with constant x and the other: polynomial approximation, 

smoothing cubic splines or B-splines and LOWESS accept non-uniformly distributed data. The 

user should experiment with different techniques to find the best method. 

Determination of the derivative of the function is easy when it can be calculated for any value 

of x and value of the step h is small. In the case of noisy data these data must be smoothed first to 

reduce oscillations of the derivative. 

Numerical integration can also be carried out easily when the function might be calculated for 

any value of x. Integration of the noisy data reduces the random noise (average of the random noise 

is zero), however, when there are fewer points, initial smoothing should be carried out. 
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8 Excel functions  

Normal distribution: 
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Sample standard deviation  
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      STDEV.S(cell1:cellN) 

 

Variance 

of the population      VAR.P(cell1:cellN) 

of the sample       VAR.S(cell1:cellN) 

 

Statistics of the mean are obtained from DATA, Data Analysis, Descriptive Statistics 

 

Student t distribution function  T.DIST(t,df,FALSE) 

 

t-value of the two-tailed test 

t(α”, df)        T.INV.2T(α, df) 

 

t-value of the one-tailed test 

t(α’, df)        T.INV(α, df) 

 

Regression is calculated using DATA, Data Analysis, Regression 

 

Slope in the linear regression   LINEST(y1:yN,x1:xN) 

 

Intercept in the linear regression  INTERCEPT(y1:yN,x1:xN) 

 

Correlation coefficient in the linear regression 

          CORREL(y1:yN,x1:xN) 

 

F test, probability function  

P(f,df1,df2)        F.DIST(f,df1,df2,FALSE) 

 

F test, critical value of F 

F(α, k1, k2)        F.INV.RT(α,df1,df2) 
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