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“Torture the data long enough and they will confess to anything.”a 

 Anonymous 

 

 

“Statistics tell the biggest lies, everybody knows that! However, this is not necessarily true. It 

all depends on the user who is interpreting the results: If the statistical methods are applied 

appropriately, by somebody who understands their properties, excellent results are often 

reached.”a  

 

“Models are, for the most part caricatures of reality, but if they are good, then, like good 

caricatures, they portray, though perhaps in a distorted manner, some of the features of the real 

world.”b  

 

 

 
a  Heikki Hyötyniemi, Multivariate Regression, Helsinki University of Technology, 2001. 
b  M. Kac, Science, 166 (1989) 695 . 
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1 Multivariate data analysis 

 

The purpose of data analysis in chemistry is to obtain information from the experimental data. 

Modern data acquisition systems provide a lot of data. In the preceding volume we have seen 

that data reduction and modeling may proceed through determination of the means or 

applications of linear, nonlinear, or multiple regressions. However, these methods often use a 

limited amount of acquired data.  

1.1 Univariate approaches 

In the preceding volume the univariate approach to the regression analysis was presented in 

which only one measurement was performed for one sample, yi = f(x1,i, x2,i,…). However, in 

practice, usually more than one measurement is carried out on each sample. 

Let us look, for example, at the UV/VIS spectra of the mixtures of two chemical species. 

Modern spectrophotometers can acquire absorbance measurements every nm or less. However, 

in practical applications, usually multiple linear regression is used where absorbance at one 

selected wavelength is studied as function of concentrations. An example of spectra containing 

two components, registered every 1 nm (100 wavelength points, 9 spectra for different 

concentrations of components A and B), is displayed in Fig. 1.1. There are two overlapping 

peaks visible. Classical (univariate) multiple linear regression as shown in the previous book 

would use dependence of absorbance at one wavelength as a function of two concentrations: 

 i A A,i B B,iA b C b C= +   (1.1) 

which assumes additivity of absorbances and the Beer’s law: A = b C, where b = a l, a is the 

specific absorptivity and l is the length of the optical path in the cell. 

If the pure spectra of two individual component are not known the choice of the wavelength is 

a little bit arbitrary. In the presented example it looks like there are two peaks and the best choice 

would probably be somewhere in between, see the vertical line. 
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Fig. 1.1. Example of spectra of two compounds with overlapping peaks. Vertical line indicates a 

choice of the wavelength for a simple multiple regression. 
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The above model might be written as (previously it was written as Y = Xb + ε): 

 = +Α Cb ε   (1.2) 

with 

 

1

2

...

N

A

A

A

 
 
 =
 
 
 

A   (1.3) 

 

 

A,1 B,1

A,2 B,2

A, B,N

... ...

N

C C

C C

C C

 
 
 =
 
 
 

C   (1.4) 

and  

 A

B

b

b

 
=  
 

b   (1.5) 

are the absorptivity coefficients, for which the solution is: 

 ( )
1

'
−

=b C'C C A   (1.6) 

Coefficients b can be used to predict the spectra. However, from the new unknown spectrum 

one cannot obtain two concentrations if the measurements were made at one wavelength. 

1.2 Multivariate approaches 

In the preceding part we have considered that univariate vector of the measured parameter A is 

a function of one or more parameters C. Multivariate analysis uses multiple responses (e.g. 

absorbances at different wavelengths) to multiple predictors (e.g. concentrations). 

Let us look at the analysis of absorbances (spectrophotometer responses),1,2 for example at two 

different wavelengths roughly corresponding to two overlapping peaks, close to their suspected 

maxima, Fig. 1.2. 



8 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A

Channel number (~)

 
Fig. 1.2. Choice of two wavelengths to analyze spectra of two components with overlapping 

peaks. 

In such a case one can write the problem with two columns of absorbances in Eq. (1.2), that is: 

 

1,1 1,2

2,1 2,2

,1 ,2

... ..

N N

A A

A A

A A

 
 
 =
 
 
 

A   (1.7) 

where each column corresponds to one wavelength and each row to the a different sample, 

matrix of concentrations C is described by Eq. (1.4), and b by: 

 

 
1,1 1,2 A,1 A,2

2,1 2,2 B,1 B,2

b b b b

b b b b

   
= =   
      

b   (1.8) 

 

where each row represents one compound and column corresponds to one wavelength. The 

predictions of concentrations Ĉ  are obtained from the solution of Eq. (1.2): 

 
1ˆ '( ')−=C Ab bb   (1.9) 

Of course, it is better to use more wavelengths to have an averaging effect. However, only a 

small portion of all the experimental points is used in this analysis. One should notice that the 

number of wavelengths must be larger than the number of components to obtain the 

concentrations. The above equation may also include a constant term in b but data centering 

with respect to the mean value removes that term. However, this method is based on the 

Beer’s law and the complete composition, i.e., concentration of each constituent must be 

known, and the baseline effects must be negligible or previously known.  

 

If the concentrations of all the compounds in the solution are not known the above 

presented classical multiple linear regression may introduce a significant error in the determined 

absorptivity coefficients, b. The alternative approach is to use inverse least squares method. In 
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real samples often only concentrations of few components are known and are of interest in the 

analysis. In such cases the Beer’s law might be rearranged to: 

 
A

C PA
b

= =   (1.10) 

where P = 1/b. It there are two components in the solution the equation the equation might be 

writes as: 

 
A 1 A,1 2 A,2 A

B 1 B,1 2 B,2 B

C A P A P E

C A P A P E

= + +

= + +
  (1.11) 

where indices 1 and 2 correspond to the wavelengths 1 and 2 and E are the errors. This equation 

may be written in the matrix form as: 

 = +C PA E   (1.12) 

with the solution for matrix P: 

 
1'( ')−=P CA AA   (1.13) 

which allows determination of concentrations from Eq. (1.12): 

 ˆ =C PA   (1.14) 

It should be noticed that in this case the number of selected wavelengths cannot exceed the 

number of calibration (training) samples which is a significant limitation this method. This 

demands many training samples for good calibration.  

Approaches described above are based on Beer’s law and require the complete knowledge of 

composition of every component in the mixture and are susceptible to baseline effects since 

equations used assume that the response at each wavelength is due entirely to the components 

studied. 

The problems with the above approaches are that they cannot be used in complex mixture 

samples where the individual constituents have overlapping spectral peaks and the band selection 

can be difficult if the spectra of individual components are not known. In such cases large 

prediction errors will appear.  

1.3 Chemometrics multivariate approach (latent variables method) 

The above method uses only a few wavelengths which increases the estimation error. 

Moreover, in the mixture of more components, when the absorption peaks overlap, the 

concentration determination is even more difficult. These classical methods will not be 

considered here in detail as they are less important and are described in the literature.3 

The methods developed by chemometrics deal much better with such problems. They might 

use all the spectra containing hundreds of experimental wavelengths and they work even 

• when the total composition of the mixture is not known,  

• in the presence of the baseline,  

• in the presence of many compounds, 

• even if the linear relation between the measured signal and concentration is not 

observed. 

 

Moreover, from the measured spectra, the spectra of each pure component might be found. 

Such an analysis might be carried out in other applications, e.g., in instrumental analytical 

chemistry: spectroscopies IR UV/visible, atomic spectroscopy, chromatography (HPLC, gas-

mass GC-MS), NMR, optical spectroscopy and pyrolysis, electroanalysis, etc. It has been applied 
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to pharmaceutical and food chemistry, manufacturing industry, process chemistry, biological and 

medical chemistry, forensics (determination of origin of samples), image analysis, materials 

chemistry (including thermal analysis), physical chemistry of equilibria, reactions, process 

analytics, etc.9 

 

There are different definitions of chemometrics, for example: 

 

“Chemometrics is the branch of chemistry concerned with the analysis of chemical data 

(extracting information from data) and ensuring that experimental data contain maximum 

information (the design of experiments)” or “How to get chemically relevant information out of 

measured chemical data, how to represent and display this information, and how to get such 

information into data.”4 

“Chemometrics is the discipline of analytical chemistry concerned with the application of 

statistics, mathematics, and other methods of formal logic to the generation and analysis of 

chemical data.”5  

“Chemometrics is the chemical discipline that uses mathematical, statistical and other methods 

employing formal logic (i) to design or select optimal measurement procedures and experiments, 

and (ii) to provide maximum relevant chemical information by analyzing chemical data.”11 

 

These definitions stress dealing with analysis of large amount of experimental data. 

Multivariate analysis uses power of abstract matrix analysis. In contrast with the univariate 

analysis the authors are using different notation in chemometrics. The matrix containing the 

measurements (e.g. spectra) is called X(IJ), in which I rows contain, for example, I spectra, 

each for a different sample, each sample measured at J wavelengths. Each spectrum (sample) is 

for a given concentration composition and there are I samples. The concentration matrix is 

C(IK) where K is the number of chemical species. In order to have a sensible model, the 

number of compounds must be less than or equal than the smaller of the number of experiments 

or number of variables. Methods described in this chapter are based on the Principal 

Component Analysis, PCA. 

As mentioned above, multiple linear regression methods have the disadvantage that all 

significant chemical components of the mixture must be known. PCA based methods do not 

require details about the spectra or concentrations of all the compounds in a mixture, 

although it is important to make an estimation of how many significant components characterize 

our mixture, but it is not necessary to know their characteristics (e.g. spectra). 

Principal components analysis is based on an abstract mathematical matrix operations and 

another representation of the matrices X and C. Details will be presented in the following 

chapters, after introducing some notions of the matrix algebra which is used in the analysis. 

1.4 History of chemometrics 

Mathematical foundations for the multivariate analysis were proposed by Karl Pearson in 

1901.6 Statisticians first developed these techniques in different areas: psychometrics (1930’), 

econometrics, and biometrics. The term chemometrics was introduced to the literature by 

Swedish chemist S. Wold in 19717. In 1974 the American analytical chemist B.R. Kowalski 

founded the International Chemometrics Society. The major difference between chemometrics 

and other domains is in data collection. In social/economic sciences collected data are unique 

and must be analyzed with a rather limited possibility of repetition. In chemistry data acquired 
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using different analytical methods (most often spectra: UV/VIS, NIR, chromatograms: GC, 

HPLC, GC-MS, LC-MS electrochemistry, etc.) can be repeatedly acquired and number of points 

in each spectrum increased. There is also a different approach to outliers which in the social 

sciences might be very important but in physical sciences can be checked by repeating the 

measurement. Besides, functional i.e. linear or nonlinear relations between parameters are 

expected in chemistry, therefore, data analysis in chemistry is often different from that used in 

social/biological sciences and it is more rigorous.  

There is now rich literature on chemometrics1-3,6-23 which may be consulted. 

1.5 Problems with learning chemometrics 

Brereton, a leading chemist working in chemometrics stated several problems with learning 

and using chemometrics analysis. Here are few citations from his book:10  

“a problem in chemometrics is that lots of people, often without a good mathematical or 

computational background, want to ‘use’ it. Often, I am surprised that people without any prior 

knowledge of this subject feel that they can pick it up in a workshop that ‘should not last too 

long’. They want to walk in, then walk out and understand how to do pattern recognition in a 

couple of afternoons. This desire, unfortunately, is an important economic driving force in this 

subject. I say to my students that it may take a year or so just working through examples to learn 

the basis and gain sufficient feel for the subject. They accept this, but that is why they are giving 

up so much of their time to learn chemometrics. If they did not accept this, they would not be my 

students. The dilemma though is that for chemometrics to become widespread there should be a 

big user base. This is where the subject, and especially the application of pattern recognition, has 

a problem – almost like a split personality. Keep the subject theoretical and to an elite who are 

really good at maths and computing, and it is not widespread. Tell an analytical chemist in the 

lab that he or she cannot do any pattern recognition, and many will turn round, download a 

package, and put some data through and go away, even if he or she cannot understand the results. 

A few will get interested and learn but then they need to be in an environment where they have a 

lot of time – and many employers or even research supervisors will not allow this. So, most will 

either give up or try to cut corners. They will pay money for chemometrics, but not to spend a 

year or two learning the ropes, but rather to buy a package, that they believe does what they 

want, and go on a course that will teach them how to enter data and print out results in a couple 

of afternoons. The people that market these packages will make it easy for someone to take a 

series of spectra, import them into a package, view a graph on a screen, change the appearance 

with a mouse or a menu and incorporate into a nice report in Word that will be on their boss’s (or 

their sponsor’s) desk within a few hours. They won’t gain much insight, but they will spread the 

word that chemometrics is a useful discipline. The course they go on will not really give them an 

insight into chemometrics (how can one in an afternoon?) but will teach them how to put data 

through a package and learn to use software and will catalyse the wider name recognition of the 

subject.” 

“Many of the early successes in chemometrics were in quite narrowly defined areas, NIR 

spectroscopy being one of them.” “However since many NIR problems are quite straightforward 

from the chemometrics point of view (see in this text Case Study 2 – NIR of Food), in many 

cases no harm has come, and this at least demonstrates the tremendous power of multivariate 

methods for simplifying and visualizing data, even if the difficult part is the spectroscopic data 

handling, and so NIR spectroscopy can be considered correctly as an early success story and an 

important historic driving force of the subject.” 
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“The problem is that over the past decade new sources of data have come on-stream, and this 

is particularly confusing many analytical chemists. The development of metabolic profiling, e.g. 

using coupled chromatography, mass spectrometry and nuclear magnetic resonance 

spectroscopy, has had a very fast development, with improved, more sensitive, and automated 

instruments. It looks easy, but it is not.” 

“The potential application of chemometrics to analytical data arising from problems in biology 

and medicine is enormous, but often the experimentalists have little understanding of how to 

acquire and handle these data. They want to learn but have only the odd afternoon or 

downloaded package with which to learn. They are funded to obtain data not to spend a year 

learning about Matlab. They usually want quick fixes.” 

“The biologists are anxious to be first to publish their ‘marker compounds’ and to claim that 

their work is a success and see data analysis as the afterthought that can be done on a Friday 

afternoon once all experiments are complete. So they will turn to the user-friendly packages and 

afternoon workshops and learn how to use the mouse and the menu and get a graph for 

incorporation into their report and then move on to the next project. Many do not realize that the 

methods they are using probably were developed for different purposes. Most chemometrics 

methods have their origins in traditional analytical chemistry, where there are often underlying 

certainties, for example in calibration we know what answer we are aiming for and as such just 

want to get our multivariate method as close as possible to the known answer. In some of the 

original applications of chemical pattern recognition such as spectroscopy we know what the 

underlying groups of compounds are and want our methods to classify spectra as effectively as 

possible into these groupings. We aim for 100 % accuracy and the original algorithms were 

considered to be better the more accurate the answer. With nice reproducible spectra, a known 

solution, and no hidden factors, this was possible. But there often is no certain answer in biology, 

for example, we cannot be sure that by measuring some compounds in a patient’s serum that we 

can predict whether they will develop kidney disease within the next five years: we are uncertain 

whether there will be an answer or not. We are testing hypotheses as well as trying to obtain 

accurate predictions, and now do not just want to predict properties with a high degree of 

accuracy, but also to determine whether there really is sufficient information in the analytical 

data to detect the desired trend. Overfitting involves overinterpreting data and seeing trends that 

are not really there. Many biologists do not have a feel for whether data are overfitted or not. 

One can start with purely random data and by a judicious choice of variables end up with graphs 

that look as if two arbitrarily selected groups are separate. Most people when submitting a paper 

for publication will actively seek out the graph that ‘looks better’ even if it is misleading.” 

 

All these problems need careful data preparation, understanding the chemometric methods and 

careful analysis. One of the problems is the lack of training data which can be analyzed. It this 

text I have prepared many examples which should be solved and compared with the solutions 

included. Of course, only a small part of chemometrics related to the principal component 

analysis and calibration is presented here. For more complex problems one should go to the 

scientific literature, both the books and good scientific publications.  

 

Before presenting chemometric methods of analysis a review of matrix operations will be 

presented below. 
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2 Matrix operations 

2.1 Simple matrix operations 

A matrix is a rectangular table of numbers and a vector is one column or row of numbers 

(column vector and row vector). Examples are shown in Eq. (2.1): 

 

1,1 1,2 1,3 1

2,1 2,2 2,3 2

3,1 3,2 3,3 3

4,1 4,2 4,3 4

a a a v

a a a v

a a a v

a a a v

   
   
   = =
   
   

  

A v   (2.1) 

where matrix A has three columns and four rows A(34) and vector v(4) has four rows. 

Basic operations include multiplication by a constant: 

 

1,1 1,2 1,3 1

2,1 2,2 2,3 2

3,1 3,2 3,3 3

4,1 4,2 4,3 4

ba ba ba bv

ba ba ba bv
b b

ba ba ba bv

ba ba ba bv

   
   
   = =
   
   

  

A v   (2.2) 

and addition: 

 

1,1 1,2 1,3 1,1 1,2 1,3 1,1 1,1 1,2 1,2 1,3 1,3

2,1 2,2 2,3 2,1 2,2 2,3 2,1 2,1 2,2 2,2 2,3 2,3

3,1 3,2 3,3 3,1 3,2 3,3 3,1 3,1 3,2 3,2 3

4,1 4,2 4,3 4,1 4,2 4,3

a a a b b b a b a b a b

a a a b b b a b a b a b

a a a b b b a b a b a

a a a b b b

+ + +   
    + + +
   + = + =

+ +   
   
   

A B
,3 3.3

4,1 4,1 4,2 4,2 4,3 4,3

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

b

a b a b a b

v z v z

v z v z

v z v z

v z v z

 
 
 

+ 
 

+ + + 

+     
     +
     + = + =

+     
     

+     

v z

  (2.3) 

The identity matrix, I, is a square matrix whose diagonal elements are equal to 1: 

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 =
 
 
 

I   (2.4) 

and diagonal matrix is a square matrix in which only diagonal elements are different from zero: 

 

1

2

3

4

0 0 0

0 0 0

0 0 0

0 0 0

a

a

a

a

 
 
 =
 
 
 

A   (2.5) 

For matrix transposition operation is defined as swapping the columns and rows around and 

is denoted as A’ or AT: 
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1,1 1,2 1,3
1,1 2,1 3,1 4,1

2,1 2,2 2,3 T
1,2 2,2 3,2 4,2

3,1 3,2 3,3
1,3 2,3 3,3 4,3

4,1 4,2 4,3

'

a a a
a a a a

a a a
a a a a

a a a
a a a a

a a a

 
  
  = = =   
    

 

A A A   (2.6) 

2.2 Multiplication 

Multiplication of matrices is possible only if the number of columns in the first matrix equals 

number of rows in the second matrix:  

 

1,1 1,2 1,3

1,1 1,2 1,3

2,1 2,2 2,3

2,1 2,2 2,3

3,1 3,2 3,3

3,1 3,2 3,3

4,1 4,2 4,3

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

4,1 4,2 4,3

a a a
b b b

a a a
b b b

a a a
b b b

a a a

c c c

c c c

c c c

c c c

 
  
  = =   
    

 

 
 
 = =
 
 
 

A B

C AB

  (2.7) 

For the multiplication of A(IJ) by B(JK) gives C(IK) and the elements are calculated as: 

 , , ,

1

J

i k i j j k

j

c a b
=

=   (2.8) 

Multiplication of matrices is noncommutative, that is, in general: 

 AB BA   (2.9) 

even if the matrix dimensions allow such an operation. Multiplying more than two matrices it is 

not important which neighboring matrices are multiply first, but the general matrix order should 

be kept: 

 ( ) ( )= =ABC AB C A BC   (2.10) 

Matrix multiplication is also distributive: 

 ( )+ = +A B C AB AC   (2.11) 

Multiplication of the matrix by the identity matrix does not change its value: 

 = =AI IA A   (2.12) 

Product of vectors is a multiplication of the row by the column. For two vectors v and w: 

 

1 1

2 2

... ...

N N

v w

v w

v w

   
   
   = =
   
   
   

v w   (2.13) 

their product is a scalar i.e. one value (scalar or dot product of vectors): 

 1 1 2 2' ... N Nv w v w v w= + + +v w   (2.14) 

For square matrices one can usually find inverse that is when original matrix is multiplied by 

its inverse one obtains the identity matrix: 
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 1 1− −= =AA A A I   (2.15) 

If matrix A is not square then so-called pseudoinverse, A+ can be used. It is defined as: 

 + =AA A A   (2.16) 

If the number of columns is less than the number of rows, i.e. for A(I,J), J < I, the pseudoinverse 

is: 

 ( )
1

' '
−+ =A A A A   (2.17) 

and if number of columns exceeds the number of rows J > I: 

 ( )
1

''
−

+ =A A AA   (2.18) 

Where A’A or AA’ are square matrices. 

It can be noticed that the pseudoinverse was already used in the classical least-squares method, 

because Jacobian matrix X is not square. To obtain pseudoinverse the following operations are 

made: 

 ( ) ( ) ( )

( ) ( )

( )

1 1

1

1

' '

' '

' '

− −

−

− +

=

=

=

=

= =

Y Xb

X'Y X'Xb

XX X'Y XX X'X b

XX XX I

b X X X Y X Y

  (2.19) 

 

Although in simple cases matrix calculations can be carried out on paper in practice all the 

matrix operations are carried out using various programs widely available (Excel, Matlab, 

Mathematica, Maple, FORTRAN, etc.). 

The matrix is symmetric if: 

 ' =A A   (2.20) 

normal if: 

 ' '=A A AA   (2.21) 

and orthogonal if: 

 ' '= =A A AA I   (2.22) 

In this case matrix A is orthonormal. An interesting property of orthogonal matrices is that their 

inversion is equivalent to the transposition: 

 
1 '− =A A   (2.23) 

Vectors are orthogonal if their scalar product is zero: 

 ' 0=v w   (2.24) 

Vector norm || ||v   is the vector length calculated from the vectors’ scalar product: 

 

( )

( ) 2

1

|| || ,

, '
N

i

i

v

=

=

= =

v v v

v v v v
  (2.25) 

Matrix A(43), in Eq. (2.1) consists of three vectors,  
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 

1,1 1,2 1,3

2,1 2,2 2,3

1 2 3

3,1 3,2 3,3

4,1 4,2 4,3

1,1 1,1 1,3

2,1 2,2 2,3

1 2 3

3,1 3,2 3,3

4,1 4,2 4,3

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 = =
 
 
 

     
     
     = = =
     
     
     

A a a a

a a a

  (2.26) 

In general, matrix can be composed of J vectors: 

  

1,1 1,2 1,3 1,4 1,

2,1 2,2 2,3 2,4 2,

3,1 3,2 3,3 3,4 3, 1 2 3 4

,1 ,2 ,2 ,4 ,

...

..

... ...

... ... ... ... ... ...

...

J

J

J J

I I I I I J

a a a a a

a a a a a

a a a a a

a a a a a

 
 
 
 = =
 
 
  

A a a a a a   (2.27) 

2.3 Rank 

Matrix rank is defined as the maximum number of the linearly independent vectors ai which is 

lower or equal to the number of columns: 

 ( )rank )( ´ JI J A   (2.28) 

For matrices column rank equals row rank equals rank. Therefore, matrix rank is the same for 

matrix A and its transpose A’: 

 ( ) ( )rank rank '=A A   (2.29) 

Rank of the random matrix nn is always n. 

2.4 Eigenvalues and eigenvectors 

For a square matrix A, one can write the following relation: 

 =Av v   (2.30) 

where v is the eigenvector of matrix A and  is the corresponding eigenvalue. Matrix A(N,N) 

can have no more than N eigenvalues which follow the characteristic equation: 

 ( )det 0− =A I   (2.31) 

where det is the determinant. Eq. (2.31) defines an algebraic equation of N-th order.  

Moreover, the following relation is fulfilled: 

 ( ) 1 2det ... N  =   A   (2.32) 

Eigenvalues of a matrix might be real or complex but if the matrix is symmetric, A=A’ its 

eigenvalues are real. It should be stressed that a symmetric matrix has orthogonal 

eigenvectors. 

A normal (in particular, a symmetric) matrix can be transformed into a diagonal matrix using 

similarity transformation: 

 
1−=A VΛV   (2.33) 
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where: 

 ( )

1

2
1 2

0 0 0

0 0 0
diag , ,...

... ... ... ...

0 0 0

N

N




  



 
 
 = =
 
 
 

Λ   (2.34) 

and matrix V is composed of the eigenvectors of A. 

For example, for a three dimensional matrix A: 

 

2 0 0

0 3 4

0 4 9

 
 =
 
  

A   (2.35) 

the characteristic polynomial of A is: 

 ( )

2 0 0 1 0 0 2 0 0

det det 0 3 4 0 1 0 det 0 3 4

0 4 9 0 0 1 0 4 9



  



  −     
      

− = − = −      
      −      

A I   (2.36) 

which gives: 

 ( ) ( )( ) 3 22 3 9 16 14 35 22     − − − − = − + − +     (2.37) 

and has roots, i.e. eigenvalues: 

 1 2 311; 2; 1  = = =  (2.38) 

or in a matrix form with eigenvalues as diagonal elements 

 

11 0 0

0 2 0

0 0 1

 
 

 =
 
  

  (2.39) 

corresponding to the eigenvectors: 

 1 2 3

0 1 0

1 ; 0 ; 2

2 0 1

     
     

= = = −
     
          

v v v  (2.40) 

or in the matrix form 

 

0 1 0

1 0 2

2 0 1

 
 

= −
 
  

V   (2.41) 

It can be easily checked that 
1−=A VΛV . 

 

Exercise 2.1. 

Find eigenvalues and eigenvectors of the matrix A in Eq. (2.35). Matlab program is aprog.m 

and the data are in a.m and VV.m in Ex2-1.  

It should be noticed that Matlab produces eigenvectors: 
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V = 

         0    1.0000         0 

   -0.8944         0    0.4472 

    0.4472         0    0.8944 

 

However, this matrix may be transformed into the one in Eq. (2.32) 

V = 

 

     0     1     0 

    -2     0     1 

     1     0     2 

  

by multiplication of the first and the third column by (1/0.4472) and both matrices are equivalent 

that is both fulfill Eq. (2.33): A = V**inv(V). 

 

2.5 Singular value decomposition and pseudorank 

In the first book we have seen singular value decomposition for a square matrix. Let us look 

now at it in more detail. The matrix undergoing decomposition does not have to be square. Let us 

suppose matrix A(IJ) which has a rank J. The singular value decomposition allows to represent 

matrix A as a product of three matrices U, Σ, and V’: 

 '=A UΣV   (2.42) 

where matrices U(II) and V(JJ) are orthogonal: 

 ' '= =U U V V I   (2.43) 

and the matrix (IJ) is diagonal containing so called singular value elements of matrix A from 

the largest to the smallest. 

When the rank of matrix A is R, the dimensions of the matrices are: U(IR), Σ(RR), and 

V(JR) (or V’(RJ). 

 

Matrix U is composed of R eigenvectors ui and matrix V of R eigenvectors vi: 

 ' '= =UU VV I   (2.44) 

The vectors u correspond to the eigenvalues i of the matrix AA’: 

 ' =AA u u   (2.45) 

and vectors v to the eigenvalues i of the matrix A’A: 

 ' =A Av v   (2.46) 

Singular values of matrix A are nonnegative (i  0): 

 

( )1 2

1

2

1 2

diag , ,...

0 0 0

0 0 0

0 0 ... 0

0 0 0

...

R

J

R

  







  

=

 
 
 =
 
 
 

  

Σ

Σ   (2.47) 

Singular values of A are simply the square roots of the eigenvalues of matrix AA’: 
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2ori i i i   = =   (2.48) 

The condition number of matrix A is the ratio of the largest to the lowest singular values: 

 ( ) max

min

cond A



=   (2.49) 

Although matrix Σ might contain all nonzero diagonal values, that is mathematically its rank 

might be J, many singular values may be very small and the condition number very large. This 

might indicate that the smallest singular values correspond to the random noise. This suggests 

that the smallest singular values could be neglected because they model noise only. Although the 

mathematical rank of the matrix is still J, the pseudo- (or effective) rank might be R < J. In such 

a case all the singular values from R+1 to J should be zero and a new set of matrices is obtained: 

U(IR) and V(JR) or V’(RJ), and (RR).  

In many practical cases we can predict the rank of matrix A. For example, when this matrix 

contains I spectra measured at J wavelength for the mixtures containing only two chemical 

components its rank should not be greater than two. 

It can be added that the pseudoinverse of A might be calculated using singular value 

decomposition: 

 '+ +=A VΣ U   (2.50) 

where + is the pseudoinverse of  obtained by replacing the nonzero values by their inverse: 

 

 

1

2

1 / 0 0 0

0 1 / 0 0

0 0 ... 0

0 0 0 1 / J







+

 
 
 =
 
 
 

Σ   (2.51) 

 

When the condition number of the matrix A exceeds the computer precision or matrix pseudo 

rank is lower than J matrix inversion using full matrix 
+

Σ  will introduce numerical noise as the 

smallest singular value J  in  will become the largest 1/ J  in +. In such a case number of 

elements in + must be reduced. For example, when the rank of A is 2, matrix 
+

Σ , Eq. (2.51), 

must be simplified and all the values for J > 2 must be replaced by zeros: 

 

 

1

2

1/ 0 0 0 0

0 1/ 0 0 0

0 0 0 0 0

0 0 0 ... 0

0 0 0 0 0




+

 
 
 
 =
 
 
  

Σ   (2.52) 

 

In the further analysis using chemometrics methods the measurement matrix X will be 

represented as a product of scores T=UΣ and loadings P’=V’ obtained as: 

 ' ( )( ') '= = =X UΣV UΣ V TP   (2.53) 
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Another algorithm, NIPALS (Non-linear iterative partial least-squares), may also be used for 

decomposition of matrix X into scores and loadings.3,6  

 

Exercise 2.2. 

To better understand the above matrix operations let us look at an example of the matrix 

X(10,8) shown in Table 2.1 (matrix elements are shown in bold). The numerical data are in Ex2-

2 in Xdata.m and the program in prog.m which also uses subroutine pca.m. 

Let us apply the singular value decomposition, Eq. (2.42), to X. The Matlab program is 

matrixop.m. This operation is only a different representation of the matrix X=U*S*P’, Eq.  

(2.42). No information about X is lost. Using Matlab operation: [U,S,P]=svd(X) the following 

three matrices, shown in Table 2.2 - 2.5 are obtained. The matrix which will be later used 

T=U*S and is also shown in Table 2.5; of course X=T*P’, Eq. (2.53). 

 

Table 2.1. Example of the matrix X(10,8). Matrix elements are in bold. 

 
1 2 3 4 5 6 7 8

1 0.318 0.413 0.335 0.196 0.161 0.237 0.290 0.226

2 0.527 0.689 0.569 0.346 0.283 0.400 0.485 0.379

3 0.718 0.951 0.811 0.521 0.426 0.566 0.671 0.526

4 0.805 1.091 0.982 0.687 0.559 0.676 0.775 0.611

5 0.747 1.054 1.030 0.804 0.652 0.695 0.756 0.601

6 0.579 0.871 0.954 0.841 0.680 0.627 0.633 0.511

7 0.380 0.628 0.789 0.782 0.631 0.505 0.465 0.383

8 0.214 0.402 0.583 0.635 0.510 0.363 0.305 0.256

9 0.106 0.230 0.378 0.440 0.354 0.231 0.178 0.153

10 0.047 0.117 0.212 0.257 0.206 0.128 0.092 0.080  
 

Table 2.2. Values of the matrix U(10,10) obtained from the singular value decomposition.  

 
1 2 3 4 5 6 7 8 9 10

1 -0.15682 -0.20366 -0.16646 0.22393 0.36709 -0.20434 -0.72932 -0.11853 -0.36190 0.05136

2 -0.26502 -0.31242 0.15887 -0.48203 0.12140 0.33160 -0.00835 -0.15572 0.01562 0.65215

3 -0.37388 -0.36521 -0.40298 0.08792 0.13487 0.05403 0.20461 -0.46557 0.40624 -0.33460

4 -0.44543 -0.28630 0.10637 -0.04256 -0.53305 0.29815 -0.23403 0.38529 -0.13238 -0.33574

5 -0.45618 -0.06586 0.32555 0.18790 -0.14653 -0.71472 0.15783 0.06886 0.15078 0.24819

6 -0.40957 0.21099 0.05733 0.24063 0.60071 0.27312 0.31132 0.41729 -0.13413 -0.04532

7 -0.32775 0.41552 -0.48175 -0.24909 -0.24176 -0.12374 0.19570 -0.19757 -0.51875 0.07479

8 -0.23454 0.46683 0.55750 -0.14022 0.06535 0.12211 -0.22733 -0.47858 0.06479 -0.30412

9 -0.14843 0.38273 -0.33415 -0.30455 0.05290 -0.08488 -0.38390 0.34513 0.58719 0.07606

10 -0.08165 0.24423 -0.09759 0.66354 -0.31676 0.36555 -0.11044 -0.17444 0.16557 0.42410  
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Table 2.3. Values of the matrix S(10,8) obtained from the singular value decomposition. Singular 

values are the diagonal elements. 

 
1 2 3 4 5 6 7 8

1 5.00589476 0 0 0 0 0 0 0

2 0 0.7495972 0 0 0 0 0 0

3 0 0 0.001453 0 0 0 0 0

4 0 0 0 0.001246 0 0 0 0

5 0 0 0 0 0.0007272 0 0 0

6 0 0 0 0 0 0.0005257 0 0

7 0 0 0 0 0 0 0.0003955 0

8 0 0 0 0 0 0 0 0.0001682

9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0  
 

Table 2.4. Values of the matrix P(8,8) = V(8,8) obtained from the singular value decomposition. 

 

1 2 3 4 5 6 7 8

1 -0.31738 -0.45261 -0.20945 -0.02083 -0.50115 0.22069 0.46343 0.36809

2 -0.45351 -0.37280 -0.06707 -0.02464 0.39682 -0.09756 0.27618 -0.63795

3 -0.45413 0.14220 0.14513 0.49760 0.44984 0.37853 -0.08726 0.38940

4 -0.36477 0.58974 0.41687 -0.14569 -0.38709 0.18671 0.23257 -0.29217

5 -0.29570 0.46664 -0.58725 -0.29508 0.19169 -0.37026 0.15630 0.25418

6 -0.30467 0.01603 -0.32196 0.48903 -0.44909 -0.22582 -0.50352 -0.24062

7 -0.32603 -0.22352 0.54535 -0.17778 -0.02342 -0.61881 -0.18239 0.31303

8 -0.26029 -0.14204 -0.10426 -0.61016 0.01454 0.43889 -0.57968 -0.00646  
 

Table 2.5. Values of the matrix T(10,8) obtained from the singular value decomposition, T=U*S. 

 

1 2 3 4 5 6 7 8

1 -0.78504 -0.15266 -0.00024 0.00028 0.00027 -0.00011 -0.00029 -0.00002

2 -1.32666 -0.23419 0.00023 -0.00060 0.00009 0.00017 0.00000 -0.00003

3 -1.87160 -0.27376 -0.00059 0.00011 0.00010 0.00003 0.00008 -0.00008

4 -2.22979 -0.21461 0.00015 -0.00005 -0.00039 0.00016 -0.00009 0.00006

5 -2.28357 -0.04937 0.00047 0.00023 -0.00011 -0.00038 0.00006 0.00001

6 -2.05027 0.15816 0.00008 0.00030 0.00044 0.00014 0.00012 0.00007

7 -1.64070 0.31147 -0.00070 -0.00031 -0.00018 -0.00007 0.00008 -0.00003

8 -1.17409 0.34994 0.00081 -0.00017 0.00005 0.00006 -0.00009 -0.00008

9 -0.74302 0.28689 -0.00049 -0.00038 0.00004 -0.00004 -0.00015 0.00006

10 -0.40873 0.18307 -0.00014 0.00083 -0.00023 0.00019 -0.00004 -0.00003  
 

It should be noticed that singular values are always positive and are displayed as diagonal 

values in the decreasing order. As it will be shown in the next section limitations will be 

introduced to the dimension of the matrices. First, let us look into the eigenvalues which can be 

calculated as squares of the singular values, Eq. (2.48), which are: 
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2

i i =   (2.54) 

They are shown in Table 2.6.  

 

Table 2.6. Eigenvalues (SS) determined from the matrix elements. 

 

       No     Eigenvalues 

1 25.05898235 

2 0.56189599 

3 0.00000211 

4 0.00000155 

5 0.00000053 

6 0.00000028 

7 0.00000016 

8 0.00000003 

 

It is also obvious from Table 2.5 that the values in columns of the matrix T decrease with 

increase of the principal component, PC, number because they are obtained by multiplication by 

matrix S which contains diagonal elements in a decreasing order. 

It can be noticed that the sum of the eigenvalues equals to the sum of the elements of entire 

matrix X: 

 ( )
2

,

1 1 1

J I J

i i j

i i j

x

= = =

=    (2.55) 

As it will be shown in the next chapter the first two eigenvalues constitute 99.15% of the sum 

of all the eigenvalues. This means that further components (beyond the second) have low 

significance (0.85%) and might be neglected and only two first values kept. In such a case the 

matrices U, S, P, and T=U*S might be limited to two columns, Table 2.7-2.11. 

 

Table 2.7. Matrix U(10,2) limited to two columns according to the values of the eigenvalues. 

 

1 2

1 -0.15682 -0.20366

2 -0.26502 -0.31242

3 -0.37388 -0.36521

4 -0.44543 -0.28630

5 -0.45618 -0.06586

6 -0.40957 0.21099

7 -0.32775 0.41552

8 -0.23454 0.46683

9 -0.14843 0.38273

10 -0.08165 0.24423  
 

Table 2.8. Matrix S(2,2) limited to two columns.  
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1 2

1 5.0058948 0

2 0 0.7495972

 
 

Table 2.9. Vector of eigenvalues of the matrix SS limited to two values. 

 

1 25.05898235

2 0.56189599  
 

Table 2.10. Matrix P(8,2) limited to two columns. 

 

1 2

1 -0.317379 -0.452612

2 -0.453514 -0.372799

3 -0.454126 0.142204

4 -0.364766 0.589742

5 -0.295701 0.466640

6 -0.304669 0.016029

7 -0.326035 -0.223520

8 -0.260287 -0.142039  
 

Table 2.11. Matrix T(10,2) limited to two columns. 

 

1 2

1 -0.785044 -0.152663

2 -1.326664 -0.234190

3 -1.871602 -0.273758

4 -2.229786 -0.214606

5 -2.283565 -0.049366

6 -2.050269 0.158160

7 -1.640705 0.311473

8 -1.174090 0.349936

9 -0.743022 0.286894

10 -0.408728 0.183073  
 

Finally, a new matrix X̂  can be predicted from the truncated matrices T and P, ˆ =X T P' . It is 

shown in Table 2.12.  
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Table 2.12. Values of the matrix ˆ (10,8) '=X T P , obtained from the truncated singular value 

decomposition. 

 
1 2 3 4 5 6 7 8

1 0.3182537 0.4129412 0.3347994 0.1963261 0.1608995 0.2367312 0.2900749 0.2260209

2 0.5270528 0.6889669 0.5691696 0.3458110 0.2830131 0.4004391 0.4848849 0.3785777

3 0.7179138 0.9508550 0.8110132 0.5212510 0.4256875 0.5658303 0.6713979 0.5260383

4 0.8048215 1.0912451 0.9820857 0.6867890 0.5592054 0.6759060 0.7749570 0.6108674

5 0.7471003 1.0540333 1.0300059 0.8038547 0.6522155 0.6949393 0.7555564 0.6013949

6 0.5791280 0.8708644 0.9535713 0.8411431 0.6800697 0.6271877 0.6331074 0.5111941

7 0.3797495 0.6279662 0.7893794 0.7821630 0.6305033 0.5048638 0.4653067 0.3828134

8 0.2142470 0.4020109 0.5829472 0.6346407 0.5104733 0.3633174 0.3045768 0.2558963

9 0.1059685 0.2300174 0.3782230 0.4402226 0.3535880 0.2309740 0.1781247 0.1526492

10 0.0468607 0.1171144 0.2116477 0.2570561 0.2062903 0.1274609 0.0923390 0.0803832  
 

In further calculations matrix T is arranged so that the largest absolute values of its vectors are 

positive. If they are not the signs of T and P corresponding vectors are changed. It of course does 

not affect the values of the matrix X̂  elements.  
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3 Principal component analysis, PCA   

 

Principal component analysis let us answer the question: how many factors influence the 

obtained results? The answer might be found without identifying what are the factors, only 

finding how many there are. Usually, these factors are related to composition but other factors 

may also exist, e.g. temperature, electrical potential, etc. 

3.1 Determination of the number of principal components, PC 

As it was mentioned in Section 1.3 the original data matrix is denoted as X(IJ). Let us look at 

the spectroscopic (UV/VIS) study of the mixture of several components (of course this method is 

not limited to the spectroscopy). In such a case the rows of X contain I spectra (absorbances) 

measured at J columns (wavelengths), Eq. (3.1): 

 

 

1 2 3 4 1

1,1 1,2 1,3 1,4 1, 1 1,

2,1 2,2 2,3 2,4 2, 1 2,

,1 ,2 ,3 ,4 , 1 ,

...

spectrum 1 ...

spectrum 2 ...

... ... ... ... ... ... ... ...

spectrum ...

J J

J J

J J

I I I I I J I J

x x x x x x

x x x x x x

I x x x x x x

     −

−

−

−

  (3.1) 

 

This matrix might also represent UV/VIS/IR or mass spectra of chromatographic elution 

obtained at different times, currents in voltammetric studies i.e. currents at different potentials, 

etc. In the case of the UV/VIS spectroscopy we expect a relation, the Beer’s law, between 

absorbances and concentrations C(IK) where K is the number of chemical components in the 

mixture. The Beer’s law can be written as: 

 = +X CS E   (3.2) 

and S(KJ) is the matrix of the spectra of pure chemical components (that is specific 

absorptivites a multiplied by the cell length, l, S = a l and E(IJ) is the error matrix. E should 

contain only the random errors. As there are K chemical components the X matrix effective rank, 

R, should not exceed K. Eq. (3.2) is schematically illustrated in Fig. 3.1. 

However, as we do not know the concentrations (which should be determined from the data 

analysis) another approach is used in the PCA. In this case we can use an abstract mathematical 

transformation in which matrix X(IJ) is presented as a product of scores T(IR) and loadings 

P’(RJ), [or P(JR)], Eq. (2.53), where the matrix effective rank, that is number of principal 

components, R, is smaller or equal to the number of chemical components, K, R  K: 

 '

1

ˆ'
R

r r

r=

= + = + = +X TP E X E t p E   (3.3) 

where rt  and 'rp  are columns and rows of scores and loadings and X̂  is calculated using R 

principal components. For the individual elements xij one can write Eq. (3.3) as: 

 

1

R

ij ir jr ij

r

x t p e

=

= +   (3.4) 
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Fig. 3.1. Schematic illustration of the dependence of matrix X(IJ) on concentration C(IK) and 

spectra of individual components S(KJ), based on the Beer’s law, Eq. (3.2). 

 

It should be stressed that this is an abstract mathematical transformation and matrices T and 

P are different form chemical matrices C and S. The matrix pseudo-rank is called number of 

Principal Components, PCs. Each Principal Component is characterized by one column score 

vector, tj and one (transposed) row loading vector, p’i. PCA allows us to determine the 

number of principal components from the measurement matrix X. This number might be lower 

than number of compounds if the concentrations are linearly dependent or have negligible 

contributions. This produces so called rank deficiency; for example, there are five chemical 

components but two of them contribute negligibly to the total matrix and, in this case, the 

pseudo-rank is three.  

In another example matrices C in Eq. (3.5) contain two linearly dependent columns and have 

rank of one (notice that for the left matrix col(2) = 2*col(1) and for the right matrix col(2) = 1 – 

col(1)). This is a bad choice for the calibration concentrations. It should also be noticed that Eq. 

(3.3) does not use any information about concentrations. PCA allows to determine how many 

factors influence the spectra in X without identifying its chemical origin. 
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C C   (3.5) 

As the matrices T and P contain only the important principal components, they may be used to 

calculate matrix of the predicted spectra, X̂ : 

 ˆ '=X TP   (3.6) 

Eq. (3.3) is illustrated in Fig. 3.2 where matrix X may be represented as a sum of two 

multiplications of vectors ti and p’i or matrix multiplication of T and P’ (plus matrix of residual 

errors E). 

 

X = + E+ =
X

E+T

P’

t
1

p’
1

t
2

p’
2

 

Fig. 3.2. Illustration of the decomposition of matrix X(IJ) into scores T(I,R) and loadings 

P(R,J), according to Eq. (3.3); dimensions of error matrix is E(IJ). 

 

All scores and loadings are orthogonal which arises from the SVD method (they are 

eigenvectors), that is: 

 

 
1 2 1 2, , , ,

1 1

0; 0
I J

i r i r r j r j

i i

t t p p

= =

= =    (3.7) 

where r1 and r2 are the principal components numbers and these relations hold for r1  r2. 

Moreover, loadings are normalized (orthonormal): 
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 2
,

1

1
J

a j

j

p

=

=   (3.8) 

matrix T’T is diagonal (all elements are zero except diagonal) and P’P is an identity matrix: 

 
1 2' diag( , ,..., )

'

R  =

=

T T

P P I
  (3.9) 

The size of each PCA component is related to its eigenvalue; eigenvalues, i, are squares of 

the singular values, i, that is diagonal parameters of matrix Σ, 
2

i i = , Eq. (2.47)-(2.48). 

These values might be normalized and expressed in %: 

 

1

100%r
R

r

r





=



  (3.10) 

where the singular value r is divided by the sum of all singular values. It can be noticed that the 

values of r can also be obtained as the sum of squares of scores: 

 
2
,

1

I

r i r

i



=

=t   (3.11) 

It should be noticed that PCA decomposition is not unique and introduces an ambiguity. In 

fact, Eq. (3.3) can be written as: 

 ( )( )1' ' ' '−= = =TP TRR P TR PR TP   (3.12) 

where R is any orthogonal matrix (called here rotation matrix) for which inversion is equivalent 

to transposition that is R-1 = R’, Eq. (2.23). The new matrices T  and 'P  preserve all properties 

of the original matrices:6 

 
' ' diag( )

' '

i= =

= =

T T T T

P P P P I
  (3.13) 

This property of the PCA is called rotational ambiguity. One cannot obtain pure spectra from 

the PCA analysis because there are infinite number of scores and loadings which can be obtained 

and which reproduce the original matrix X (experimental data), see Fig. 3.3, but actual 

orientation (rotation) of scores and loadings is not defined. Although scores and plots reflect the 

underlying chemistry (concentrations, spectra) they are not directly related to these parameters. 
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Fig. 3.3. Illustration of rotational ambiguity of scores and loadings in two-way (2D, bilinear) 

PCA. After rotation both scores and loadings stay orthogonal and reproduce the original matrix 

X. 

 

Exercise 3.1. 

Using data in Ex3-13
 (file Xdata.m, it is also included in the Excel file Ex3-1.xlsx) containing 

30 spectra measured at 28 wavelengths (), determine number of the principal component 

influencing the data. These data correspond to the spectra taken during elution in 

chromatography. 

These spectra contained in X(3028) are displayed in Fig. 3.4. 
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Fig. 3.4. 30 spectra in Exercise 3.1. 
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The Principal Component Analysis is carried out using program PCAtest.m using Matlab; it is 

located in folder Ex3-1 and all the PCA related programs are also in the folder PCA. The results 

are in file Ex3-1.xlsx. In the program, assuming maximal matrix rank of 4 (enter value of 

maxrank in PCAtest.m) and using raw data, the values of  were calculated and are displayed in 

Table 3.1. 

 

Table 3.1. Sizes i.e. eigenvalues of four first principal components, PC, for Exercise 3.1 using 

raw data. 

PC i % Cumulative % 

1 59.2056 97.05845195% 97.05845195% 

2 1.7925 2.93857170% 99.99702366% 

3 0.0018 0.00295404% 99.99997770% 

4 1.410-5 0.00002230% 100.0000000% 

 sum   

 60.9999   

 

The results indicate that the first PC explains to 97.06% of the total variation and the second 

for 2.94%. Cumulative % is simply the sum of all lower PCs. Using simple statistics one can 

reject principal components which contribute less than, e.g. 5% (or 1%). This would suggest that 

only one PC can describe the experimental spectra. However, in this case such rejection would 

be incorrect as the original data were not centered prior to PCA and the reason why only one PC 

was found might be due to its greater size in the experimental data. Centering the data (change 

preoption to 2) leads to a different result, Table 3.2. 

 

Table 3.2. Sizes of first four principal components, PCs for Exercise 3.1 using centered data. 

 

PC i % Cumulative % 

1 22.60225 92.6572% 92.657% 

2 1.790112 7.3385% 99.996% 

3 0.001037 0.0043% 100.000% 

4 0.000013 0.0001% 100.000% 

 sum   

 24.39341   

 

For the centered data the first PC corresponds to 92.7% and the second for 7.3% of the total 

variation, therefore, both components are important. Centering data reduced the total sum of 

eigenvalues from 61.9, Table 3.1 to 24.4, Table 3.2. Other components are negligible as they 

contribute only 0.0044%. The matrix has an effective rank of 2. Therefore, there are only two 

PCs in the data presented in Fig. 3.4, which corresponds to two important concentrations. There 

is no general rule whether the raw of centered data should be used, the choice depends on the 

nature of the experimental data and on the one’s experience.3 However, usually data are 

centered. 

If there is a meaningful sequential order in data sets, e.g. in chromatography or in the 

presence of chemical reactions, plots of scores T as functions of data number (here proportional 

to time) might be presented, they are shown in Fig. 3.5 for raw and centered data. 
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Fig. 3.5. Plots of scores T for three first principal components PC1 (t1), PC2 (t2), and PC3 (t3) 

versus data (spectrum) number, proportional to the elution time. 

 

In this case the first principal component relates to the magnitude of the signal while the 

second PC relates to the difference between the two components in the mixture, being positive 

for the fastest eluting compound and negative for the slowest compound. The third PC is 

negligible. It is clear that these plots are different from the concentrations or elution profiles as 

scores are abstract matrix components. 

The plot of loadings is shown in Fig. 3.6. 

 

 
 

Fig. 3.6. Plot of loadings P for the two principal components PC1 (p1) and PC2 (p2) versus data 

(spectrum) number, proportional to the elution time for data in Exercise 3.1. 

 

Spectra of the individual components: faster eluting A and slower eluting B, are presented in 

Fig. 3.7. They were be obtained from the measurements of pure components. 
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Fig. 3.7. Spectra of the faster A and slower B eluting compound for the chromatographic analysis 

in Exercise 3.1.3 

 

It is evident that around  = 277 nm (point No 13) both compounds absorb. The plot at this 

wavelength versus time shows the elution profile in absorbance (not concentration) units. It is 

shown in Fig. 3.8. 
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Fig. 3.8. Absorbance elution profile for  = 277 nm (point No 13) versus time (from Fig. 3.4) for 

two overlapping peaks. 

 

In general, in the case where there is a sequential order in the data scores relate to the 

elution profiles (concentrations) while loadings relate to the components spectra.3  

Scores, T, plots are very often used in the data analysis. In such plots scores for PC2 are 

plotted versus PC1. An example of such a plot is presented in Fig. 3.9. 

 

277 
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Fig. 3.9. Scores (T) plot of t2 (PC2) versus t1 (PC1) for row data in Exercise 3.1. 

 

The scores plot has some interesting characteristics: 

• linear zones represent regions where pure components prevail; in our case for points 1-5 

and 13-30,  

• curved portions represent regions where two compounds exist: points 6 to 10, 

• values close to the origin represent zones of low intensity (low concentration), 

• number of bends can provide information about the number of compounds in a complex 

mixture; there are two bends at points 6 and 10 corresponding to two compounds. 

 

The loadings plot, presents loadings of the second PC2 (p1) versus those of the first PC1 (p1). 

They are displayed, for raw data, in Fig. 3.10. 
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Fig. 3.10. Loadings (P) plot of PC2 (p2) versus PC1 (p1) for the raw data in Exercise 3.1. 

 

The loadings plot can be explained by comparison with the spectra of pure compounds. The 

upper part of the plot, points 4-14 (234-282 nm) and 22-30 (320-349 nm) correspond to the zone 

where absorbance of A is more important while the bottom half of the plot, points 2-3 (225-230 

nm) and 16-20 (291-310 nm) correspond to B. The peak, point 6 (244 nm, see Fig. 3.7), for the 

component A is clearly visible. Loadings provide information about which wavelengths are 

associated with which compound.3 

Using obtained scores and loadings for the matrix rank found from the above analysis (R = 2) 

the calculated values of X̂  can be obtained using Eq. (3.6) and are shown in Fig. 3.11. It should 

be noticed that large amount of data in X (840 data points) was explained by only two principal 

components that is by much smaller matrices T(60) and P(56) containing 116 data points. It is 

clear that large reduction of the experimental data was obtained.  
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Fig. 3.11. Values of X̂  calculated from Eq. (3.6) for two PCs (matrix rank of 2) using centered 

data. 

Comparison of the experimental X and calculated (model) X̂  allows for the calculation of the 

residual sum of squares RSSR calculated using R principal components: 

 ( ) ( )
2 2

R , , ,

1 1 1 1

ˆRSS
I J I J

i j i j i j

i j i j

x x e

= = = =

= − =    (3.14) 

This parameter is an analog of the residual sum of squares in the univariate (classical) 

regression. The root mean square RMSR for R PCs is calculated dividing by the number of the 

degrees of freedom. Because there are I*J experimental points which in the above case is 

28*30=840 this value is usually not corrected by the loss of the degree of freedom due to number 

of PCs: 

 R
R

RSS
RMS

*I J
=   (3.15) 

For the data in Exercise 3.1 the values of RSSr are calculated for r principal components (here 

from 1 to 4) using PCAcross.m and the results obtained are shown in Table 3.3. 

 

Table 3.3. Dependence of RSSr on the number of principal components used, r (centered data). 

 

Number of PCs, r RSSr 

1 1.7944 

2 0.00187 

3 6.8610-5 

4 5.5010-5 
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It is clearly seen that residual sum of squares decreases with the increase of the number of PCs 

used. However, this does not indicate that we should use here three PCs as it has been shown 

above that two PCs explain more that 99.99% of the variance. The third (and further) PCs are 

simply modeling the noise in the data and do not contain information about the concentrations. 

3.2 Preprocessing of data 

Data can be analyzed directly, that is raw data can be used in the calculations. Such an 

analysis might be carried out in spectroscopy where deviation above baseline is studied. 

However, usually we are interested in the deviation from the mean. In such a case the data are 

mean centered that is mean of each column of X matrix is calculated and this value is subtracted 

from each column element: 

 , ,
cent
i j i j jx x x= −   (3.16) 

where jx  is the mean of column j 

 ,
1

1
I

j i j
i

x x
I
=

=    (3.17) 

Most of all data analysis is carried out as mean centered. 

Another method of data preprocessing is standardization. The centered data (in columns) are 

divided by their standard deviation: 
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  (3.18) 

where the sum of squares was divided by I that is the population standard deviation (number of 

columna) was used. Standardization might be important in some cases. For example, the sample 

might contain larger concentration of some compounds but with their variation not very 

significant. We might be interested in concentration of some minor compounds. If 

standardization is not performed, PCA will be dominated by the compounds having the highest 

concentration.3  

Another type of preprocessing is a row scaling (or normalization): 
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  (3.19) 

Scaling the rows is useful if the absolute concentrations of samples cannot easily be controlled. 

An example might be biological extracts: the precise amount of material might vary 

unpredictably, but the relative proportions of each chemical can be measured.3  

Plots for one set of data (No 14, xi,14) from Fig. 3.4 as raw, centered, and standardized are 

shown in Fig. 3.12. 

Plots of all the data with different preprocessing are displayed in Fig. 3.13-3.15. First, Fig. 

3.13 shows the raw spectra and their mean value (thick blue line). The mean value is subtracted 
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from each spectrum and the obtained centered data are displayed in Fig. 3.14. Finally, the 

standardized spectra are shown in Fig. 3.15. Centered and standardized spectra do not resemble 

the original spectra but they contain all the pertinent information necessary for the PCA. 

 

 
Fig. 3.12. Plot of the data series No. 14, xi,14 from Fig. 3.4 in three formats: raw, column 

centered, and standardized. 

 

 
Fig. 3.13. Plots of the raw spectra, the mean value is shown as thick blue line. 
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Fig. 3.14. Centered spectra from Fig. 3.13. 

 

 
Fig. 3.15. Standardized spectra from Fig. 3.13. 

 

Data preprocessing influences values of scores and plots and their plots. This will be shown in 

the following exercise. 

 

  



39 

Exercise 3.2.  

 

Data X presented below in Table 3.4 (Ex3-2.xlsx, Xdata.m in folder Ex3-2) contain 10 rows 

and eight columns and represent a portion of the chromatographic UV/VIS elution profile.3 

Determine number of PCs and compare the scores and loadings plots for different data 

preprocessing. 

 

Table 3.4. UV/VIS spectra obtained during elution in HPLC method.3  

 

 A B C D E F G H 

1 0.318 0.413 0.335 0.196 0.161 0.237 0.29 0.226 

2 0.527 0.689 0.569 0.346 0.283 0.400 0.485 0.379 

3 0.718 0.951 0.811 0.521 0.426 0.566 0.671 0.526 

4 0.805 1.091 0.982 0.687 0.559 0.676 0.775 0.611 

5 0.747 1.054 1.03 0.804 0.652 0.695 0.756 0.601 

6 0.579 0.871 0.954 0.841 0.680 0.627 0.633 0.511 

7 0.380 0.628 0.789 0.782 0.631 0.505 0.465 0.383 

8 0.214 0.402 0.583 0.635 0.510 0.363 0.305 0.256 

9 0.106 0.230 0.378 0.440 0.354 0.231 0.178 0.153 

10 0.047 0.117 0.212 0.257 0.206 0.128 0.092 0.080 

 

The spectra in Table 3.4 are displayed in Fig. 3.16. 

 

 
Fig. 3.16. Raw spectra from chromatographic elution, Table 3.4. 

 

An example of elution profile for the first column in Table 3.4 (corresponding to one 

wavelength, the first data column x1) is displayed in Fig. 3.17. 
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Fig. 3.17. Elution profile i.e. absorbance versus time at one wavelength corresponding to the first 

data column x1 in Table 3.4. 

 

Analysis of the eigenvalues (PCAtest.m) is shown in Table 3.5. 

 

Table 3.5. PCA on raw, centered and standardized data from Table 3.4. 

 

raw data  centered  standardized  
i % i % i % 

25.05898 97.807% 4.074459 89.68% 70.4548 88.07% 

0.561896 2.193% 0.469006 10.32% 9.54513 11.93% 

2.1110-6 0.000% 2.0110-6 0.000% 4.610-5 0.000% 

sum  sum  sum  

25.62088  4.543468  79.9999  
 

Analysis of the raw data suggests that there is only one principal component but the analysis 

using data centered or standardized strongly indicate that there are two PCs and the third PC is 

completely negligible. The plots of scores T for three first PCs and raw and centered data are 

shown in Fig. 3.18. 

 

 
Fig. 3.18. Plots of three first scores, ti, for the raw and centered data in Table 3.4. 

 

The scores and loading plots for the two first principal components for the raw data are shown 

in Fig. 3.19 and 3.20. 
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Fig. 3.19. Scores plot of t2 (PC2) versus t1 (PC1) for the raw data in Table 3.4. 

 

 
Fig. 3.20. Loadings plots p2 (PC2) versus p1 (PC1) for the raw data in Table 3.4. 

 

The above plots suggest the presence of two components; in Fig. 3.20 points A, B, and G 

correspond mainly to one component and points D and E to another. 

Let us look now at the similar plots for the centered data, Fig. 3.21- 3.22.  

 

 
Fig. 3.21. Scores plot for the centered data from Table 3.4. 
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Fig. 3.22. Loadings plot for the centered data from Table 3.4. 

 

In this case the scores, Fig. 3.21, are centered on the origin because the data are centered on 

mean and the sum of each column of X is zero. Nevertheless, the general shape is similar. 

However, the shape of loading,  

Fig. 3.22, is changed. Similar plots for the standardized data are shown in Fig. 3.23 and 3.24. 

 

 
 

Fig. 3.23. Scores plot for the standardized data from Table 3.4. 
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Fig. 3.24. Loadings plot for the standardized data from Table 3.4 

 

The general shape of the scores plot for standardized data is similar to that of the centered data. 

However, there is a complete change of the loadings plot, it forms a part of a semicircle. Because 

standardization puts the variables on the same scale and the variables of low magnitude have the 

same importance as those of large magnitude. For two significant principal components the 

points lie on a semicircle and for three PCs they lie on a sphere. The results in Fig. 3.24 confirm 

visually that there are two important PCs. This figure confirms as well that points A, B, and G 

correspond mainly to one component and points D and E to another. 

Standardization is recommended when different components are present in very different 

concentrations, change very little, or when different measurements are carried out on a different 

scales. In the standard measurements mean-centered data are used although in some cases raw or 

standardized data are analyzed. 

3.3 Cross-validation 

The significance of each PC can be tested using cross-validation. It is based on auto-prediction 

of the experimental data and these data are used to predict a sample which was removed from 

the data set. First, the row number 1 is left out from the data matrix X, the PCA analysis is 

carried out on matrix X containing rows 2, 3, …, I, that is I – 1 rows. Next data for row 1 are 

predicted. Then the row number 2 is left out from the original matrix X which contains 

containing rows 1, 3, …, I, the values for the row 2 are predicted and the sum of squares 

computed. This procedure is continued until the last row I.  

The PCA, after omitting one row in data file, produces new scores T and loadings P for each 

row i. The vector of predicted scores for the left out row i, ˆ
it , is calculated using standard 

multiple regression equation from Eq. (3.3) and (3.6), ˆ 'i i=x t P : 

 ( )
1ˆ 'i i i
−

= =t x P P P x P   (3.20) 

This equation is simplified because matrix P is orthonormal and: 

 ( )
1

'
−

=P P I   (3.21) 
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where I is the unitary matrix and ˆ
it  is the predicted row of scores. Next, the vector 

, ˆr cv
ix  for 

matrix X is calculated for sample i and for r PCs: 

 
, ˆˆ 'r cv r r

i i=x t P   (3.22) 

where r is the number of PCs used in the model, and vector (1 )r
i rt  is calculated from Eq. 

(3.20). 

Finally, Predicted Residual Error Sum of Squares, PRESS, is calculated: 

 ( )
2

,
, ,

1 1

ˆPRESS
I J

r cv
r i j i j

i j

x x

= =

= −   (3.23) 

where ,
,ˆr cv

i jx  are the values of x predicted after elimination of row i from the original data set, 

calculated for r PCs. 

PRESSr is a sum of squared differences between values ,
,ˆr cv

i jx  predicted after sequential 

elimination of one data row from analysis and the observed experimental values xi,j. This 

parameter decreases down to the correct number of PCs and then stays almost constant or 

increases. The plot of PRESS as a function of the number of PCs for the data in Exercise 3.1 is 

shown in Fig. 3.25.  

 

 
Fig. 3.25. Plot of the parameter PRESS as a function of the number of principal components for 

the centered data in Exercise 3.1. 

 

It is evident that the parameter PRESS decreases up to two PCs and then changes very little 

which confirms that there are two PCs. Similar plot is obtained for RSS. 

It is important that RSS, Eq. (3.14), and PRESS are presented in the same scale, preferably as 

raw data (although calculations can be are carried out on centered or standardized data). The 

values of RRS and PRESS can be easily calculated using program PCAcross.m.  

To analyze the obtained results one can compare PRESSr with RSSr-1. If: 

 
1

PRESS
1

RSS

r

r−

   (3.24) 

this means that an extra PCr is modeling only noise and should not be retained, that is only r - 1 

components should be kept.  
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Another method is to calculate ratio PRESSr/PRESSr-1. If:  

 
1

PRESS
1

PRESS

r

r−

   (3.25) 

only r – 1 PCs should be used. PRESS often starts to increase after the optimum number of 

components have been reached.  It should be added that these tests may not always work well.  

The plot of PRESS and RSS for the data in Exercise 3.2  is shown in Fig. 3.26. 

. 

 

 
 

Fig. 3.26. Plot of PRESS and RSS as functions of the number of PCs for the centered data in 

Exercise 3.2. 

 

Logarithmic scale is often used in plots to emphasize the importance of small variations, see Fig. 

3.27, where the same data as in Fig. 3.26 are plotted. 

 

 
Fig. 3.27. Logarithmic plots of PRESS and RSS as functions of the number of PCs for the 

centered data in Exercise 3.2.  

 

From Fig. 3.26 -3.27 it is obvious that the parameters PRESS and RSS decreases to PC=2 and 

then change very little which confirms the presence of two PCs. This statement is confirmed by 

the results in Table 3.6. These results indicate that after r = 2 PRESSr/RSSr-1 is larger than one 

and PRESSr/PRESSr-1 increases from 1.3510-5 to 0.901, a value close to one. Therefore, there 

are only two important PCs in the data.  
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Table 3.6. Analysis of RSS and PRESS for the centered data in Table 3.4 in Exercise 3.2. 

  

r PRESSr RSSr PRESSr/RSSr-1 PRESSr/PRESSr-1 

1 0.66265 0.46901   

2 9.010-6 4.410-6 1.91128E-05 1.3527610-5 

3 8.210-6 2.410-6 1.877288218 0.919088287 

4 3.410-6 8.710-7 1.448287021 0.418730875 

 

Exercise 3.3.  

Determine number of PCs in the following data, file Xdata.m, X(108), and in Ex3-3.xlsx in 

folder Ex3-3.3 

 

Table 3.7. Table of data to analysis containing 10 rows and 8 columns.3 

 A B C D E F G H 

1 89.821 59.760 68.502 48.099 56.296 95.478 71.116 95.701 

2 97.599 88.842 95.203 71.796 97.88 113.122 72.172 92.310 

3 91.043 79.551 104.336 55.900 107.807 91.2290 60.906 97.735 

4 30.015 22.517 60.330 21.886 53.049 23.127 12.067 37.204 

5 37.438 38.294 50.967 29.938 60.807 31.974 17.472 35.718 

6 83.442 48.037 59.176 47.027 43.554 84.609 67.567 81.807 

7 71.200 47.990 86.850 35.600 86.857 57.643 38.631 67.779 

8 37.969 15.468 33.195 12.294 32.042 25.887 27.050 37.399 

9 34.604 68.132 63.888 48.687 86.538 63.560 35.904 40.778 

10 74.856 36.043 61.235 37.381 53.98 64.714 48.673 73.166 

 

The PCA in Matlab using program PCAtest.m gives the values of PCs (eigenvalues) displayed 

in Table 3.8. 

 

Table 3.8. Results of PCA analysis on data in Table 3.7 using raw and centered data. 

 Raw data           Centered data 

      r r % Cumulative % r % Cumulative % 

1 316522.12 96.9045% 96.905% 34552.51 79.7238% 79.724% 

2 7324.62   2.2425% 99.147% 6625.63 15.2875% 95.011% 

3 2408.63   0.7374% 99.884% 1826.65   4.2147% 99.226% 

4 136.006   0.0416% 99.926% 135.54   0.3127% 99.539% 

5 117.716   0.0360% 99.962% 117.72   0.2716% 99.810% 

6 72.891   0.0223% 99.984% 55.45   0.1279% 99.938% 

7 36.067   0.0110% 99.995% 18.10   0.0418% 99.980% 

8 14.989   0.0046% 100.000% 8.66   0.0200% 100.000% 

 

The analysis of raw data indicates existence of only one PC while that of centered data two or 

three components (for centered data the third component explains 4.2% of data close to the limit 

of typical value of 5%). Three components explain 99.22% of the total dependence. 
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As there is no order in the underlying concentrations (as in the case of chromatography) the 

scores plot does not show any order, Fig. 3.28, however the magnitude of scores decreases with 

the PC number, r, Fig. 3.29. 

 

 
 

Fig. 3.28. Scores plot of t2 (PC2) vs. t1 (PC1) for raw data. 

 

 
 

 

Fig. 3.29. Scores plots for different PC numbers, r, for raw data. 

 

Next, further analysis using RSS and PRESS data was carried out using program PCAcross.m. 

The results are displayed below (for r = 8 values of zero are obtained as there are only 8 columns 

in X and the fit is perfect). 
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Table 3.9. Analysis of RSS and PRESS for the raw data in Table 3.7. 

r RSS PRESS PRESSr/RSSr-1 PRESSr/PRESSr-1 

1 10110.9141 12412.1   

2   2786.2979 4551.5 0.450 0.367 

3 377.6687 830.9 0.298 0.183 

4 241.6627 802.2 2.124 0.965 

5 123.9470 683.7 2.829 0.852 

6 51.0561 499.7 4.031 0.731 

7 14.9890 336.2 6.586 0.673 

8 0.0000 0.0 0.000 0.000 

 

The test of the ratio of PRESSr/RSSr-1 shows that this value for r = 4 is 2.124 which is larger 

than 1. It suggests that three PCs should be conserved. However, the test PRESSr/PRESSr-1 is 

less conclusive although from r = 4 this ratio is relatively close to one. 

Another part of the analysis is the plot logarithm of RSS and PRESS as functions of the 

number of principal components. Such a plot for the data studied is shown in Fig. 3.30. 

It is clear that both parameters decrease quickly until r = 3 and then decrease more slowly. It 

should also be noticed that logarithmic plot increases importance of very small changes for r > 3. 

Although the analysis of eigenvalues for the centered data is inconclusive suggesting between 

2 and 3 PCs, test PRESSr/RSSr-1 and the logarithmic plots of RSS and PRESS suggest that there 

are three PCs which influence the experimental data. 
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Fig. 3.30. Logarithmic plot of RRS and PRESS as functions of the number of PCs for centered 

data in Table 3.7. 
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Exercise 3.4.  

Determine number of PCs in 21 spectra measured at 54 wavelengths in Fig. 3.31, file Xdata.m in 

folder Ex3-4 and file Ex3-4.xlsx.6 They were registered during chemical reaction between 

species. 
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Fig. 3.31. Spectra of 21 mixtures of unknown number of compounds.  

 

Table 3.10. PCA analysis of the raw and centered data in analysis of eigenvalues. 

 

 Raw data  Centered data 

r r % Cumulative % r % Cumulative % 

1 192.8 94.51% 94.51% 11.092 77.94% 77.94% 

2 8.271 4.05% 98.57% 2.9725 20.89% 98.83% 

3 2.808 1.38% 99.94% 0.0599 0.42% 99.25% 

4 0.0593 0.03% 99.97% 0.0575 0.40% 99.66% 

5 0.0573 0.03% 100.00% 0.491 0.34% 100.00% 

 

The results presented in Table 3.10 show that using raw data the second PC contributes only 4% 

while using centered data its importance is 21%. This suggests existence of two PCs.  

The scores’ plots for different PCs are shown in Fig. 3.32. In this case they correspond to the 

gradual changes with time (spectrum number). Their magnitude for the first two PCs is much 

larger than for further PCs. The scores plot of t2 (PC2) versus t1 (PC1) is displayed in Fig. 3.33. 

The points are on a regular lines confirming presence of at least two PCs. 
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Fig. 3.32.Scores plots of tr for different principal components 1 to 5 for the centered data. 

 

 
 

Fig. 3.33. Scores plot of t2 (PC2) versus t1 (PC1) for centered data in Exercise 3.4. 

 

Further analysis of RRS and PRESS, is shown in Table 3.11 for raw data and in Table 3.12 for 

centered data. The plots of RSS and PRESS versus number of PCs are displayed in  

Fig. 3.34. 

 

Table 3.11. Analysis of RRS and PRESS for raw data in Exercise 3.4. 

 

r     RSS PRESS PRESSr/RSSr-1 PRESSr/PRESSr-1 

1 11.50 12.423   

2 3.230 4.698 0.409 0.378 

3 0.422 0.576 0.178 0.123 

4 0.363 0.573 1.357 0.995 

5 0.305 0.541 1.493 0.945 

 



51 

Table 3.12. Analysis of RRS and PRESS for centered data in Exercise 3.4. 

 

r     RSS PRESS PRESSr/RSSr-1 PRESSr/PRESSr-1 

1 3.4025 5.1819   

2 0.4291 0.5849 0.172 0.11287 

3 0.3692 0.5813 1.355 0.99387 

4 0.3117 0.5533 1.499 0.95187 

5 0.2626 0.5260 1.688 0.95063 

 

 
 

Fig. 3.34. Cross-validation of data in Exercise 3.4; logarithmic plot of RSS and PRESS for the 

raw and centered data. 

 

Analysis of the RSS and PRESS plots,  

Fig. 3.34, for the raw data indicates presence of three PCs while that for the centered data 

presence of two PCs. This fact is also confirmed by the analysis in Table 3.11 and 3.12 from the 

analysis of PRESSr/RSSr-1 and PRESSr/PRESSr-1 that here are three PCs for the raw and two for 

centered data. In such a case of conflicting results it is advisable to use the one for raw data that 

there are three PCs influencing the spectroscopic data. 

 

Exercise 3.5.  

Determine number of principal components for the data file Xdata.m in folder Ex3-5 and 

Ex3-5.xlsx. These data were displayed in Fig. 1.1. 

First, PCA was carried out on the raw and centered data. The obtained eigenvalues of principal 

components are displayed in   
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Table 3.13.  
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Table 3.13. Sizes of the first five PCs using PCA on the data in Exercise 3.5.  

 

                      Raw data              Centered data 

PCr r % Cumulative 

% 
r % Cumulative % 

1 267.9820 96.4984%  96.4984% 16.1409 84.144%  84.14% 

2 9.5795   3.4495%  99.9479% 2.9047 15.143%  99.287% 

3 0.0566   0.0204%  99.9683% 0.0529   0.276%  99.5628% 

4 0.0464   0.0167%  99.9850% 0.0428   0.223%  99.786% 

5 0.0415   0.0150% 100.0000% 0.0411   0.214% 100.0000% 

 sum   sum   

 277.7061   19.1825   

 

Results displayed for the raw (i.e. non-centered) data show that the second PC contributes only 

3.45%, which is lower than 5% usually used in statistics. However, using centered data the 

second component contributes 15.14% and the first two components explain 99.29% of the 

variation. This confirms that there are only two important principal components influencing the 

spectra and shows that using centered data is advantageous in the analysis. Calculation of the 

spectra using only two PCs shows partial noise reduction. Comparison of the experimental (raw) 

and calculated using Eq. (3.6) (approximated) spectrum No 3 is shown in Fig. 3.35. 

 

 

Fig. 3.35. Plot of the experimental, X  (raw) and calculated, X̂  (approx) spectrum No 3, using 

two PCs. 

The calculated spectra X̂  are shown in Fig. 3.36 and should be compared with raw data in Fig. 

1.1 to see noise reduction. 
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Fig. 3.36. Spectra calculated using two PCs; they should be compared with raw data in Fig. 1.1. 

 

Scores plots are not interesting here as the concentrations of the different samples are random. 

However, the loadings plots are related to the spectra of the individual components in the 

analysis. They are presented in Fig. 3.37 and 3.38 for the raw data. 

 

 
 

Fig. 3.37. Loadings plots p1 (PC1) and p2 (PC2) vs. number proportional to the wavelength using 

PCA and the raw data for Exercise 3.5.  
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Fig. 3.38. Loadings plot of t2 (PC2) versus t1 (PC1) for raw data for Exercise 3.5.  

 

One can also use cross-validation to obtain information on the number of important PCs. The 

calculated values of RRS and PRESS are shown in Table 3.14 and 3.15. 

 

Table 3.14. Results of the cross-validation analysis for the raw data from. 

r RRSr PRESSr PRESSr/RSSr-1 PRESSr/PRESSr-1 

1 9.839 12.3730 
  

2 0.260   0.4405 0.04477 0.03560 

3 0.203   0.4346 1.67400 0.98659 

4 0.157   0.4329 2.13248 0.99591 

5 0.115   0.4296 2.74453 0.99258 
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Table 3.15. Results of the cross-validation analysis for the centered data from Exercise 3.5.  

 

r RRSr PRESSr PRESSr/RSSr-1 PRESSr/PRESSr-1 

1 3.124 5.3117 
  

2 0.219 0.5036 0.1612 0.0948 

3 0.167 0.4966 2.2629 0.9862 

4 0.124 0.4960 2.9783 0.9988 

5 0.083 0.4890 3.9507 0.9858 

 

Plots of RRS and PRESS as functions of the number of principal components, r, are shown in 

Fig. 3.39. These plots are for the raw data but those for centered data are similar. 

 

  
 

Fig. 3.39. Plots of PRESS and RSS as functions of the number of PCs using the raw data in 

Exercise 3.5. 

 

These results show that by adding the second PC both RRS and PRESS decrease significantly, 

but addition of further components does not affect these parameters significantly. Moreover, the 

ratio of PRESS3/RSS2 is 1.7 or 2.3 for the raw and centered data, respectively, and from r = 3 

PRESSr/PRESSr-1 is around one. These tests indicate that the first two PCs should be retained 

and the subsequent PCs model only random noise. 

The above exercises show how to carry out principal component analysis to determine number 

of principal components influencing the experimental data. Detailed analysis of the eigenvalues 

(that is the magnitude of the PCs) should be carried out for the raw or centered data (in some 

cases standardized data). This analysis should be confirmed by the cross-validation. The 

understanding of the physical/analytical model is also necessary to decide the number of PCs. 

However, noise, spectral similarities and correlations between concentrations often make it hard 

to provide an exact estimate of the number of significant components.3 

3.4 Exploratory data analysis 

PCA can be used to find relations and differences in multivariate data. It is often applied in 

food and pharmaceutical industry to find the origin of samples, e.g. coffee, whisky, wine, beer, 

etc., and determination of possible counterfeiting. This might be better understood by exploring 

examples. There are few measures used for classification shown below but there are many more 

which are presented in the literature.3,10 
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3.4.1 Mahalanobis distance 

To distinguish between groups of data (clusters) one of the measures is Mahalanobis distance 

(statistical distance).3,10 It is a measure of a distance of a group of data form the reference sample 

(all data or another group). The Mahalanobis distances between a series of samples y and a class 

x is defined as: 

 ( ) ( )1
, '

i i id −= − −y x Xy x C y x   (3.26) 

where yi is the row vector of series of samples, CX is the variance-covariance matrix of X, and x  

is a vector of means of X columns. y can be identical to x, include x, or be an unknown sample 

set. Covariance matrix CX is calculated using number of degrees of freedom equal to N (number 

of rows) i.e. using the population (not sample) statistics. It can be easily calculated in Matlab 

using function cov(X,1) as Xc’Xc/N where Xc is the centered (by the means of columns) matrix 

X: 

 
( ) '( )

N

− −
=x

X x X x
C   (3.27) 

Typically, distances between samples i of the matrix X and mean of class A (which is a part of 

the matrix X) are calculated:  

( ) ( )1
,A 'i i id −= − −A A Ax x C x x         (3.28) 

where xi is a row vector for the sample i, Ax  is the vector of means of class A, and AC  is the 

variance-covariance matrix for group A. Samples and the group must have the same number of 

columns. Matrix AC  is scaling the distances. Example of application of Mahalanobis distance 

will be presented in Exercise 3.7. When the variance-covariance matrix is the identity matrix 

(ones on the diagonal) the Mahalanobis distance becomes simple Euclidean distance:  

 

 ( )( ),A 'i i id = − −A Ax x x x   (3.29) 

3.4.2 SIMCA 

The method of SIMCA is used in pattern recognition.3,10,24 The acronym SIMCA means soft 

independent modeling of class analogy. Soft modeling means that two classes can overlap and an 

object can belong to two classes simultaneously. SIMCA belongs to one class classifiers. 

The SIMCA method uses PCA as the first step. Very often, the logarithm of the data is taken 

and then the data are standardized to keep the same importance of all the parameters. Let us 

suppose one example where that there is one class of measurements X in the whole set of data Y 

(that is X is part of Y). PCA is performed on class X and matrices of scores, T, and loadings, P, 

are obtained. The new values of Ŷ  are predicted using data Y and loadings of class X, see Eqns. 

(3.20) and (3.22). First, scores for Y are predicted using loadings P: 

 =YT YP   (3.30) 

then new values are predicted (PP’=I): 

 ˆ '= YY T P   (3.31) 

The difference between original Y and predicted Ŷ  are calculated: 

 ˆ= −YE Y Y   (3.32) 
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and the square root of the sums of squares of columns of error matrix is obtained: 

 
2

1

( , )
J

i y
j

d E i j

=

=    (3.33) 

This distance di presents the SIMCA distance from class Y to X. The subroutine simca.m from 

Brereton3 can be used in calculations. Few examples of exploratory analysis and pattern 

recognition are illustrated in exercises below. 

 

Exercise 3.6. 

Let us investigate comparison of different chromatographic columns.3 The aim of this analysis is 

to determine which columns behave in a similar fashion and which are different. Performance of 

eight commercial chromatographic columns were measured by determination of four peak 

characteristics: k’ (capacity factor), N (number of theoretical plates), N(df) (peak width 

parameter), and As (asymmetry), for eight compounds denoted by a letter (P, N, A, C, Q, B, D, 

R). There are 32 parameters and the data are represented by a matrix X(832), its transposed 

version is presented in Table 3.16.  

Let us apply PCA to these data. Because different parameters have very different values and 

units the data must be standardized. The results of the PCA analysis might be presented on the 

score plot of the second PC2, t2, versus the first PC1, t1. This is illustrated in Fig. 3.40. 
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Table 3.16. Parameters (32) of eight chromatographic columns for eight compounds X’(328).3 
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Fig. 3.40. Scores plot of PC2, t2, versus PC1, t1. 

 

This plot suggests that closely clustering three Intersil columns behave similarly while 

Kromasil C8 and Purospher behave in opposite manner (are negatively correlated) and behavior 

of Purospher is different form the other columns. These facts might be important in the 

determination of which columns are best for different types of separations. For example, 

parameter which has high value for Purospher will have low value for Kromasil C8 (and vice 

versa). This would suggest that each column has a different purpose. 

The scores plot was related to the columns but the loadings plot is related to the 

chromatographic parameters for different compounds. Loadings plot of PC2, p2, vs. PC1, p1, is 

shown in Fig. 3.41. It can be concluded that loadings for k parameter for all compounds are 

closely clustered which suggests that this parameter does not vary much for different compounds 

and columns. Parameters As, N and N(df) show more variation but N and N(df) are more closely 

correlated. Parameters As and N are quite different and almost diametrically opposed suggesting 

that they measure opposite properties, e.g. high As corresponds to low N values. 

Some parameters are in the middle of the loadings plots, such as NN. These behave atypically 

and are probably not useful indicators of column performance. 

Most loadings are on an approximate large circles (ovals). This is because standardization is 

used, and suggests that we are probably correct in keeping only two principal components. The 

order of the compounds for both As and N reading clockwise around the circle are very similar, 

with P, D and N at one extreme and Q and C at the other extreme. This suggests that behavior is 

grouped according to chemical structure, and also that it is possible to reduce the number of test 

compounds by selecting one compound in each group.3 These conclusions might be interesting in 

the chromatographic analysis. This analysis suggests that some tests or compounds can be 

omitted. Some measurements might be misleading as they are not typical of the overall pattern. 

If other PCs are important other plots might also be included in the analysis. 
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Fig. 3.41. Loadings plot of PC2, p2, vs. PC1, p1.  

 

Another method of comparison are the biplots where loadings and scores are presented 

together on one plot. To adjust the scales of both plots the scores are normalized using the 

following equation:3 
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Biplot for the data in Exercise 3.6 is shown in Fig. 3.42. There is a lot of information in this 

plot which looks a little messy but it is possible to draw some conclusions.  

Purospher lies at the extreme position along the horizontal axis, as does CAs. Hence we would 

expect CAs to have a high value for Purospher, which can be verified by examining Table 3.16. 

A similar comment can be made concerning DAs and Kromasil C18. These tests are good 

specific markers for particular columns. 

Likewise, parameters at opposite corners to chromatographic columns will exhibit 

characteristically low values, for example, QN has a value of 2540 for Purospher. The 

chromatographic columns Supelco ABZ+ and Symmetry C18 are almost diametrically opposed, 

and good discriminating parameters are the measurements on the peaks corresponding to 

compound P (pyridine), PAs and PN(df). Hence to distinguish the behavior between columns 

lying on this line, one of the eight compounds can be employed for the tests. 
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Fig. 3.42. Scores and loadings biplot for the data in Exercise 3.6. 

 

Exercise 3.7.  

Elemental analysis of 58 samples of pottery was carried out.3 These samples were divided in 

two classes A (black carbon containing bulks) and B (clay). They are displayed in Table 3.17. 

Perform PCA on these data. Can we distinguish between two classes of pottery? 

 

Performing the PCA analysis gives loadings and scores. In this analysis standardization 

preoption was used as different elements have very different concentrations. The loadings plot of 

PC2, p2, vs. PC1, p1, presents behavior of the elements and is displayed in Fig. 3.43 and the 

scores plot of PC2, t2, vs. PC1, t1 in Fig. 3.44. 
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Table 3.17. Results of the elemental analysis of pottery samples. 
Ti/% Sr/ppm Ba/ppm

Mn/pp

m Ca/% Cr/ppm Al/% Fe/% Mg/% Na/% K/% Class

A1 0.304 181 1007 642 60 1.64 8.342 3.542 0.458 0.548 1.799 A

A2 0.316 194 1246 792 64 2.017 8.592 3.696 0.509 0.537 1.816 A

A3 0.272 172 842 588 48 1.587 7.886 3.221 0.54 0.608 1.97 A

A4 0.301 147 843 526 62 1.032 8.547 3.455 0.546 0.664 1.908 A

A5 0.908 129 913 775 184 1.334 11.229 4.637 0.395 0.429 1.521 A

E1 0.394 105 1470 1377 90 1.37 10.344 4.543 0.408 0.411 2.025 A

E2 0.359 96 1188 839 86 1.396 9.537 4.099 0.427 0.482 1.929 A

E3 0.406 137 1485 1924 90 1.731 10.139 4.49 0.502 0.415 1.93 A

E4 0.418 133 1174 1325 91 1.432 10.501 4.641 0.548 0.5 2.081 A

L1 0.36 111 410 652 70 1.129 9.802 4.28 0.738 0.476 2.019 A

L2 0.28 112 1008 838 59 1.458 8.96 3.828 0.535 0.392 1.883 A

L3 0.271 117 1171 681 61 1.456 8.163 3.265 0.521 0.509 1.97 A

L4 0.288 103 915 558 60 1.268 8.465 3.437 0.572 0.479 1.893 A

L5 0.253 102 833 415 193 1.226 7.207 3.102 0.539 0.577 1.972 A

C1 0.303 131 601 1308 65 0.907 8.401 3.743 0.784 0.704 2.473 A

C2 0.264 121 878 921 69 1.164 7.926 3.431 0.636 0.523 2.032 A

C3 0.264 112 1622 1674 63 0.922 7.98 3.748 0.549 0.497 2.291 A

C4 0.252 111 793 750 53 1.171 8.07 3.536 0.599 0.551 2.282 A

C5 0.261 127 851 849 61 1.311 7.819 3.77 0.668 0.508 2.121 A

G8 0.397 177 582 939 61 1.26 8.694 4.146 0.656 0.579 1.941 A

G9 0.246 106 1121 795 53 1.332 8.744 3.669 0.571 0.477 1.803 A

G10 1.178 97 886 530 441 6.29 8.975 6.519 0.323 0.275 0.762 A

G11 0.428 457 1488 1138 85 1.525 9.822 4.367 0.504 0.422 2.055 A

P1 0.259 389 399 443 175 11.609 5.901 3.283 1.378 0.491 2.148 B

P2 0.185 233 456 601 144 11.043 4.674 2.743 0.711 0.464 0.909 B

P3 0.312 277 383 682 138 8.43 6.55 3.66 1.156 0.532 1.757 B

P6 0.183 220 435 594 659 9.978 4.92 2.692 0.672 0.476 0.902 B

P7 0.271 392 427 410 125 12.009 5.997 3.245 1.378 0.527 2.173 B

P8 0.203 247 504 634 117 11.112 5.034 3.714 0.726 0.5 0.984 B

P9 0.182 217 474 520 92 12.922 4.573 2.33 0.59 0.547 0.746 B

P14 0.271 257 485 398 955 11.056 5.611 3.238 0.737 0.458 1.013 B

P15 0.236 228 203 592 83 9.061 6.795 3.514 0.75 0.506 1.574 B

P16 0.288 333 436 509 177 10.038 6.579 4.099 1.544 0.442 2.4 B

P17 0.331 309 460 530 97 9.952 6.267 3.344 1.123 0.519 1.746 B

P18 0.256 340 486 486 132 9.797 6.294 3.254 1.242 0.641 1.918 B

P19 0.292 289 426 531 143 8.372 6.874 3.36 1.055 0.592 1.598 B

P20 0.212 260 486 605 123 9.334 5.343 2.808 1.142 0.595 1.647 B

F1 0.301 320 475 556 142 8.819 6.914 3.597 1.067 0.584 1.635 B

F2 0.305 302 473 573 102 8.913 6.86 3.677 1.365 0.616 2.077 B

F3 0.3 204 192 575 79 7.422 7.663 3.476 1.06 0.521 2.324 B

F4 0.225 181 160 513 94 5.32 7.746 3.342 0.841 0.657 2.268 B

F5 0.306 209 109 536 285 7.866 7.21 3.528 0.971 0.534 1.851 B

F6 0.295 396 172 827 502 9.019 7.775 3.808 1.649 0.766 2.123 B

F7 0.279 230 99 760 129 5.344 7.781 3.535 1.2 0.827 2.305 B

D1 0.292 104 993 723 92 7.978 7.341 3.393 0.63 0.326 1.716 B

D2 0.338 232 687 683 108 4.988 8.617 3.985 1.035 0.697 2.215 B

D3 0.327 155 666 590 70 4.782 7.504 3.569 0.536 0.411 1.49 B

D4 0.233 98 560 678 73 8.936 5.831 2.748 0.542 0.282 1.248 B

M1 0.242 186 182 647 92 5.303 8.164 4.141 0.804 0.734 1.905 B

M2 0.271 473 198 459 89 10.205 6.547 3.035 1.157 0.951 0.828 B

M3 0.207 187 205 587 87 6.473 7.634 3.497 0.763 0.729 1.744 B

G1 0.271 195 472 587 104 5.119 7.657 3.949 0.836 0.671 1.845 B

G2 0.303 233 522 870 130 4.61 8.937 4.195 1.083 0.704 1.84 B

G3 0.166 193 322 498 80 7.633 6.443 3.196 0.743 0.46 1.39 B

G4 0.227 170 718 1384 87 3.491 7.833 3.971 0.783 0.707 1.949 B

G5 0.323 217 267 835 122 4.417 9.017 4.349 1.408 0.73 2.212 B

G6 0.291 272 197 613 86 6.055 7.384 3.343 1.214 0.762 2.056 B

G7 0.461 318 42 653 123 6.986 8.938 4.266 1.579 0.946 1.687 B  
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Fig. 3.43. Loadings plot of PC2, p2, vs. PC1, p1. 

 

 
 

Fig. 3.44. Scores plot of PC2, t2, vs. PC1, t1. 

 

Inspection of the scores plot indicates that the two classes of samples behave differently. There 

is a general difference between two classes although there is also some overlapping of data. 

Besides, point for sample G10 is evidently an outlier. The Mahalanobis distances are shown in 

Fig. 3.45 for two classes of results. They were calculated using program maha.m which calls the 

subroutine mahaldist.m.3 Distinction between classes is well visible and G10 is evidently an 

outlier. 
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Fig. 3.45. Mahalanobis distances for classes A and B. 

 

Next, the outlier G10 was removed from data set and the whole analysis was repeated. The 

scores and loadings plots are displayed in Fig. 3.36 and 3.37 and the Mahalanobis distances in 

Fig. 3.48  

 

 
 

Fig. 3.46. Scores plot of PC2, t2, vs. PC1, t1 without outlier. 
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Fig. 3.47. Loadings plot of PC2, p2, vs. PC1, p1 without outlier. 

 

 
 

Fig. 3.48. Mahalanobis distances for classes A and B without outlier. 

 

After deletion of the outlier all the plots changed. Although scores are still somewhat 

overlapping the Mahalanobis plot shows clear distinction of the two classes. This means that if 

new samples of pottery are found they could be easily classified. Distinction between classes 

could also be carried out using analysis of two elements lying on two opposite ends in the center 

of each group, e.g Ba and Mg. This is visible from the scores and loadings biplot, Fig. 3.49,  

On the other hand, K and Na are approximately at right angles to the y axis and are poor for 

the discrimination of two classes. 
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Fig. 3.49. Scores and loadings biplot without the outlier. 

 

Exercise 3.8. 

Data in this example come from the chemical analysis of the geological samples from Troodos 

area of Cyprus.19 143 rock samples were obtained from different locations of Troodos area. In 

this example concentrations of 8 oxides were determined. Are all the samples similar? Are there 

any outliers? 

 

First, the PCA was conducted on all the data. As the numbers in X matrix are often very 

different, they were standardized. The scores plot is shown in Fig. 3.50 and loadings plot in Fig. 

3.51. Scores plot suggests that points 65 and 66 are outliers which do not belong to the total 

group while points 129 and 130 are possible outliers. Such outliers should be carefully inspected 

to understand their origin. The outliers should be removed sequentially (not all at the same time). 

As samples 65 and 66 are very close to each other they might be remover together.  

Next the PCA was carried out on 141 samples after removal of samples 65 and 66. The scores 

and loadings plots are displayed in Fig. 3.52 and Fig. 3.53, respectively. One can notice that 

samples 129 and 130 might also be outliers. In the next step samples 129 and 130 were removed 

from the analyzed data.  

The results of the PCA on 139 samples (without samples 65, 66, 129, and 130) are displayed 

below in Fig. 3.54 and Fig. 3.55. 
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Fig. 3.50. Scores plot of PC2, t2, vs. PC1, t1 for data in Exercise 3.8. 

 

 
Fig. 3.51. Loadings plot of PC2, p2, vs. PC1, p1. 
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Fig. 3.52. Scores plot of PC2, t2, vs. PC1, t1 for data in Exercise 3.8 after removal of points 65 

and 66. 

 

 
Fig. 3.53. Loadings plot of PC2, p2, vs. PC1, p1 after removal of points 65 and 66. 
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Fig. 3.54. Scores plot of PC2, t2, vs. PC1, t1 for data in Exercise 3.8 after removal of points 65, 

66, 129, and 130. 

 

 
Fig. 3.55. Loadings plot of PC2, p2, vs. PC1, p1 after removal of points 65, 66, 129, and 130. 
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Loadings plots show that there are two main groups of variables: MgO and CaO in one and the 

rest, i.e. 5 in the other (except one lonely Al2O3). This means that despite of 8 variables used 

there are two underlying geochemical phenomena. This grouping was not visible when all the 

points (with outliers) were used in the model but appeared after removing the outliers. This 

analysis revealed hidden grouping leading to a new geological hypothesis.19,25  

It is also interesting to compare variance explained as a function of the number of PCs. This is 

shown in Fig. 3.56. 

 

 
Fig. 3.56. Data variation explained (% cumulative) versus number of PCs using all points, after 

removing of two outliers, and after removing of four outliers. 

 

Improvement in modeling is observed after removing two or four points but the two results 

without outliers are similar. 

 

Exercise 3.9. 

The next model contains measurements of petal and sepal dimensions of three types of irises: 

setosa, virginica, and versicolor.19 Can these types of irises be distinguished by such 

measurements? 

Example of how the measurements of these parameters were carried out is displayed in Fig. 

3.57. These dimensions are in file Ex3-9.xlsx and Xdata.m and contain training and test data. 

Application of the PCA to all the data leads to the scores and loading plots in Fig. 3.58 and 3.59. 
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Fig. 3.57. Petal and sepal dimensions of irises. 

 

 
Fig. 3.58. Scores plot for all the data containing petal and sepal measurements of three types of 

irises.  
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Fig. 3.59. Loadings plot of PCA of the iris dimensions. 

 

Scores plot shows that the results for setosa are different from versicolor and virginica. 

However, although the centers of the scores for versicolor and virginica are different there is 

some overlapping of the scores.  

Next, Mahalanobis distances between the three iris types were calculated. These plots are 

shown in Fig. 3.60. They clearly indicate that setosa might be easily distinguished from 

versicolor and virginica but distinction between versicolor and virginica contain some 

overlapping of data.  
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Fig. 3.60. Mahalanobis distances between three types of irises. 

 

The total data contain training and test sets of data, 25 measurements each. The PCA was 

carried separately on training and test sets and compared together in Fig. 3.61. 

 

 
Fig. 3.61. Comparison of scores of the training and test sets of three types of irises. 

 

Three plots in Fig. 3.60 can also be displayed on one 3D plot, Fig. 3.62. 
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Three plots in Fig. 3.60 can also be displayed on one 3D plot, Fig. 3.62, where setosa is clearly 

distinct from other classes. 

This comparison shows clearly that versicolor and virginica sets are indistinguishable 

confirming that they follow the same model.  

 

 
 

Fig. 3.62. 3D plot of the Mahalanobis distances. 

 

Finally, applications of SIMCA method to distinguish (simcatest.m) to distinguish classes is 

displayed in Fig. 3.63. This analysis confirms that versicolor and virginica displays some 

overlapping, similarly to the methods presented above. 
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Fig. 3.63. Example of application SIMCA to distinguish three types of irises, 3D and 2D plots. 

 

Exercise 3.10. 

This example presents comparison of fresh, F, and stored, S, turnips (vegetable also called 

swede or rutabaga). To determine if they can be distinguished their extracts were analyzed by gas 

chromatography. The area under eight peaks was measured for 7 fresh and 7 stored turnips. It is 

presented in data file Xdata.m and in Ex3-10.xlsx. Is it possible to classify the data in two classes 

F and S using GC? Apply SIMCA to test samples, one fresh and one stored presented in Xtest.m. 

Can they be classified to F and S classes? 
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First, the data were transformed by taking logarithms and the classical PCA performed on 

standardized data. The scores and loadings plots are shown in Fig. 3.64. It is clear that the score 

for the point #7 is an outlier which should be removed from the analysis. The data file after 

removal of the point F #7 are in XS1.m. 
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Fig. 3.64. Scores and loadings plots for the first two PCs. 

 

Next, the PCA was performed on the new data set. The scores and loadings are displayed in 

Fig. 3.65. 

  

 
 

 

Fig. 3.65. Scores and loadings plots for the first two PCs without an outlier. 

 

From Fig. 3.65 it is visible that scores for fresh and stored turnips form two groups. 

Analysis using SIMCA was performed using simcatest.m which calls simca.m (using data 

without an outlier). The plot of class distances from class F and class S is displayed in Fig. 3.66. 

Although there are no obvious outliers or samples belonging to two classes, the sample #2 is 

slightly dubious and could be removed from the model. In all cases samples lying close to two 

classes should be carefully checked to find the possible reasons of their behavior. To check if the 
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model predictions are correct distances from the test set (F and S sample) were calculated as 

well. They are shown in Fig. 3.66 as larger squares. There is no doubt in classifying these 

samples as F and S, respectively. 

The result obtained after removal of point #2 is displayed in Fig. 3.67. As above, test set 

distances were also added. The two classes are well separated and chromatographic method can 

be used to distinguish between fresh and stored product. 

 

 
 

Fig. 3.66. Class distances calculated using SIMCA; the test set – squares 

 

 
Fig. 3.67. Results of SIMCA analysis after removal of point #2; the test set - squares. 
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4 Calibration 

The analysis presented above uses only the measurements, e.g. spectra, and does not allow to 

determine the concentrations.  

To determine concentrations, one uses a training data set (i.e. calibration set) for which 

concentrations are known for several spectra. Usually, mixture of species are used as it is not 

always possible (or desirable) to work with pure components. Habitually, training sets give 

relatively good auto-predictions as the model was constructed using these data sets. The next 

step is to test the quality of predictions using another independent test data set. This set contains 

other mixtures with known concentrations and is used to determine their concentrations using 

knowledge from the training set. It is normal that the predictions of the training set are worse 

than auto-prediction for the training set. Determination of the quality of prediction from the test 

set is called validation. If only training set is available then cross-validation for this set can be 

used. 

Finally, validated or cross-validated model is applied to the unknown data samples to 

determine the concentrations. 

There are two main methods which allow determination of concentrations for multivariate 

analysis: Principal Components Regression, PCR, and Partial Least Squares, PLS. They will be 

presented in the subsequent chapters. These methods base the predictions of concentrations on 

changes in the data, not absolute values of absorbances (like in the classical models). If the 

concentrations of components change in the same way, e.g. using dilution, this method will 

detect only one component. The wavelengths chosen might be selected randomly and there is no 

limit on the number of wavelengths. The advantage of these methods is that they can be used in 

analysis of very complex mixtures since only knowledge of constituents of interest is required. 

It should be added that the above methods assume linear relations between the measured signal 

and concentrations. 
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5 Principal Components Regression, PCR 

Principal Components Regression, PCR, uses principal components analysis, PCA, in analysis 

of the experimental data that is distribution of the data matrix into scores and loadings. As we 

have already seen scores and loadings are abstract matrix quantities but PCR uses regression, 

also called transformation or rotation, to convert principal component scores into 

concentrations. PCR might be used not only in spectroscopy but to calibrate other properties, 

for example the drug activity to molecular parameters of the drug, material properties to its 

structural parameters, etc. This method first uses the PCA to determine scores and loadings and 

then scores are regressed against concentrations.  

Matrix X(IJ), in spectroscopy, for multicomponent mixture of compounds, might be 

calculated knowing the concentrations C(IK) and spectra of individual components S(KJ) 

where K is the number of absorbing components. Using the Beer’s law one can write, see Eq. 

(3.2): 

 = +X CS E   (3.2) 

from which predicted spectra of individual components may be easily obtained: 

 ( )
1ˆ ' '
−

=S C C C X   (5.1) 

In the PCR the PCA is used. The aim of the PCR calibration procedure is to determine 

unknown concentrations, C, from the spectra, X. First, the training set for which concentrations 

are known is used to build up the model.  

Distribution of matrix X(IJ) into scores T(IR) and loadings P(RJ) for the number of 

principal components R  K, X = T P’, see Eq. (3.6), allows for the calculation of the scores T 

and a rotation or transformation matrix R(RK): 

 = +C TR E   (5.2) 

This equation presents regression of concentration to scores. Matrix R can be obtained from the 

above equation if the concentrations are known, using pseudoinverse, Eq. (2.17), of matrix T: 

 ( )
1

' '
−

=R T T T C   (5.3) 

When the number of PC equals number of compounds, R = K, rotation matrix is square, 

R(K,K). Finally one can rearrange PCA analysis into: 

 ( ) ( )1 ˆ ˆˆ ' '−= = =X TP TR R P CS   (5.4) 

which gives Eq. (3.2), where 

 
1ˆ ˆand '−= =C TR S R P   (5.5) 

It is evident that the predicted concentrations are related to the scores, T, and the spectra to 

the loadings, P. With the help of the rotation matrix R, calculated from Eq. (5.3), one can obtain 

the predicted concentrations, Ĉ , and the individual spectra, Ŝ , Eq. (5.5).  

In calculations of the predicted spectra, Ŝ , using Eqs. (5.1) and (5.5) for the raw data very 

similar values are obtained. However, smaller errors are obtained using Eq. (5.1) when data were 

centered. In the case of standardized data Eq. (5.5) gives standardized spectra while Eq. (5.1) 

gives correct values. When the concentrations in the training set are known the spectra of 

individual components may be calculated using X̂  predicted for R principal components: 
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 ( )
1ˆ ˆ' '
−

=S C C C X   (5.6) 

In conclusion, spectra of the analyzed species can be obtain using rotation matrix, Eq. (5.5) 

and Eqs. (5.1) or (5.6). 

5.1 Determination of the concentration from the analytical spectra  

Using the training set matrices: X and C PCA is performed and matrices T, P, and R 

calculated, then one can apply the PCR to determine unknown concentrations cu (vector) or Cu 

(matrix) from the spectrum xu or spectra Xu of unknown sample. First, scores vector ût  or matrix 

uT̂  must be determined from the loadings, P, of the training set, X = TP’, then from the relation 

u u
ˆ '=X T P u u

ˆ '=X T P  and taking into account that loadings are orthonormal ' =P P I : 

 u u
ˆ =T X P   (5.7) 

Next, the unknown concentration(s) uĈ , are determined using the calculated scores, uT̂  and the 

rotation matrix R of the training set, Eq. (5.3): 

 u u u
ˆ ˆ= =C T R X PR   (5.8) 

Of course, if the concentrations uC  are known these data are used as a test set. 

5.2 Model validation: self-prediction 

The simplest way of validation is to compare the predicted parameters (concentrations) with 

the known values used in the PCR analysis. This process is called self or auto-prediction. The 

comparison of the experimental ci and auto-predicted, Eq. (5.5), ˆ ic  concentrations allows to 

determine root mean square error of self-prediction concentrations, RMSsp:3 

 

 

( )
2

, ,

1
sp

ˆ

RMS ( , )

I

i k i k

i

c c

k r
I r f

=

−

=
− −


  (5.9) 

where the RMS error is calculated, for each compound, k, separately, and number principal 

components r, I is the number of spectra, and f the loss of degrees of freedom due to 

preprocessing; f = 0 for the raw data, f = 1 for the centered data (mean calculated), and f = 2 for 

the standardized data (mean and standard deviation calculated). 

This error might be also presented in % as: 

 
sp

sp

RMS ( , )
RMS ( , )(%) 100

k

k r
k r

c
= %  (5.10) 

where kc  is the average concentration of the component k: 

 1

I

ik

i
k

c

c
I

==


           (5.11) 

This is the simplest method of testing. However, the models are built using all the spectra in 

the training data set and then the same training set is predicted. Although the statisticians do not 
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recommend using of self-prediction to determine the number of principal components, the 

analytical chemists might know or have a good intuitive feeling of the noise level and they might 

be able to interpret the self-predictive errors in a physically meaningful manner.3 

5.3 Quality of the prediction of the measurement matrix X 

The quality of modeling may be tested comparing the experimental and calculated spectra (or 

more general measurements), Eq. (3.14), to determine the residual sum of squares, RSSX, from 

the experimental, X, and the calculated, X̂ , matrices using r principal components: 

 ( )
2

X , ,

1 1

ˆRSS ( )
I J

i j i j

i j

r x x

= =

= −   (5.12) 

The root mean square is obtained by division by the number of degrees of freedom I  J – r but 

because I  J is large and r small this number is often used as I  J: 

 X
X

RSS
RMS ( )r

I J
=   (5.13) 

This value might be presented as percentage (for the raw data): 

 X
X

RMS ( )
RMS ( )(%) 100

r
r

x
=   (5.14) 

5.4 Model validation: cross-validation 

The basis of the cross-validation were discussed in Section 3.3. It is sometimes called “leave-

one-out cross-validation” because from the training set containing I samples (spectra) one sample 

i is left out leaving I – 1 data set and then the model is used to predict concentrations of the 

removed sample i. This process is repeated for all the data sets. If the data set contains replicate 

spectra of the same sample each pair of replicates should be left out together. Such an analysis is 

usually carried out for centered data but might be also used for other preprocessing methods. The 

procedure used is as follows: 

 

1) From the original data set X(I,J) and C(I,K) remove one data set i = 1 obtaining XX(I–1,J) 

and CC(I-1,K) for i = 2…I. Choose number of PCs in the model (the process will be 

repeated for different number of PCs, from small to large) 

2) Perform PCA on matrix XX(I-1,J) with one deleted row i, obtain scores, T, and loadings, 

P. Obtain matrix R for the above data using standard regression technique: 

R = (T’T)-1 T’C, Eq. (5.3). 

3) Calculate predicted scores for the deleted data row, x1: 1 1
ˆ =t x P , Eq. (3.20), where the 

loadings P were obtained using data without this row. 

4) Calculate cross-validated concentrations for the removed data ˆˆcv
i i=c t R , Eq. (5.5). 

5) Repeat these operations for i = 2,…I 

6) Calculate PRESS and RMScv (see below) 

7) Increase number PCs by one and repeat all the operations. 
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The parameter PRESS (Predicted Residual Error Sum of Squares) for r PCs from 1 to R is 

calculated using an analog of Eq. (3.23) for concentrations, but in the examples below it is 

calculated as an average value, divided by the number of samples I: 

 

( )
2

,
, ,

1 1

ˆ

PRESS

I K
r cv

i k i k

i k
r

c c

I

= =

−

=


  (5.15) 

The root mean square of the concentrations of the component k and r principal components, 

obtained using cross-validation, cvRMS ( , )k r  is: 
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i
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k r
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=

−

=


  (5.16) 

This error is divided by the number of samples I because each sample in the original data set 

represents an additional degree of freedom no matter how many PCs were used or how the data 

were preprocessed.3  

5.5 Model validation: test set 

The best method of validation is to check the model used above to determine concentrations of 

an independent test set for which concentrations are known. It can be achieved in calibration if 

calibration data are divided in two parts, one as a training set containing I spectra and another as 

a test set containing L spectra. The training set is used to construct the multivariate model and 

the test set is used to test prediction of the “unknown” (test) data.  

The standard deviations of the concentrations (root mean square) in the test set are determined 

using equation similar to Eq. (5.16): 

 

( )
2

,
, ,

1
test

ˆ

RMS ( , )

L
r test

i k i k

i

c c

k r
L

=

−

=


  (5.17) 

testRMS ( , )k r  is determined for concentration k using r principal components and 
,

,ˆr test
i kc  are 

the calculated concentrations for the test set. 

 

Below several exercises will be present to allow better understanding of the theory shown 

above. The data are in the Matlab files. The solutions were obtained using PCA and PCR 

programs included. Their solutions are in the corresponding Excel files in different folders. The 

readers should try to repeat the calculations using these data and the programs (see Section 9.1) 

to see if the same results as those included in Excel files were obtained. 

 

Exercise 5.1.  

10 spectra of the mixtures of two compounds were recorded at eight wavelengths.3 They are 

presented in Table 5.1, Fig. 5.1, and in the files Ex5-1.xlsx and Xdata.m, containing matrix 

X(108), that is 10 spectra at 8 wavelengths. The corresponding concentrations are presented in 

Table 5.2, and in the files Ex5-1.xlsx and Cdata.m containing C(102), that is concentrations of 

two species for 10 mixtures.  
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Determine the number of principal components, PC, in the spectra, carry out principal 

components regression, PCR, and determine the estimated concentrations and the spectra of two 

compounds. Use self and cross-validation and data centering. 

 

Table 5.1. Spectra of two compounds measured at 8 wavelengths and 10 compositions of two 

compounds. 

    ~Wavelength    

Spectrum 

number 1 2 3 4 5 6 7 8 

1 0.07 0.124 0.164 0.171 0.184 0.208 0.211 0.193 

2 0.349 0.418 0.449 0.485 0.514 0.482 0.519 0.584 

3 0.63 0.732 0.826 0.835 0.852 0.848 0.877 0.947 

4 0.225 0.316 0.417 0.525 0.586 0.614 0.649 0.598 

5 0.533 0.714 0.75 0.835 0.884 0.93 0.965 0.988 

6 0.806 0.979 1.077 1.159 1.249 1.238 1.344 1.322 

7 0.448 0.545 0.725 0.874 1.005 1.023 1.064 1.041 

8 0.548 0.684 0.883 0.992 1.166 1.258 1.239 1.203 

9 0.8 0.973 1.209 1.369 1.477 1.589 1.623 1.593 

10 0.763 1.019 1.233 1.384 1.523 1.628 1.661 1.625 

 

 
 

Fig. 5.1. Ten spectra registered at 8 wavelengths for Exercise 5.1. 
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Table 5.2. Concentrations of two compounds A and B (in ppm) for 10 mixtures corresponding to 

the spectra in Table 5.1. 

No A B 

1 1 1 

2 2 5 

3 3 9 

4 4 2 

5 5 6 

6 6 10 

7 7 3 

8 8 4 

9 9 8 

10 10 7 

 

Performing the PCA on matrix X gives the results shown in Table 5.3. 

 

Table 5.3. Results for the PCA on matrix X using data centering in Exercise 5.1. 

 

PC i % Cumulative % 

1 11.13000 98.278% 98.278% 

2 0.18169 1.604% 99.883% 

3 0.00604 0.053% 99.936% 

4 0.00453 0.040% 99.976% 

5 0.00272 0.024% 100.000% 

 sum   

 11.32498 
 

  

 

The PCA analysis shows PC1 contributes 98.3% and PC2 1.6% tom the total variance of X. 

This would suggest that only one PC is important. However, we know that there are two true 

components in the analysis and small size of PC2 does not mean that it should be completely 

ignored.  

The cross-validation analysis was also carried out. The plots of PRESS and RMScv for different 

numbers of PCs using program PCRcross.m are illustrated in Fig. 5.2 and the values in Table 

5.4. It is clearly seen that these parameters decrease up to PC2 and then stay constant. This 

suggests that two PCs should be used. PC1 and PC2 explain 99.88% of the total variance and in 

the subsequent PCR two PCs will be used in the further analysis. 

Using PCR for two PCs gives the concentrations shown in Table 5.5. 
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Fig. 5.2. Plots of the parameters PRESS and RMScv for different number of principal 

components in Exercise 5.1. 

 

Table 5.4. Results of cross-validation of concentrations for data in Exercise 5.1. 

        RMScv PRESS

r 1 2

1 1.3664 2.4263 7.7542

2 0.29891 0.45529 0.2966

3 0.30681 0.43435 0.2828

4 0.34152 0.52676 0.3941

5 0.32829 0.50482 0.3626

6 0.27901 0.53348 0.3624  
 

Table 5.5. Concentrations of two components A and B auto-predicted using PCR analysis. 

A B 

1.0387 1.0936 

1.9512 4.9378 

3.1893 8.8220 

4.2119 1.5234 

4.6033 6.6373 

5.9997 9.8885 

6.8775 3.1888 

7.9304 4.1468 

9.4014 7.4790 

9.7966 7.2827 

 

The values of RMSsp (self-prediction of the training set) are 0.258 and 0.396 for species A and B 

separately. They are smaller than those obtained for cross-validations, RMScv, 0.299 and 0.455, 
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Table 5.4. Such a behavior is expected as cross-validation uses prediction of the removed 

concentrations 

The obtained results are relatively close to the experimental values. The absolute, (Ccalc - Cexp), 

and relative. (Ccalc - Cexp)/Cexp 100%, errors of the auto-predicted concentrations are shown in 

Fig. 5.3.   

 

 
 

Fig. 5.3. Absolute and relative errors of the auto-predicted concentrations in Exercise 5.1. 

 

It can be noticed that concentrations of species A are determined with smaller error (maximal 

value 7.9%) than species B (maximal error 23.8%). In general all the errors except one for 

species B are 10%. This might be expected as the second PC2 contributes only 1.6% to the total 

sum of eigenvalues. 

Comparison of predicted and experimental concentrations is illustrated in Fig. 5.4. Good 

linearity is found with larger deviations for species B (smaller determination coefficient R2). 

 

 
 

Fig. 5.4. Plots of the predicted (calculated) versus experimental concentrations for species A and 

B. 

Finally, the spectra of both components are calculated using Eq. (5.6). They are shown in Fig. 

5.5. 
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Fig. 5.5. Spectra of two components obtained from the PCR analysis. 

 

The PCR analysis and cross-validation allowed us to determine that there are two PCs in 

agreement with the number of species. PCR also allowed for auto-prediction of the 

concentrations and determination of the spectra of pure components. 

 

Exercise 5.2.  

The spectroscopic analysis was performed to determine concentrations. First, the training set 

was measured, it contained 9 spectra measured at 100 wavelengths, X(9,100), in file Xdata.m, 

obtained for different concentrations of two compounds, C(9,2), in Cdata.m. Next the validation 

set was measured, Xtest(5,100), file XVtest.m, for 5 different sets of concentrations, Ctest(5,2), 

file CVtest.m. All the original data are in the Excel file Ex5-2.xlsx. The spectra X are the same 

as in Exercise 3.5 and Fig. 1.1. 

Using PCR on the training set determine number of principal components, spectra of these 

components, concentrations using auto-validation. Next, use the knowledge from the training set 

to predict concentrations of the validation set and compare them with the experimental values. 

These data were prepared from the assumed spectra S of two compounds and concentrations6 

using Beer’s law X = C S, Eq. (3.2), by adding Gaussian noise N(0,1)*0.02 to each absorbance, 

where N(0,1) are the normally distributed random numbers with mean of 0 and standard 

deviation of 1. This presents the added random noise.  

The PCA analysis for matrix X was already presented in Exercise 3.5 and it indicates the 

presence of two PCs in agreement with two known concentrations. Further analysis using cross-

validation shows that the parameters RMScv and PRESS using PCRcross.m that these values 

decrease up to r = 2 and they stay relatively constant, see Fig. 5.6. These results are also shown 

in Table 5.6. The root-mean square of self-prediction of concentrations, RMSsp, shows similar 

behavior, Fig. 5.7. Self-prediction analysis was used to predict concentrations and it was carried 
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out using PCR program PCRtest.m. These concentrations for centered data and two PCs are 

presented in Table 5.7.  

 

Table 5.6. Dependence of the root mean-square errors of self-prediction and cross-validation of 

the concentrations on the number of PCs for the training set. 

 

RMSsp RMScv PRESS

PC A B A B

1 0.03651 0.17483 0.04214 0.19972 0.04167

2 0.00399 0.0065 0.00528 0.00901 0.00011

3 0.00405 0.00689 0.00542 0.00897 0.00011

4 0.00453 0.00743 0.00546 0.00898 0.00011

5 0.0044 0.00827 0.00537 0.00932 0.00012  
 

 
 

Fig. 5.6. Dependence of the root mean square of concentrations, RMScv and PRESS as a function 

of the number of principal components used in calculations. 

 

 
Fig. 5.7. Dependence of the root mean square of self-predicted concentrations, RMSsp as a 

function of the number of principal components used in calculations.   
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Table 5.7. Comparison of the experimental, ci,k and self-predicted ,ˆi kc  concentrations obtained 

using PCR method for two PCs and the centered data, together with their RMSsp (absolute and 

relative) errors, Eqs. (5.9) and (5.10). 

                 ci,k               ,ˆi kc  

0.1 0.9 0.106 0.896 

0.2 0.85 0.194 0.852 

0.3 0.55 0.298 0.553 

0.4 0.35 0.400 0.357 

0.5 0.5 0.498 0.492 

0.6 0.6 0.602 0.604 

0.7 0.25 0.703 0.241 

0.8 0.4 0.799 0.403 

0.9 0.1 0.900 0.103 

    

 RMSsp 0.0040 0.0065 

 RMSsp %   0.80% 1.30% 

 

The relative standard deviations, RMSsp, of the two self-predicted concentrations are 0.8% and 

1.3%, respectively. 

PCR method allows also to determine spectra of two components from the loadings, P, and the 

rotation matrix, R, using Eq. (5.5) or using Eq. (5.6). The calculated spectra (symbols) are 

compared with the theoretical (lines) used in simulations of the training spectra in Fig. 5.8. It is 

evident that the PCR analysis approximates well the spectra of two compounds present in the 

analysis. 

 

 
 

Fig. 5.8. Comparison of the theoretical (lines) and the calculated (symbols) spectra using Eq. 

(5.6) from the PCR analysis.  

 

The “unknown” concentrations of the validation test were calculated using the information 

from the training set in program PCRpred.m. The validation spectral data are in the file XVtest.m 
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and the concentrations in CVtest.m. The known and calculated concentrations using centered 

data are shown in Table 5.8. 

 

Table 5.8. Comparison of the known analytical and predicted (calculated) concentrations of the 

validation set using centered data. 

 

Analytical 

concentrations 

Predicted        

concentrations 

        A        B       A      B 

0.720 0.560 0.717 0.564 

0.300 0.500 0.306 0.492 

0.250 0.350 0.256 0.340 

0.600 0.600 0.598 0.595 

0.350 0.650 0.360 0.640 

 RMStest 0.0051 0.0065 

 RMStes % 1.1% 1.2% 

 

Comparison of the RMS values of the concentrations is displayed in Table 5.9.  

 

Table 5.9. Standard deviations of the concentrations of two components A and B obtained using 

auto-prediction and cross-validations for the training set and for the validation set. 

  
CA CB 

RMSsp self-prediction 0.003993 0.006501 

RMSsp self-prediction % 0.8% 1.3% 

RMScv cross-validation 0.005285 0.009008 

RMScv cross-validation % 1.1% 1.8% 

RMStest validation 0.005114 0.006541 

RMStest validation % 1.1% 1.2% 

 

Analysis of the above example was carried out assuming two principal components 

corresponding to two species present in the sample. Auto-prediction shows relative standard 

deviations of 0.8% and 1.3%. Cross-validation shows little larger errors of 1.1% and 1.8%. 

However, validation using a validation data set shows errors very close to the auto-prediction of 

1.1% and 1.2%. These results show that using PCR the unknown concentrations as well as the 

spectra of two components can be easily obtained. 

 

Exercise 5.3.  

To determine the concentrations during the reaction: A + B → C the flow injection analysis 

(FIA) was used and the UV/VIS spectra were recorded as function of time. In order to determine 

the concentration of three components, A, B, and C, a series of 25 three component mixtures 

were prepared as a training set (under the conditions where there was no reaction).3 The 

measured spectra, X, are in Fig. 5.9 and data file Xdata.m and Ex5-3.xslx. The corresponding 

concentrations, C, are in Cdata.m and Table 5.10. Carry out PCA and PCR analysis and 

determine auto-predicted concentrations. Use this knowledge to determine dependence of the 
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concentration as a function of time in spectra measured during reaction presented in file 

XVtest.m. Use data centering. 

 

 
 

Fig. 5.9. Training spectra of 25 mixtures of three compounds measured at 22 wavelengths in 

Exercise 5.3. 

 

Table 5.10. Concentration of three components A, B, and C, in 25 mixtures. 

 

 A 

(mM) 

B 

(mM) 

C 

(mM) 

1 0.276 0.090 0.069 

2 0.276 0.026 0.013 

3 0.128 0.026 0.126 

4 0.128 0.153 0.041 

5 0.434 0.058 0.126 

6 0.200 0.153 0.069 

7 0.434 0.090 0.041 

8 0.276 0.058 0.041 

9 0.200 0.058 0.098 

10 0.200 0.121 0.126 

11 0.357 0.153 0.098 

12 0.434 0.121 0.069 

13 0.357 0.090 0.126 

14 0.276 0.153 0.126 

15 0.434 0.153 0.013 

16 0.434 0.026 0.098 

17 0.128 0.121 0.013 
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18 0.357 0.026 0.069 

19 0.128 0.090 0.098 

20 0.276 0.121 0.098 

21 0.357 0.121 0.041 

22 0.357 0.058 0.013 

23 0.200 0.026 0.041 

24 0.128 0.058 0.069 

25 0.200 0.090 0.013 

 

The PCA analysis was carried up to 6 PCs. The results for centered data are shown in Table 5.11. 

 

Table 5.11. Results for the PCA on training spectra, matrix X, using data centering in Exercise 

5.3. 

PC i % Cumulative % 

1 3755.30 87.49% 87.49% 

2 353.91 8.25% 95.74% 

3 182.49 4.25% 99.99% 

4 0.29 0.01% 100.00% 

5 0.08 0.00% 100.00% 

6 0.04 0.00% 100.00% 

 sum   

 11.32498 
 

  

 

The PCA indicates that there are two or three PCs in the analyzed spectra. However,the presence 

of three PCs is confirmed by cross-validation. PRESS and RMScv were calculated using 

PCRcross.m program. They are displayed in Fig. 5.10 where decrease of these parameters is 

observed up to three PCs and after there are no important changes in their values. 

 

 
 

Fig. 5.10. Dependence of PRESS and RMScv on number of PC used. 

 

Using three PCs and PCR program PCRtest.m concentrations for the training set were self-

predicted. The values of RMSsp for the self-prediction are displayed in Table 5.12.  
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Table 5.12. Results of the self-prediction for Exercise 5.3. 

 

A B C

RMSsp 0.0074 0.0023 0.0014

RMSsp % 2.7% 2.6% 2.0%  
 

More detailed analysis of errors was obtained by plotting the absolute Ccalc - Cexp and relative 

errors (Ccalc - Cexp)/ Cexp 100% of individual concentrations in Fig. 5.11. 

 

 
 

Fig. 5.11. Absolute and relative errors of the concentrations in the training set using PCR 

analysis (auto-prediction). 

 

Absolute errors of absorbance are the largest for species A and all the relative errors are lower 

than 10% except for one set for species C. The good correlation between self-predicted and 

experimental concentrations for three species shown in Fig. 5.12. A very good linearity between 

these values (large values of R2) was found confirming good quality of self-predictions. 
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Fig. 5.12. Dependence of the calculated versus experimental concentrations for three components 

A, B, and C, determined using PCR analysis. 

 

PCR analysis permits determination of the individual spectra of the absorbing components. 

They are presented in Fig. 5.13. It can be noticed that there are small difference in the relative 

absorbances of these compounds which makes determination more difficult. However, as the 

analysis is carried out at 22 wavelengths relatively good linearity between experimental and 

calculated concentrations is observed. 

 

 
Fig. 5.13. Calculated spectra of three components, determined using the PCR analysis. 
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PCR analysis was applied to the spectra of reacting species in XVtest.m using program 

PCRpred.m and the concentrations of three components as a function of time were determined. 

They are presented in Fig. 5.14. 

 

 
Fig. 5.14. Dependence of the concentrations of three reacting species on time using PCR 

analysis. 

 

Obtained concentrations allow for the determination of the kinetics of chemical reaction taking 

place in solution by fitting the concentrations obtained above to the kinetic equations. 

 

Exercise 5.4.  

Nine training spectra of three compounds measured at 101 wavelengths were acquired. They are 

displayed in Fig. 5.15 and in files Xdata.m and Ex5-4.xlsx. The corresponding concentrations are 

included in Table 5.13 and file Cdata.m. Five spectra for the validation set are in file XVtest.m 

and the concentrations in Table 5.13  and file CVtest.m. 

Carry out PCR analysis. Use auto-prediction, cross-validation and validation methods. 

Determine how precisely validation set is estimated. Use data centering, 

First, the PCA was performed on the training set using centered data. The results are in Table 

5.14. They show that the second PC contributes only 1.54% and the third only 0.21%. These 

results suggest that there is only one important PC in the data. 

However, the cross-validation analysis shows that PRESS and RMSsp decrease until the third PC 

and then they stay practically constant. These results are displayed in Fig. 5.16. They suggest 

that although the first PC explains 98.16% of the dependence three PCs should be used in the 

analysis of the experimental data, in agreement with three chemical components used. 
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Fig. 5.15. Nine training spectra of three compounds. 

 

Table 5.13. Concentrations of the training and validation sets. 

 

 No A B C 

Calibration 

(training) 1 0.90 0.85 0.15 

 2 0.80 0.35 0.25 

 3 0.70 0.25 0.10 

 4 0.60 0.95 0.15 

 5 0.50 0.45 0.20 

 6 0.40 0.15 0.15 

 7 0.20 0.55 0.10 

 8 0.30 0.65 0.25 

 9 0.10 0.75 0.20 

Validation 10 0.55 0.70 0.25 

 11 0.75 0.50 0.15 

 12 0.25 0.30 0.20 

 13 0.35 0.80 0.15 

 14 1.45 0.20 0.20 
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Table 5.14. PCA on the training set for centered data. 

 

PC i % Cumulative % 

1 56.9159 98.16% 98.16% 

2 0.8915 1.54% 99.70% 

3 0.1226 0.21% 99.91% 

4 0.0282 0.05% 99.96% 

5 0.0233 0.04% 100.00% 

 sum   

 57.9815 
 

  

 

 
 

Fig. 5.16. The plots of the parameters PRESS and RMScv for cross-validation of the training set. 

 

Self-prediction using the training set allows for calculation of concentrations and the spectra of 

three compounds. The RMSsp of the auto-predicted concentrations for these compounds are 

shown in Table 5.15. 

 

Table 5.15. RMS analysis of the auto-prediction in PCR analysis for centered data. 

 A B C 

RMSsp 0.0175 0.0159 0.0058 

RMSsp % 3.5% 2.9% 3.4% 

Average 

concentration 0.50 0.55 0.17 

 

The above analysis shows that the concentrations are predicted with the maximal error of 3.5% 

despite low contribution of the second and the third PC to the total variation. The plots of the 

self-predicted versus experimental concentrations are shown in Fig. 5.17. The correlation 

(R2>0.99) is very good. 
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Fig. 5.17. Plots of the self-predicted versus experimental concentrations for three compounds 

present in the mixture. 

 

The estimated spectra are shown in Fig. 5.18. Spectra for components A and B are estimated 

with low noise and the spectrum for C with larger noise. This effect is related to the fact that the 

average concentration of C is three times lower than that of components A and B. 

 

 
Fig. 5.18. Spectra of the three components obtained from the PCR analysis. 

 

Finally, validation was carried out using validation data set and the loading P from the training 

set, Eqs. (5.7) and (5.8). The RMStest results are shown in Table 5.16.  
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Table 5.16. RMStest analysis of the concentrations in the validation set. 

 

 A B C 

RMStest 0.01359 0.00927 0.00984 

RMStest % 2.0% 1.8% 5.2% 

Mean 

concentration 0.67 0.50 0.19 

 

These results show that the concentrations of species A and B were determined with the error 

of ~2% but those for species C with larger error of 5.2%. These errors are in agreement with 

much lower concentration of C in the mixture and low contribution off the PCs two and three. 

Details of all the calculations are in the file Ex1-9.xlsx. 

 

Exercise 5.5. 

Kinetics of the reaction A B C→ →  was measured by registering spectra as functions of time.6 

First, spectra of the mixtures of these three components were measured under the conditions 

where there is no reaction. They are present in file Xdata.m and the corresponding concentrations 

in Cdata.m and in Ex5-5.xlsx. The training spectra are also displayed in Fig. 5.19.  

 

 
 

Fig. 5.19. Training spectra for different mixtures of three components. 
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Next, the spectra during the reaction were measured at times from zero to 21 s. They are in file 

XVtest.m and are displayed in Fig. 5.20. Cary out the PCR analysis and determine the 

concentrations as functions of time and the spectra of individual components. 

 

 
Fig. 5.20. Spectra measured at different times during chemical reaction. 

 

Application of the PCA to the training data set gives the results shown in Table 5.17. They show 

the importance of two to three components, the third contributes 4.48% and the three 

components explain 99.88% of variation. The analysis using cross-validation is shown in Fig. 

5.22 and shows that PRESS and RMScv parameters decrease down to 3 PCs and then they stay 

practically unchanged. The calculated spectra of the three components are displayed in Fig. 5.21. 

There is a good agreement between the calculated and theoretical spectra used to simulate the 

“experimental” spectra with noise. 

 

Table 5.17. Results of the PCA for the training set. 

 

PC i % Cumulative % 

1 18.9118 82.076% 82.076% 

2 3.07130 13.329% 95.405% 

3 1.03170 4.478% 99.883% 

4 0.01201 0.052% 99.935% 

5 0.01053 0.046% 99.981% 

6 0.00443 0.019% 100.000% 

 sum   

 23.0417 
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Fig. 5.21. Spectra of the three components in the training set; points – predictions, lines 

theoretical assumed in data preparation. 

 

 
 

Fig. 5.22. PRESS and RMScv parameters as functions of the PC number obtained using cross-

validation of training data set. 

 

Next, loadings determined on training data were used to predict concentration of the test set 

containing unknown (validation) concentrations. They are shown in Fig. 5.23 and compared with 

the theoretical concentrations assumed for the simulation of spectra (with added noise). Very 

good agreement between the experimental and theoretical profiles was found. Analysis of the 

concentration profiles allows for the determination of the reaction kinetics spectroscopically. 
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Fig. 5.23. Concentration spectra of the three components as function of time; points – calculated, 

lines - theoretical. 

 

Exercise 5.6. 

In order to analyze overlapping chromatograms a training set of known concentrations in 

Cdata.m and Table 5.18 was used and the obtained spectra are in Xdata.m and Fig. 5.24 

(Gaussian noise was added). Next, the spectra as function of time during the chromatographic 

elution were recorded. They are in XVdata.m and Fig. 5.25. Using the PCR determine the 

chromatographic concentrations profiles vs. time. 

 

Table 5.18. Concentrations of two components used in the training data set. 

A B 

0.83 0.05 

0.71 0.50 

0.49 0.10 

0.27 0.91 

0.90 0.69 

0.86 0.66 

0.07 0.14 

1.20 0.20 

 

The PCA analysis is displayed in Table 5.19. It shows the presence of two PCs. 
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Fig. 5.24. Spectra obtained for the training set of data in Cdata.m. 

 

 
Fig. 5.25. Spectra recorded during the chromatographic analysis. 

 

Table 5.19. Results of the PCA for the training data set and centered data. 

 

PC i % Cumulative % 

1 9.4637 93.234% 93.234% 

2 0.6762 6.662% 99.896% 

3 0.0041 0.040% 99.936% 

4 0.0038 0.037% 99.973% 

5 0.0027 0.027% 100.000% 

 sum   

 10.1505 
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This is also confirmed by the cross-validation. Both PRESS and RMScv decrease until PC = 2 

and then stay constant or increase slightly, Fig. 5.26. 

 

 
 

Fig. 5.26. Results of the cross-validation of the training set. 

 

The PCR analysis permits determination of the spectra of two components present in the 

mixtures. The calculated spectra ( Ŝ ) are displayed in Fig. 5.27. 

 

 
 

Fig. 5.27. Spectra of two components, Ŝ , obtained from PCR analysis from the training data set.  

 

The root mean square of self-prediction, RMSsp, is 0.0071 and 0.0043 for both components 

which corresponds to 1.07% and 1.06% relative value. 
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Finally, using PCR analysis concentrations of the analyzed test set were determined using 

program PCRpred.m. The calculated concentrations as a function of time are presented in Fig. 

5.28. The calculated concentrations, points, are compared with the assumed concentrations, lines, 

used to simulate the spectra. A Gaussian absolute noise 0.01*N(0,1) was later added to the 

simulated spectra. 

 

 
 

Fig. 5.28. Concentration profiles during the chromatographic analysis; points - calculated 

concentrations, lines – assumed concentrations used to simulate the spectra. 

 

It is obvious that the PCR analysis of the overlapping spectra of the two compounds permits 

good resolution of the overlapping chromatograms. 
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6 Partial Least Squares (PLS)  

 

PLS is considered as the most important regression technique for multivariate data analysis.3,26 

Although it is similar to PCR the decomposition is performed differently, using simultaneous 

decompositions of the spectra and concentrations. It takes advantage of the correlation between 

the spectral data X and the component concentrations C. It also takes into account errors in both 

the spectra and the concentrations (while PCR assumes that errors are only in the spectra X). The 

eigenvectors and scores calculated using PLS are different from those obtained using PCR. PLS 

is an important tool when there is only partial knowledge of the data. PLS is a good alternative to 

the more classical multiple linear regression and principal component regression methods 

because it is more robust. Besides in spectroscopy and chromatography it was very successful in 

other area as quantitative structure-activity relationships, QSAR.27 

There are two implementations of PLS: PLS1 and PLS2. In PLS2 algorithm uses the 

concentration matrix of all species studied while in PLS1 only uses one concentration vector 

corresponding to one species and the procedure is repeated for each species separately. 

6.1 PLS2 

In PLS2 the scores, T, for the spectra, X, and for the concentrations, C, are common: 

 '= +X TP E   (6.1) 

 '= +C TQ F   (6.2) 

where P and Q are the loadings of X and C, and E and F are the errors which should be 

minimized simultaneously. Centering of both X and C matrices is usually used but when 

concentration ranges or units of different components are different the standardization of both 

matrices is used. PLS is an iterative process until sum of square difference of old and new scores 

becomes small.  

The algorithm used is as follows:3 

1) Center or standardize X and C columns. Both components must be preprocessed in the 

same way.  

2) Start with Ĉ  equal to 0 (for centered concentrations the predicted concentrations are equal 

to mean concentrations after the inverse preprocessing that is returning to original values). 

3) Construct a vector u containing initial guess of concentrations e.g. one of the columns in 

the initial preprocessed concentration, matrix, C. 

4) Calculate the vector h 

 '=h X u   (6.3) 

5) Calculate the guessed scores 

 

2

ˆnew

h

=



X h
t   (6.4) 

If it is the first iteration remember the scores, call them initial
t .  

6) Calculate the guessed loadings 
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2

ˆ '
ˆ

t̂

=



t X
p   (6.5) 

7) Calculate concentrations loading’s vector 

 
2

ˆ'
ˆ

t̂

=



C t
q   (6.6) 

8) Calculate a new vector u  

 

2

ˆ

q

=



Cq
u   (6.7) 

and return to step 4). 

 

Check for convergence 

9) If this is the second iteration, compare the new and old scores vectors for example, by 

looking at the size of the sum of square difference in the old and new scores, i.e. 

( )
2

ˆ ˆinitial newt t− . If this is small the PLS component has been adequately modelled, set 

the PLS scores (t) and both types of loadings (p and c) for the current PC to t̂ , p̂ , and q̂ . 

Otherwise, calculate a new value of u as in step 8) and return to step 4). 

 

Compute the component and calculate residuals 

10) Subtract the effect of the new PLS component from the data matrix to obtain a residual 

data matrix 

 'resid = −X X tp   (6.8) 

11) Determine new concentrations estimated 

 ˆ ˆ 'new initial= +C C t q   (6.9) 

and sum the contribution of all components calculated to give an estimated ĉ . Calculate 

 ˆresid true= −C C C   (6.10) 

12) To determine further components replace both X and C by residuals and return to step 3). 

 

This process is performed using PLS2.m. Reader may follow details of calculations in pls3.m.3 

Very often PLS2 estimates of concentration are worse than those by PLS1, so a good strategy 

might be to perform PLS2 as a first step, which could provide further information such as which 

wavelengths are significant and which concentrations can be determined with a high degree of 

confidence, and then perform PLS1 individually for the most appropriate compounds. 
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6.2 PLS1 

This method is similar to PLS2 and might be described by the following Eqns. 

'= +X TP E            (6.1) 

 = +c T q f    (6.11) 

where matrices C, Q, and F in Eq. (6.2) were replaced by vectors c, q, and f in Eq. (6.11). As in 

PLS2 the matrix of scores T is common to both the concentrations, c, and measurements, X. It 

should be noticed that scores, T, and loadings, P, obtained for PLS are different from T and P 

obtained using PCA because PCA does not take into account the c data. Here, a unique set of 

scores and loadings is obtained for each component in the analysis.  It should also be noticed that 

although the scores, T, are orthogonal, as in PCA, the loadings are neither normalized nor 

orthogonal. One interesting feature of PLS1 is that knowledge of the number of principal 

components and the concentrations of one species allows to carry out the analysis and to predict 

unknown concentrations of one component from the measurement matrix Xu of these 

components. 

Implementation of the PLS1 algorithm is described below: 

1) First the data should be preprocessed by centering or standardization. Usually only 

centering is used. 

2) Select one vector of concentrations corresponding to one species, c. Start with an estimate 

of ĉ  which is a vector of 0 (equal to the mean concentration if the vector is centered).  

3) Calculate vector h: 

 '=h X c   (6.12) 

4) Calculate the scores:   

 
2h

=



X h
t   (6.13) 

5) Calculate the loading of x  

 
2

'

t
=



t X
p   (6.14) 

6) Calculate the loading q of c which is a scalar (in PLS2 it is a vector)  

 
2

'
q

t
=



c t
  (6.15) 

7) Compute the contribution to the concentration t q and the contribution to x, t p 

8) Subtract the effect of the new PLS component from the data matrix to get a residual data 

matrix:  

 'resid = −X X tp   (6.16) 

 

9) Determine the new estimation of concentrations: 

 ˆ ˆ 'new initial= +c c tq   (6.17) 

and sum the contribution of all components calculated to give an estimated ĉ . Note that the 

initial concentration estimate is 0 (or the mean) before the first component has been computed.  

Calculate: 
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 ˆresid true new= −c c c   (6.18) 

where true
c  is, like all values of c, after the data have been preprocessed (such as centering).  

 

10) If further components are required, replace both X and c by the residuals and return to step 

3).   

The PLS calculations might be followed in Matlab program PLS1.m. 

 

Calculation of the unknown concentrations from Xu spectra may be achieved using 

PLS1pred.m or PLS2pred.m. Cross-validation is performed using PLScross.m. Below PLS 1 and 

PLS2 will be illustrated in a few examples.  

 

Exercise 6.1.  

Carry out PLS1 and PLS2 analysis for the data in Exercise 5.1. 

 

Cross-validation using PLS applied the experimental data using PLScross.m confirms that 

there are only two principal components. The results of the parameters PRESS and RMScv are 

displayed in Fig. 6.1. 

 
Fig. 6.1. Plots of PRESS and RMScv as functions of the number of principal components. 

 

In performing PLS1 two concentration matrices CA.m and CB.m containing two vectors from 

the matrix C, each containing one column for one species, are used. The program PLS1 

(PLS1A.m and PLS1B.m) is executed for each concentration vector separately. Comparison of 

RMSsp of self-prediction of concentrations using PLS1 and PLS2 is shown in Table 6.1 and 

compared with the earlier found values from PCR in Exercise 5.1. 

 

Table 6.1. Comparison of the root-mean square errors of self-prediction, RMSsp, for three 

methods used. 

compound A B 

PCR 0.2576 0.3962 

PLS1 0.2535 0.3908 

PLS2 0.2542 0.3907 

 

These results indicate that the errors of self-prediction are very similar with very little smaller 

values for the PLS method.  
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Exercise 6.2.  

Use PLS method to analyze data in Exercise 5.2, center the experimental data. 

 

Cross-validation using PLScross.m shows that there are two principal components, in 

agreement with two concentration components, see Fig. 6.2. 

 

 
 

Fig. 6.2. Dependence of the cross-validation parameters PRESS and RMScv as functions of the 

number of principal components. 

 

Comparison of the root mean squares of self-prediction, RMSsp, of concentrations for the PLS 

(PLS1A.m, PLS1B.m, PKS2.m) and PCR is shown in Table 6.2. It is clear that all these methods 

give similar errors of prediction. 

 

Table 6.2. Comparison of the root mean squares of self-prediction, RMSsp, of concentrations for 

the determination using PCR, PLS2, and PLS2. 

Component A B 

PCR 0.0040 0.0065 

PLS1 0.0040 0.0064 

PLS2 0.0039 0.0064 

 

PLS method can also be used to determine concentrations of the validation set. Comparison of 

the obtained results, RMStest is presented in Table 6.3. 

 

Table 6.3. Comparison of the root mean squares of validation, RMStest, of concentrations for the 

determination using PCR, PLS2, and PLS2. 

Component A B 

PCR 0.0051 0.0065 

PLS1 0.0060 0.0077 

PLS2 0.0061 0.0077 

 

In this case also the results are similar but those obtained using PCR are slightly better. 
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Exercise 6.3.  

Carry out analysis of the data in Exercise 5.3 using PLS1 and PLS2. 

 

First, the cross-validation is performed to determine the number of PCs in the data set. 

Dependence of the parameters PRESS and RMScv on the number of principal components is 

displayed in Fig. 6.3. These parameters decrease up to three PCs which suggests that only three 

principal components are important and the higher PCs approximate only the random noise. 

 

 
 

Fig. 6.3. Dependence of the cross-validation parameters PRESS and RMScv on the number of 

PCs using PLS method.  

 

Comparison of the self-prediction errors RMSsp of all three methods (PCR, PLS1, and PLS2) 

shows identical results as in Table 5.12, see file Ex6-3.xlsx and the predictions of the 

concentrations during the reaction are also practically the same. All these methods lead here to 

the same results. 

 

Exercise 6.4.  

Analyze data in Exercise 5.4 using PLS1 and PLS2. 

 

Cross-validation of the experimental data, Fig. 6.4, indicates that there are three PCs in the 

system in agreement with three components analyzed. 

 

 
 

Fig. 6.4. Cross-validation analysis of the data using PLS. 

 



114 

Using three PCs and self-prediction of concentrations the following results were obtained, Table 

6.4. 

 

Table 6.4. Comparison of the root mean squares of self-prediction, RMSsp, of concentrations for 

the determination using PCR, PLS2, and PLS2. 

 

Component A  B C 

PCR 0.0175  0.0159 0.0058 

PLS1 0.0150  0.0135 0.0049 

PLS2 0.0152  0.0143 0.0047 

 

In this case the RMSsp is smaller using PLS method. 

Comparison of the results obtained for the validation test, RMStest, is shown in Table 6.5. In 

general, the errors of the concentration determination are similar but for the component A they 

are slightly smaller using PCR. 

 

Table 6.5. Comparison of the root mean squares of validation, RMStest, of concentrations for the 

determination using PCR, PLS2, and PLS2. 

 

Component A B C 

PCR 0.0136 0.0093 0.0098 

PLS1 0.0150 0.0102 0.0107 

PLS2 0.0150 0.0102 0.0109 

 

Exercise 6.5.  

Analyze data in Exercise 5.5 using PLS1 and PLS2. 

 

The results of the cross-validation are presented in Fig. 6.5. They indicate that there are three 

PCs in agreement with three components present.  

 

 
 

Fig. 6.5. Cross-validation analysis of the data using PLS. 

 

Comparison of the results obtained for the self-prediction, RMSsp, is shown in Table 6.6. The 

errors of the concentration determination by the three methods are similar. 
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Table 6.6. Comparison of the root mean squares of self-prediction, RMSsp, of concentrations for 

the determination using PCR, PLS2, and PLS2. 

 

Component A B C 

PCR 0.00361 0.00262 0.00271 

PLS1 0.00359 0.00259 0.00269 

PLS2 0.00360 0.00261 0.00269 

 

Comparison of predictions for the unknown concentrations shows that the results obtained by 

three methods are also similar. Comparison of the predicted concentrations with those used for 

the simulations of the spectra is shown in Table 6.7. 

 

Table 6.7. RMStest values for the prediction of concentrations during chemical reaction, 

compared with the concentrations used in simulation of the spectra. 

 

Component A B C 

PCR 0.020 0.014 0.023 

PLS1 0.0096 0.0067 0.0113 

PLS2 0.0096 0.0067 0.0113 

 

The root mean squares errors of prediction of concentrations for PLS are smaller than those for 

PCR. Besides, errors for the species C are larger than those for A and B. 

 

Exercise 6.6.  

Analyze data in Exercise 5.6 using PLS1 and PLS2. 

 

The cross-validation analysis, Fig. 6.6, shows that there are two principal components in 

agreement with the two concentrations.  

 

 
 

Fig. 6.6. Cross-validation analysis of the data using PLS. 

 

Analysis of RMSsp for PLS1 and PLS2 gives exactly the same results as in for PCR, Exercise 

5.6.  
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Predicted concentrations were compared with those used in the simulation of the spectra. The 

corresponding RMStest values are included in Table 6.8. It is evident that PLS techniques produce 

lower fitting errors than the PCR. Of course, on the chromatographic plot the differences 

between PCR and PLS are not noticeable. 

 

Table 6.8. Comparison of the RMStest values for the predicted concentrations. 

 

Component A B 

PCR 0.0184 0.0127 

PLS1 0.00824 0.00568 

PLS2 0.00720 0.00540 

 

Exercise 6.7.  

In the analysis of the complex mixture of 10 components spectra of 25 mixtures were measured 

at 27 wavelengths; they are in files Cdata.m and Xdata.m. Then, the spectra of 25 validation 

mixtures of these components were registered; they are in CVdata.m and XVdata.m. Analyze 

these mixtures using the PCR, PLS2, andPLS1 methods. The data and the results are included in 

the Excel file Ex6-7.xlsx. Use data centering. 

 

This is the most difficult example because of the presence of so many components. The 

training set contains 25 spectra measured at 27 wavelength, they are in the matrix X(25,27) and 

the concentrations of these components in C(25,10). 

Let us start first with the PCR. First, the number of principal components should be 

determined. It can be carried out in the PCRtest.m program which shows the values of  for the 

principal components. They are displayed in Table 6.9. It is clear that the first four PCs explain 

96.7% and 6 PCs explain 99.3% of the total variation. This means that the further PCs explain 

little variation. However, there are 10 components in the mixture and we would like to get all the 

possible information. 

To further analyze the data the cross-validation in PCR was carried out. The plots of the 

parameters PRESS and RMScv are shown in Fig. 6.7.  

 

Table 6.9. Sizes of the first 14 principal components, PCs using PCA.  

 

PC i % Cumulative % 

1 10.24642 79.269% 79.269% 

2 1.078059 8.340% 87.609% 

3 0.803598 6.217% 93.826% 

4 0.375435 2.904% 96.730% 

5 0.207632 1.606% 98.336% 

6 0.130350 1.008% 99.345% 

7 0.043285 0.335% 99.680% 

8 0.021185 0.164% 99.843% 

9 0.007670 0.059% 99.903% 

10 0.006093 0.047% 99.950% 

11 0.002491 0.019% 99.969% 
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12 0.001674 0.013% 99.982% 

13 0.001635 0.013% 99.995% 

14 0.000678 0.005% 100.000% 

 sum   

 12.92621 
  

  

 

 

 
 

Fig. 6.7. Cross-validation analysis in PCR: plots of the parameters PRESS and RMScv versus the 

number of PCs. 

 

Both parameters decrease up to PC =10 and then they are constant or increase slightly. These 

confirms that 10 PCs might be used in the analysis, in agreement with the number of compounds 

in the mixtures. Similar results were obtained using cross-validation in PLS; the results are 

shown Fig. 6.8.  

 

 
 

Fig. 6.8. Cross-validation analysis in PLS: plots of the parameters PRESS and RMScv versus the 

number of PCs. 

 

Using 10 PCs the self-predicted concentrations were calculated and compared in Table 6.10. 

The values for PLS1 were calculated for each component separately. 
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Table 6.10. Results of the self-prediction of concentrations in the training set; the values of 

RMSsp are given for all 10 components. 

 
1 2 3 4 5 6 7 8 9 10

PCR RMSsp 0.0285 0.0072 0.0189 0.0102 0.0343 0.0413 0.0169 0.1221 0.0136 0.0498

RMSsp% 6.3% 6.0% 11.2% 8.5% 10.2% 2.5% 14.1% 20.3% 11.3% 8.8%

PLS1 RMSsp 0.0137 0.0047 0.0129 0.0048 0.0208 0.0191 0.0074 0.0711 0.0111 0.0351

RMSsp% 3.0% 3.9% 7.7% 4.0% 6.2% 1.2% 6.2% 11.9% 9.3% 6.2%

PLS2 RMSsp 0.0237 0.006 0.0179 0.0079 0.0284 0.0338 0.013 0.0962 0.0126 0.046

RMSsp% 5.2% 5.0% 10.7% 6.6% 8.5% 2.1% 10.8% 16.0% 10.5% 8.2%  
 

It can be noticed that the relative errors of self-prediction are the largest for the PCR and the 

smallest for the PLS1. 

The comparison of the predicted and assumed concentrations for PCR is illustrated in Fig. 6.9. 

It is clear that the worst correlation was obtained for compound No 8 for which the largest 

RMSsp is observed. The best correlations (>0.99) were found for components 1, 2, and 6. Of 

course better correlations were found for the results obtained using PLS, especially for PLS1. 

PCR allows for the determination of the spectra of all 10 compound. They were calculated 

using Eq. (5.6) and compared with the assumed spectra in Fig. 6.10. It is evident that the spectra 

were well reproduced even in the cases where the self-prediction errors were higher. 
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Fig. 6.9. Dependence of the self-predicted and assumed concentrations of 10 components 

obtained using PCR. 
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Fig. 6.10. Comparison of the self-predicted (points) and assumed (lines) spectra of the 

components form the PCR method. 

 

Finally, using information from the training (test) set the concentrations were calculated for the 

validation set and compared with the assumed values. They are displayed in Table 6.11. 

 

Table 6.11. Results of the prediction of concentrations in the validation set; the values of RMStest 

are given for all 10 components. 
1 2 3 4 5 6 7 8 9 10

PCR RMStest 0.033 0.0083 0.0342 0.0116 0.0486 0.0479 0.0313 0.14 0.0229 0.1167

RMStest% 7.32% 6.99% 19.68% 9.44% 14.12% 2.96% 25.47% 24.21% 19.46% 21.61%

PLS1 RMStest 0.0238 0.0067 0.0225 0.0092 0.0376 0.0426 0.0244 0.1165 0.0189 0.0777

RMStest% 5.29% 5.58% 13.11% 7.50% 10.99% 2.63% 19.82% 20.04% 15.96% 14.19%

PLS2 RMStest 0.0247 0.0064 0.0257 0.0087 0.0385 0.0378 0.0239 0.1055 0.0181 0.0878

RMStest% 5.48% 5.39% 14.85% 7.08% 11.19% 2.33% 19.51% 18.24% 15.40% 16.20%  
 

The errors of prediction are lower when PLS method is used but there are no significant 

differences between PLS1 and PLS2 here.  
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Exercise 6.8. 

The next exercise contains the same concentrations as in the exercise above but as the spectra 

in Exercise 6.7 were simulated with the Gaussian noise added whereas the spectra in the present 

exercise are experimental coming from Brereton.3  

Analyze the learning data X(2527) and C(2510) and then use the knowledge to validate 

spectra Xtest(2527), predict the concentrations, and validate them versus the experimental 

concentrations in Ctest(2510). All the data are in file pahdat.m. Both, the learning and 

validation spectra have the same dimensions and there are 10 components in the mixture. All the 

data are included in file pahdat.m.3 Use PCR and PLS. 

 

First, let us start with the PCA analysis. Using data centering and standardization the results 

shown in Table 6.12 were obtained. 

 

Table 6.12. Results of PCA analysis on training data. 

raw data  centered  standardized  
i % i % i % 

183.6794 98.9273% 8.690716 84.332% 523.8251 77.740% 

1.018452 0.5485% 0.727779 7.062% 63.6085 9.440% 

0.503371 0.2711% 0.421568 4.091% 33.1315 4.917% 

0.214053 0.1153% 0.213529 2.072% 26.8114 3.979% 

0.178061 0.0959% 0.176635 1.714% 15.2296 2.260% 

0.043008 0.0232% 0.042977 0.417% 5.7527 0.854% 

0.013223 0.0071% 0.013165 0.128% 2.0830 0.309% 

0.010914 0.0059% 0.008474 0.082% 1.6278 0.242% 

0.00621 0.0033% 0.006169 0.060% 0.9356 0.139% 

0.004317 0.0023% 0.004317 0.042% 0.8104 0.120% 

 

In such a complex mixture the analysis of raw data suggests one PC. Assuming here that we 

accept that 1% of the explained data the centered and standardized data are explained by 5 PCs. 

This is much less than 10 components present. Let us look at the cross-validation using PCR. 

The plots of PRESS and RMScv are displayed in Fig. 6.11 and 6.12. 

 
Fig. 6.11. Plot of the parameter PRESS vs. number of PCs for cross-validation of the training 

data using PCR.  
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Fig. 6.12. Dependence of the root mean square of cross-validation of the learning data set, 

RMScv, versus number of PCs for 10 component analysis using PCR. 

 

PRESS parameter shows gradual decrease with sharper step around 10 PC and then it stays 

constant. The behavior of RMScv is more complicated, some components display sharp decrease 

around 10 PCs but other more pronounced decrease at different values of PCs even increase, see 

Fig. 6.13. 

 
Fig. 6.13. Examples of the dependence of RMScv vs. number of PCs for two components from 

Fig. 6.12. 

 

Cross-validation of the training set using PLS2 is displayed in Fig. 6.14 and 6.15. 
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Fig. 6.14. Dependence of the parameter PRESS vs. number of PCs for validation of the training 

data using PLS analysis. 

 

 
Fig. 6.15. Dependence of RMScv vs. number of PCs for 10 components in the training data set 

using PLS analysis. 

 

The behavior of PRESS and RMScv does not indicate clearly the number of important PCs. 

Sharper decrease of PRESS is observed at PC=8 and then there is a gradual decrease and for 

RMScv it is observed for PC numbers between 5 and 10. Because we know that there are 10 

components in further analysis, we will use 10 PCs and see how precisely these concentrations 

can be evaluated. 

Results obtained for self-prediction of the training set, RMSsp, using PCR, PLS1, and PL2 

methods and different weighting method are shown in Table 6.13. 

 

Table 6.13. Values of RMSsp for the training data set for 10 components using various methods. 
Method 1 2 3 4 5 6 7 8 9 10

PCR raw 10.29% 36.25% 15.81% 42.04% 9.04% 4.24% 31.86% 24.98% 21.21% 16.21%

PCR centered 10.56% 37.88% 15.95% 43.51% 9.44% 4.54% 32.70% 24.20% 21.40% 16.63%

PCR standardized 10.60% 41.27% 28.07% 39.15% 13.95% 4.98% 37.31% 24.77% 19.40% 26.04%

PLS2 raw 10.09% 33.64% 13.65% 43.13% 6.50% 4.03% 32.46% 18.95% 25.08% 14.49%

PLS2 centered 10.24% 34.08% 13.63% 44.58% 6.99% 4.25% 33.42% 18.62% 25.83% 14.77%

PLS2 standardized 10.25% 37.80% 22.17% 39.98% 14.33% 4.67% 31.89% 26.69% 19.03% 22.12%

PLS1 centered 5.46% 19.08% 7.86% 22.50% 3.54% 2.46% 21.92% 12.97% 16.50% 7.02%  
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Analysis of the results obtained using PCR indicates that standardization increases the 

determination errors while for raw and centered data the results are similar. The errors obtained 

using PLS2 are generally smaller than those for PCR but use of PLS1 is advantageous because 

the errors are much smaller. Centering of the data was chosen here. 

Next, the training set was used to determine concentrations of the validation set which were 

compared with the analytical values. The results are shown in Table 6.14. 

 

Table 6.14. Values of RMStest for the validation data of 10 components. 

 
Method 1 2 3 4 5 6 7 8 9 10

PCR raw 26.33% 40.33% 27.51% 59.95% 17.72% 5.20% 91.69% 52.72% 35.37% 20.51%

PCR centered 25.78% 39.79% 26.72% 59.88% 17.82% 5.30% 92.74% 49.33% 34.29% 20.62%

PCR standardized 29.11% 54.31% 49.70% 58.16% 23.27% 7.97% 88.25% 42.90% 34.74% 35.06%

PLS2 raw 20.15% 30.09% 18.35% 47.61% 10.84% 3.77% 70.47% 30.27% 32.17% 14.14%

PLS2 centered 19.76% 29.42% 17.80% 46.64% 11.15% 3.80% 71.82% 27.75% 31.03% 14.29%

PLS2 standardized 22.15% 38.30% 30.75% 46.27% 18.18% 6.09% 68.51% 36.62% 26.69% 23.04%

PLS1 centered 18.36% 49.12% 11.44% 42.93% 8.58% 3.77% 74.06% 18.17% 23.77% 14.04%  
 

It is evident that PLS methods give lower errors of prediction of the validation data and PLS1 

gives the lowest values except those for component No 2. The largest errors of prediction are for 

the lowest average concentrations of components, that is for No 2, 4, and 7 (average 

concentrations 0.098, 0.119 and 0.094, respectively). These large errors of prediction 49%, 43%, 

and 75%, respectively, indicate that these compounds cannot be determined in the mixture. This 

is illustrated in Fig. 6.16 for the relation between predicted and analytical concentrations for 

components 2 and 7. 

 
 

Fig. 6.16. Dependence of the predicted, using PLS1, on the analytical concentrations of the 

validation set for components 2 and 7. These concentrations cannot be quantitatively determined. 

 

However, despite the complexity of the mixture (10 compounds at low and high 

concentrations) other components could be determined. Dependences of the predicted on 

analytical concentrations for components 5 and 7 are displayed in Fig. 6.17. 
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Fig. 6.17. Dependence of the predicted, using PLS1, on the analytical concentrations of the 

validation set for components 5 and 6. These concentrations can be easily determined in the 

mixture. 

 

Despite of the problems with the validation the self-prediction analysis using PCR predicts the 

spectra of all compounds, Fig. 6.18, although some spectra display negative values of 

absorbance. 

 

 
 

Fig. 6.18. Spectra of the components obtained using self-prediction PCR analysis for the training 

data set. 

 

It should be added that in selecting the concentrations one should avoid collinearity of 

concentrations in the training set. Such a set would well auto-predict its concentrations; however 

such a collinearity would reduce the matrix rank and make it impossible to predict all the 

concentrations of the validation/test set.   

 

Exercise 6.9. 

In this exercise we will see the influence of the baseline on the results. The data from Exercise 

5.1 will be used to which a baseline is added. Comparison of the spectra without the baseline and 

with the baseline are displayed in Fig. 6.19 where a linear baseline was chosen. However, any 

other baseline may be used. 
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Fig. 6.19. Spectra without baseline, baseline added, and with baseline added. 

 

Application of the PCR (2 PCs, centered data) gives the same results of concentrations as for 

the data without the baseline, see Table 5.1 and Ex6-9.xlsx. This is because the PCR and PLS are 

using the differences in spectra, not the absolute values. However, the baseline is added to the 

individual spectra, Fig. 6.20, because the sum of individual spectra must give the total spectrum, 

Fig. 6.19. 

 

 
Fig. 6.20. Spectra of individual components obtained from the total spectra without and with the 

baseline. 
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It is clear that the presence of the baseline in the spectra (unknown but always the same) does 

not affect the determination of concentrations. 

 

Exercise 6.10. 

In this exercise determination of very different concentrations is illustrated; the average 

concentration of component 1 is 100 times smaller than that of the component 2, see Table 6.15.  

 

Table 6.15. Concentrations of two species in Exercise 6.10. 

 

        1         2 

0.001 0.90 

0.002 0.85 

0.003 0.55 

0.004 0.35 

0.005 0.50 

0.006 0.60 

0.007 0.25 

0.008 0.40 

0.009 0.10 

 

Contribution of the component 1 to the total spectra is also very small. Comparison of all the 

spectra of two components and those of component 2 only is shown in  

Fig. 6.21 where comparison of these spectra for the mixture No 6 and 9 is also presented. 

 

 
 

Fig. 6.21. Spectra of the mixture of two components and of the component 2 only. Below are the 

comparisons of spectra of component 2 and of the mixture for the spectra 6 and 9; the differences 

are not visible.  
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It is clear that the difference of the spectra of component 2 and of the mixture of 1 and 2 are 

hardly visible. In such a case there is an advantage of use of the standardization of the data. The 

results of the PCR and PLS analysis is shown in Table 6.16. 

 

Table 6.16. Results of self-prediction using centered and standardized data in PCR and PLS1. 

 

            RMSsp 

Component      1                2 

PCR centered 32.38% 0.51% 

PCR standardized 0.25% 0.14% 

PLS1 centered 14.13% 0.21% 

PLS1 standardized 0.25% 0.14% 

 

There is a dramatic decrease of the self-prediction errors of component 1 when the 

standardization is used. 

 

The above examples show that the analysis using the multivariate analysis is much more 

complex than a simple regression and demand more tests but it allows to use information from 

the whole data set (spectra). 

It should be noticed that the principal components regression is preferred by the statisticians 

while partial least squares method is preferred by the chemometricians. 

 

7 Alternating Least Squares (ALS) method 

Alternating least-squares is an alternative method for solving multiple component regression 

problems. It is not based on PCA but on the iterative least-squares method. It is usually used to 

implement non negativity (or other) constrains on the concentration and spectra.  

The relation between the observed spectra and concentrations was shown in Eq. (3.2) 

= +X CS E   (3.2) 

Let us assume that the initial guess of concentrations Ĉ  is known (even random estimations 

might be sometimes used). Often as the first step the PCR is used. This will allow to estimate 

spectra Ŝ  using the least-squares method, Eq. (5.1): 

 ( )
1

ˆ ˆ ˆ ˆ ˆ' '
− +

= =S C C C X C X   (7.1) 

Next, the improved concentrations may be estimated using least-squares method: 

 ( )
1

ˆ ˆ ˆ ˆ ˆ' '
− +

= =C XS SS XS   (7.2) 

The calculations in Eqs. (7.1) and (7.2) are repeated until convergence is obtained. In each step 

the non-negativity condition might be implemented by replacing negative values by zero. 

Applying ALS with the non-negativity constrains (program ALS.m in folder ALS in Ex6-8) to 

the data in Exercise 6.8 gives all positive spectra, Fig. 7.1 (compare with Fig. 6.18). However, 

errors of the calculated concentrations are larger. 
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Fig. 7.1. Spectra in Exercise 6.8 calculated using ALS (compare with Fig. 6.18). 
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8 Multi-way analysis  

8.1 Introduction 

In the earlier parts of this book, we have considered two-way data described by matrices, e.g. 

UV/VIS spectra registered at J wavelengths for I samples. However, a single instrument can 

sometimes generate a table of results for each sample, for example in excitation and emission 

fluorescence spectra, there is a matrix X(J×K) of fluorescences at J excitation wavelengths and 

measured at K emission wavelength for each sample. In this case for each sample one matrix X is 

obtained. Taking fluorescence spectra for I samples generates a three-way array X(I×J×K). This 

is a three-dimensional array and to distinguish it from the two-dimensional matrices its symbol is 

underlined. Such three-dimensional arrays are also called tensors or cubes and may be analyzed 

using three-way methods. Of course, using higher dimensions (four, five) other multiway data 

may be obtained.  

Another example of multi-way data is in environmental analysis where analytical samples are 

acquired from different locations (first-way) at multiple times (second way) and each sample is 

analyzed for several components (third way) producing three-way data cube. Three-way data 

might also be produced using special analytical methods GC/MS/MS or even using UV/VIS 

spectra as a function of time for samples of different compositions. 

Mathematical methods of dealing with such problem were initially developed for psychometry 

and social sciences and adopted later to chemometrics.  

Most chemists are probably unaware of the power of multi-way analysis. Multi-way analysis 

provides a new way to look at experimental design and the scientific method itself.28 There are 

books on this topic,28,29 many articles, and a Web sites where presentations, tools for Matlab, and 

example data are presented30,31 or even YouTube courses.32  

The analytical data must be first collected and the problems such as detection limits, missing 

data, and outliers dealt with. Then the data might be preprocessed differently. These are 

important problems and their detailed description might be found in the literature.28 

8.2 Construction and properties of boxes 

Let us look first into construction of boxes (or 3D arrays) describing three-way data. Two-way 

data described earlier are described by matrices, Fig. 8.1. 
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Fig. 8.1. Matrix presentation of two-way data, variables are for example wavelengths and objects 

are samples. 

 

Such data contain variables, for example J wavelengths, and objects, for example I different 

samples or measurements in time. These axes are often called Mode 1 for objects (samples) I and 

Mode 2 for variables (spectra) J. However, for three-way data we have a matrix X(J×K) for each 

analyzed sample, i. Let us suppose that we analyze excitation/emission fluorescence data that is 

each matrix X(J×K) contains two-dimensional excitation/emission spectra for one analyzed 

sample. Examples of the spectra of tryptophan and mixture of tryptophan, tyrosine and 

phenylalanine are shown in Fig. 8.2 where there are 61 excitation and 201 emission wavelengths. 

 
 

 
Fig. 8.2. An example of the 2D fluorescence spectrum of tryptophan (left) and a mixture of 

tryptophan, tyrosine and phenylalanine (right), X(61201). 

 

This means that for each composition (sample) i there is a matrix X(J×K). We can stack I 

matrices together obtaining a box X(I×J×K). This process is displayed in Fig. 8.3. 
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Fig. 8.3. Process of construction of a three-way data array (box). 

 

Now the array X contains three modes. These modes can be samples, Mode 1 (I), excitation, 

Mode 2 (J), and emission, Mode 3 (K), in fluorescence or in chromatography: samples, spectra, 

and time. Each element of X has three indices, xi,j,k. Often, the three way data are treated as two-

way data with losing some additional information. 

The simplest way of dealing with the 3D data is changing them into 2D matrices. This process 

is called unfolding or matricization, Fig. 8.4.  

 

I

J K

J J J J

K

J

I

 
Fig. 8.4. Unfolding (matricization) of the cube X(I×J×K) to X(I×JK). 

 

It can be noticed that the two-dimensional matrices X(J×K) were initially stacked for I samples 

to get a cube (tensor) X(I×J×K) but were unfolded as a series of K matrices (I×J) to produce 

extended matrix X(I×JK). In this process one large matrix X(I×JK) with dimensions I×JK was 

created. After unfolding an ordinary two-way PCA can be applied to the matrix X(I×JK). This 

process is illustrated in Exercise 8.1. 

 

Exercise 8.1. 

Four 2-dimensional spectra were recorded for different compositions of three component 

analyses. Therefore, there are four matrices X(56), each for different composition. They are 

displayed in Table 8.1.3 The corresponding concentrations are shown in Table 8.2.  
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Table 8.1. Four matrices X(56) obtained for four different samples.3 

 
1 2 3 4

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 390 421 871 940 610 525 488 433 971 870 722 479 186 276 540 546 288 306 205 231 479 481 314 268

2 635 357 952 710 910 380 1015 633 1682 928 1382 484 420 396 930 498 552 264 400 282 713 427 548 226

3 300 334 694 700 460 390 564 538 1234 804 772 434 328 396 860 552 440 300 240 264 576 424 336 232

4 65 125 234 238 102 134 269 317 708 364 342 194 228 264 594 294 288 156 120 150 327 189 156 102

5 835 308 1003 630 1180 325 1041 380 1253 734 1460 375 222 120 330 216 312 114 385 153 482 298 542 154  
 

Table 8.2. Concentrations of three components A, B, and C, in four samples.3 

 
A B C

1 1 9 10

2 7 11 8

3 6 2 6

4 3 4 5  
First, four matrices should be stacked together to obtain an array X(456) and unfolded to 

obtain one matrix X(45•6) = X(430). This unfolded matrix is displayed in Table 8.3. 

 

Table 8.3. Unfolded cube X(456) to X(430). 

 

 

The classical PCA and PLS might be applied to the unfolded matrix. PLS analysis shows that 

there are only three principal components, in agreement with the number of chemical 

components. PLS analysis shows that the approximation reproduces practically exactly the 

experimental concentrations. 

Unfolding introduces many variables; in this exercise 30 but in the case displayed in Fig. 8.2 

unfolding of 6 samples produces matrix X(512261) where 61 excitation and 201 emission 

wavelengths produces 61201 = 12261 variables! Besides, during unfolding some information 

contained in 3D X(561201) array is lost. 

Below some properties of cubes (or tensors will be presented). 

 

8.3 Rank 

As it was stated in Section 2.3 rank of two-way matrix is a minimal number of PCA 

components needed to reproduce matrix exactly. In two-way matrices the row rank equals to 

column rank equals to the rank. But this is not the case in three-way arrays. 

Rank of three-way array is a minimum number of trilinear components needed to reproduce 

the experimental array X. Rank of random 2  2 matrix is always 2. For random 222 array the 

rank might be 2 or 3. Rank of cubes is not defined in the same way as of matrices. For larger 

random arrays e.g. 999 nobody knows what its rank might be.32  

1 2 3 4 5

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 390 421 871 940 610 525 635 357 952 710 910 380 300 334 694 700 460 390 65 125 234 238 102 134 835 308 1003 630 1180 325

2 488 433 971 870 722 479 1015 633 1682 928 1382 484 564 538 1234 804 772 434 269 317 708 364 342 194 1041 380 1253 734 1460 375

3 186 276 540 546 288 306 420 396 930 498 552 264 328 396 860 552 440 300 228 264 594 294 288 156 222 120 330 216 312 114

4 205 231 479 481 314 268 400 282 713 427 548 226 240 264 576 424 336 232 120 150 327 189 156 102 385 153 482 298 542 154
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8.4 Three-way PARAFAC model 

 

PARAFAC (parallel factor analysis) model was developed in 1970 by Harshman.33 It is an 

extension of the PCA analysis to three-dimensional arrays (cubes). In PCA a matrix is 

decomposed as a sum of vector products (vertical scores and horizontal loadings), Fig. 3.2. For 

three-way data the 3D array is decomposed as a sum of triple products of vectors, Fig. 8.5. 

 

X

C

B

A

=

+ =

a1 a2

b1 b2

c1 c2

 
 

Fig. 8.5. Illustration of the decomposition of the three-way array ( )I J K X  into three 

loadings A(IR), B(JR) and C(KR) containing two factors (R = 2); for simplification the error 

array was omitted. 

 

The elements of three-way array can be calculated as: 

 

1

R

ijk ir jr kr ijk

r

x a b c e

=

= +   (8.1) 

where R is called the pseudo-rank of ( )I J K X . It is defined as the smallest number of 

trilinear PARAFAC components needed to fit X without fitting the noise. By analog with Eq. 

(3.3) one can write for three-way data: 

 ˆ= +X X E   (8.2) 

where X̂  is the calculated array using R PARAFAC components. Matrices A, B, and C are 

called in PARAFAC model loadings although one of them represents scores. The biggest 

advantage of the PARAFAC model in comparison with the PCA model is uniqueness of the 

solution (decomposition). In PCA there is rotational ambiguity, Eq. (3.12) and Fig. 3.3. 

However, in the decomposition of 3D arrays (cubes) there is no rotational degree of freedom and 

no ambiguity, therefore, we can get the real spectra and concentrations. The obtained model is 

the best model in the least-squares sense. 

The only non-uniqueness that remains in a unique multilinear model is in scaling and 

permutations of factors. This means that scores (concentrations) and spectra (loadings) 

correspond to the real concentrations multiplied by a constant. Besides, one should find out 

which model component (and the corresponding spectra) correspond to which chemical 

component. This can be found out if the spectra of individual components are known (e.g. in 

fluorescence or chromatography) or one knows the order of elution in chromatography. Another 

propriety of PARAFAC is that the loadings are not orthogonal (but unique) and the subsequent 

components do not decrease as in PCA, see Fig. 3.5. If another factor is added to the model the 

whole model must be recalculated (in two-way PCA only new component is added without 
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changing the other, as they are orthogonal). Uniqueness of the solution means that the mixtures 

of the analytes can be separated and the concentrations and pure spectra or concentration profiles 

(in chromatography) determined. 

The PARAFAC model is also much less sensitive to the random noise (see Section 8.8). Due 

to its uniqueness properties the PARAFAC model is ideally suited for curve resolution and 

certain kinds of calibration problems. Since the PARAFAC model is unique and coincides with 

several physical models (fluorescence spectroscopy, spectrally detected chromatography, etc.) it 

is possible to decompose such data into (chemically) meaningful parameters.  

The condition of uniqueness of the PARAFAC model is related to the so called k-rank.28,32 If 

R is the number of components, for loading A, kA-rank is the maximal number of randomly 

chosen columns which have full rank ( R). It is never higher than the rank. The PARAFAC 

model is unique when sum of three k-ranks of three loadings fulfils the condition: 

 A B C 2 2k k k R+ +  +   (8.3) 

Of course, A, B, and C must vary adequately (replication of the same measurements is not 

good) for the model uniqueness. For example, 8-component PARAFAC model of a 666 array 

is unique (assuming that k-rank of each matrix is six) and 6 samples may furnish unique 

information about eight components (6 + 6 + 6  2*8 + 2 =18). Of course in the classical PCA 

analysis from 66 matrix it is possible to extract at most 6 elements. 

Let us compare a PARAFAC model of a cube (10 100 30) X  and its unfolded matrix (in the 

first mode) (10 3000)X . Each component of the cube has 10+100+30 = 140 parameters while 

the components of the unfolded matrix have 10+3000 = 3010 parameters. Therefore, there are 

many more parameters in the PCA model than in the PARAFAC model. For example, if there 

are three components, PARAFAC can model it easily with three components. PCA model can 

also model the unfolded matrix with three components but it will use many more parameters and 

might overfit the solution and the solution will be much more sensitive to noise.  

Because the array X is three-dimensional it is difficult to represent it in a matrix notation. Eq. 

(8.1) can be written for the matrix Xk, Fig. 8.4 left, as: 

 'k k= +X AD B E   (8.4) 

where Dk is a diagonal matrix with the kth row of C on its diagonal (elements: ck,1, ck,2,…, ck,R). 

Transformation of the elements of matrix C into Dk is displayed below in Fig. 8.6. The elements 

different from zero are only on the diagonal of Dk. 

 

C

ck

ck

Dk

 
 

Fig. 8.6. Formation of the diagonal matrix Dk from C. 

 

PARAFAC model works by sequential optimization of the loadings A, B, and C using ALS 

(alternating least-squares. Chapter 7) to minimize the differences between the experimental and 

calculated arrays: 
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2
2 2

, , , , 1 1

ˆ ˆ
R R

r r r

r r= =

− = − = 
A B C A B C
min X X min X X E   (8.5) 

Starting from some initial values of B and C (guessed or random) the new values of matrix A 

are estimated: 

 ( ) ( )
1

1

' '*

K

k k

k

−

=

 
=      
 
A X BD B B C C   (8.6) 

Then, elements of B and Dk (that is of matrix C) using: 

 
( ) ( )

( ) ( ) ( )

1

1

1

' ' '*

diag ' ' diag ' , 1,...,*

K
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k
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=

−

 
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 
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B X AD A A C C

D B B A A A X B

  (8.7) 

where operator “*” is the Hadamard product (element-wise product) of two matrices A(I,J) and 

B(I,J) defined as: 

 

1,1 1,1 1, 1,
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J J
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a b a b

a b a b
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 =
 
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 
 

A B   (8.8) 

 

Now. Eq. (8.5) can be rewritten as: 

 

2
2 2

, , , ,
1 1

ˆ '
R R

r k r

r r= =

− = − = 
A B C A B C
min X X min X AD B E   (8.9) 

Operations in Eqs. (8.6)-(8.7) are repeated until the parameters do not change and the sum of 

squares, Eq. (8.9), is at minimum.. Because PARAFAC model is based on the least-squares 

principle it might be sensitive to the initial choice of parameters and local minima might be 

found. It stops when no further changes are observed. It is possible in the PARAFAC program to 

decrease relative change criterion from default 10-6 to a smaller value or change the initial 

parameters (program allows for such changes in Option(1)). There are also other algorithms 

described in the literature. The starting values might be selected using Options(2). By default 

DTLD/GRAM method is used but with Options(2)=2 fit is using random orthogonalized values 

for initialization, that is each time new set of initial parameters is selected. One should keep in 

mind that if there are too many parameters the model might not converge or converge each time 

to a different solution. One of the tools used to estimate number of parameters is split-half 

analysis where the original data are split in half (sequential, blocks); both halves should produce 

the same loadings. Another method is core consistency described later. 

One of the problems one can meet while using PARAFAC model is two factor degeneracy. It 

is a mathematical artifact not related to the “bad data”. It appears when two components have the 

same value but opposite signs in one mode. Because of that they might cancel each other. This 

might cause correlation between loadings in other modes. It happens when PARAFAC model 

does not exist, e.g. a three and five component models might exist but not four component 

model.28,32 With increasing number of iterations the problem will increase. Sometimes changing 
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of preprocessing of data or using non-negativity constrain can help. Alternatively, other model as 

Tucker model might be applied.  

Before presenting more details about the PARAFAC model some applications will be 

presented which allow better understanding of the further discussion. 

 

Exercise 8.2. 

Apply PARAFAC model to the data in Exercise 8.1. 

In Exercise 8.1 the 3D array was unfolded to apply classical PCA and PLS method. In this 

exercise we will use the experimental array X(456) in PARAFAC model. All the data, 

program file fac2.m and Excel file are in the folder Ex7-2. In was found earlier that there are 

three principal components corresponding to three chemical components. Program fac2.m first 

generates 3D graphs of four spectra. They are displayed in Fig. 8.7. They represent UV/VIS 

spectra in function of time.  

Program stops after 80 iterations (it=80). The calculated loadings in three modes (i.e. A, B, C) 

are shown in Fig. 8.8. As there are four samples Mode #1 relates to the concentrations of three 

components that is the scores which are proportional to the concentrations. However, we do not 

know which column of scores corresponds to which component, see Table 8.4.  

Inspection of scores shows that all the samples contain mixtures of three components. 

However, the second column decreases monotonically with the sample number and it might 

correspond to the component C, compare with Table 8.2. In the third column the first value is the 

smallest which suggests that it is component A. Similarly, the first column of scores corresponds 

to the component B. Plot the scores vs. analytical concentrations is presented in Fig. 8.9. The 

relations are linear which confirms that the attribution of scores to concentrations is correct. 

 
 

Fig. 8.7. 3D graphs of four spectra in Exercise 8.2. 
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Fig. 8.8. Loadings A, B, and C (modes #1, #2, and #3, respectively) obtained from the 

PARAFAC model.   

 

Table 8.4. Loadings A/1000 (scores) obtained from the PARAFAC model.  

. 

2.227027718 1.522882553 0.223054 

2.721920171 1.218301956 1.561337 

0.494896052 0.91372946 1.338287 

0.989790039 0.761440685 0.669145 

            Attributed to concentrations:  

B C A 
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Fig. 8.9. Plots of the scores (divided by 1000) versus analytical concentrations; in this case the 

first scores (red curve in Fig. 5.8) correspond to the component B, second scores (blue) 

correspond to C, and third (yellow) scores correspond to A. 

 

The correlations between the calculated scores (Mode #1) and concentrations are very good. 

The obtained regression equations allow to auto-predict concentrations. The predicted 

concentrations are displayed in Table 8.5. Comparison with Table 8.2 shows that the errors are 

very small. 

 

Table 8.5. Auto-predicted concentrations of three components calculated from the relations 

between the scores and concentrations. 

A B C

1.000006 9.000005 10.000010

7.000008 10.999997 7.999982

5.999994 2.000000 6.000006

2.999992 3.999998 5.000002  
 

This analysis allowed also for the identification of the scores and chemical elements. It is 

interesting to notice that we did not need to know concentrations of the components as functions 

of time but the concentrations of the mixture injected. 
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8.5 Second order calibration 

Second-order calibration28,34 is a simple method of estimation of the concentrations of one 

component in a mixture. In simple terms if the concentration of the component in one sample is 

known it is possible to calculate concentrations of this component in all samples used in the 

PARAFAC model.  

Let us suppose, that in Exercise 8.2 concentration of the component A (third column in scores 

in Table 8.4) is known for the first sample; from Table 8.2, cA(1) = 1. Concentrations of A in 

other samples can be determined using simple proportionality. For example, concentration in 

other samples is: 

 3,
A A

3,1

( ) (1)
ia

c i c
a

=   (8.10) 

where a3,i are the elements of the third column of the scores matrix A. The results obtained are 

displayed in Table 8.6 and compared with the analytical values. The agreement is very good. 

 

Table 8.6. Comparison of the concentrations of species A estimated using second order analysis 

with the analytical concentrations of A. 

 

c A predicted c A analytical

1.0000 1.0000

6.9998 7.0000

5.9998 6.0000

2.9999 3.0000  
 

Similarly, if we know concentrations of other species B and C in the first sample, see Table 

8.2, it is possible to predict concentrations in other samples using analog of Eq. (8.10) for B and 

C. Predicted concentrations in samples 2-4 are displayed in Table 8.7. 

 

Table 8.7. Concentrations of species B and C predicted from the concentrations in the first 

sample using second order calibration. 

 

 
 

In this case the agreement is excellent because the data X were simulated using these 

concentrations without adding random errors.3 

 

c B predicted c C predicted c B analytical c C analytical

9.00000 10.00000 9.00000 10.00000

10.99999 7.99997 11.00000 8.00000

2.00000 6.00000 2.00000 6.00000

4.00000 5.00000 4.00000 5.00000
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8.6 Determination of the number of factors 

Determination of the number of factors (principal components) in three way-analysis is 

different than in two-way analysis. Cross-validation used in PCA analysis is rarely used in the 

literature for three way data. 

If two sets of data exist or one large set of data is divided in two parts then for the same 

number components PARAFAC model should produce the same loading vectors (except scores 

related to the concentrations). Of course different scaling and permutation of loadings can occur 

and must be taken into account.  

Another method is the core consistency test.28-32 Tucker proposed another decomposition of 

the array ( )I J K X  into three loadings A(IR), B(JR) and C(KR) and an array 

( )R R R G . This process is visualized in Fig. 8.10 and should be compared with PARAFAC 

decomposition, Fig. 8.5. The elements of array X are calculated as (compare with Eq. (8.1): 

 

1 1 1

R R R

ijk ir jr kr pqr ijk

p q r

x a b c g e

= = =

= +    (8.11) 

 

The difference between these two models is in the presence of the cube ( )R R R G  in 

Tucker3 model. Of course, when the superdiagonal elements in G (indicated as a dashed line in 

Fig. 8.10) are all equal to 1 and all other elements are 0, PARAFAC and Tucker3 models are 

identical.  

 

X

G

C

B

A

=

 
Fig. 8.10. Decomposition of the cube X according to Tucker3 model, for simplification the error 

array was omitted. 

 

However, when the number of components is too large and the noise is being fitted then the 

off-superdiagonal components will appear in array G. If all the core superdiagonal elements are 

one the core consistency is 100% and the PARAFAC model approximates data ideally. If the 

superdiagonal elements are different from one and off-diagonal elements different from zero 



142 

appear in G the core consistency is <100% (might also be negative). Core consistency is defined 

as:35,36 

 

( )
2

1

Core Consistency 100

R R R

pqr pqr
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g t

R

 
− − 

 
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 
 
 


  (8.12) 

where T(RRR) is an array with superdiagonal equal to 1 and off-superdiagonal elements equal 

to zero. 

Low values of core consistency mean that the model is invalid. For low number of model 

components the core consistency is 100% but if the number of components is too large core 

consistency becomes low. The general method is to start with low value of number of 

components, e.g. 1, and then increase it until core consistency becomes low. At the same time 

number of iterations increases. One can also find that starting with different initial values will 

produce different sets of loadings for the same number of components. When the number of 

components is not correct the loadings representing spectra of the chemical components will 

show incorrect spectra of the components. Such spectra should be compared with the spectra of 

pure components if possible. 

The core consistency parameter is called “corcondia” in PARAFAC program.  

Results obtained with different number of components from one to four (there are only four 

data sets) are shown in Table 8.8 and Fig. 8.11-8.14 where err is the sum of squares of 

approximation errors (3D analog of RRSR, Eq. (3.14)). 

 

Table 8.8. Results of the approximations of the data in Exercise 8.2 with different number of 

components, R, repeated for R = 4. 

 

R iterations err corcondia

1 4 2.12E+06 100

2 44 6.32E+05 99.9972505291239

3 215 7.02E-06 99.9999999952297

4 117 7.98E-06 -

4 97 6.18E-06 -  
 

First, one can notice that with the increase of the number of factors the sum of squares err 

decreases from R = 1 to 3 and then does not change much. However, very large decrease is 

observed by going from two to three factors.  

The loadings and core consistency factors (corcondia) are displayed in Fig. 8.11-8.14 for 

numbers of factors from one to four. Notice, that corcondia is 100% for one factor and cannot be 

calculated four factors (there are four samples only).  
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Fig. 8.11. Loadings calculated for one factor. 
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Fig. 8.12. Loadings and core consistency calculated assuming two factors. 
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Fig. 8.13. Loadings and core consistency calculated assuming three factors. 

 

PARAFAC can model data with one to four factors. In each case scores and loadings were 

calculated. However, for four factors the obtained solutions are different for different starting 

values although the sum of squares (err) stays similar. The program finds numerous local minima 

which suggests that that number of factors is too large and three factors should be used.  

The core consistency plots for two and three factors are close to 100% but cannot be 

determined here for four factors.  
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Fig. 8.14. Loadings calculated assuming four factors; PARAFAC model was started with 

different initial values. 

 

Exercise 8.3.  

Five spectra of excitation-emission fluorescence of pure components: tryptophan, 

phenylalanine, and tyrosine, and their mixtures are in datafile claus.mat.30,31 This data file 

consists of array X(520161) containing fluorescence spectra at 61 excitation and 201 emission 

wavelengths for 5 samples, concentration matrix y(53), scale wavelengths for emission EmAx 

and excitation ExAx axes and text files; readme contains legend to the concentrations matrix. To 

see what is in this file perform load and whos commands, see Table 8.9. The plot of the 

fluorescence spectra in array X are shown in Fig. 8.15. The corresponding concentrations are 

shown in Table 8.10. It should be noticed that the first three samples contain pure components, 

however PARAFAC model does not use this information directly and five different mixtures 

could be used instead. 
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Table 8.9. Contains of the Matlab data file claus.mat.30 

 

>> load claus 

>> whos 

  Name  Size    Bytes  Clas  Attributes 

 

  EmAx  1x201    1608    double               

  ExAx  1x61    488    double               

  X   5x201x61    490440   double               

  evalme  1x229    458    char                 

  readme  3x17    102    char                 

  y   5x3    120    double               

>> readme 

readme = 

 

1.Column Trp in M 

2.Column Tyr in M 

3.Column Phe in M 

 
Fig. 8.15. Fluorescence spectra of tryptophan, phenylalanine, and tyrosine, and their mixtures in 

data file claus.mat. 
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Table 8.10. Concentrations of tryptophan (A), tyrosine (B), and phenylalanine (C) in mM. 

 

 

A B C

0.0027 0 0

0 0.0133 0

0 0 0.9

0.0016 0.0054 0.355

0.0009 0.0044 0.297  
 

PARAFAC program was executed for one to four factors using program flsc1.m and the 

results (loadings and core consistency) are displayed below. Some parameters characterizing the 

modeling are also shown in Table 8.11. 
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Fig. 8.16. Loadings obtained assuming one component. 
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Fig. 8.17. Loadings and core consistency obtained assuming two components. 
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Fig. 8.18. Loadings and core consistency obtained assuming three components. 
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Fig. 8.19. Loadings and core consistency obtained assuming four components. 
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Table 8.11. Results of PARAFAC analysis for different number of components. 

 

Factors 1 2 3 4

iterations 7 42 460 2048

SSQ 8.20E+08 3.05E+08 1.45E+06 1.32E+06

corcondia 100 99.9995 99.8683 0.037  
 

PARAFAC model can be run for different number of components. However, although the 

residual sum of squares decreases with the number of factors core consistency (corcondia) stays 

~100% up to three components and then decreases dramatically and is close to zero for four 

components. Besides, while increasing number of components from three to four the number of 

iterations increases. After repeating the modeling for four components program often cannot find 

minimum (it stops at 2500 iterations) or gives warning: “factors are highly correlated, decrease 

the number of components”. It also gives completely different loadings suggesting that some 

local minima were found. Repetition is important and in the case of doubt repetition of 

calculations with different initial values (Option(2)) should be carried out to check if the same 

solution is found each time. The obtained results indicate that only three components should be 

used, in agreement with the number of species. 

When deciding number of factors one can compare excitation/emission fluorescence spectra 

with those of pure components to see if they are well reproduced. 

Assuming that the concentrations of the three pure components are known concentrations of 

all components in other samples might be found using second order calibration. The obtained 

results are displayed in Table 8.12. Standard deviations of the first two components are very 

small but they are larger for the component III, compare with Table 8.10.  

 

Table 8.12. Concentrations of three components auto-predicted using second order calibration 

and their standard deviations. 

 

Component I II III

0.002700 -0.00008 -0.002

0.000014 0.01330 0.000

0.000048 0.00015 0.900

0.001564 0.00536 0.392

0.000889 0.00445 0.340

std 0.000036 0.00010 0.033

std% 3.5% 2.2% 10%  
 

Concentrations can also be auto-predicted (if all concentrations are known) using linear 

regression between the scores and concentrations. Graphs for three components are shown in 

Fig. 8.20. 
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Fig. 8.20. Plots of the calculated (Mode #1) scores versus analytical concentrations for three 

components. 

 

Correlations are very good, the smallest determination coefficient of 0.9963 is found for the 

component III. Using regression equations the concentrations might be auto-predicted; they are 

shown in Table 8.13. Comparing second order and regression calibrations reveals that the 

standard deviations of all components are smaller. 

 

Table 8.13. Concentrations of three components auto-predicted using linear regression and their 

standard deviations. 

 

Component I II III

0.002724 -0.000107 -0.017

-0.000006 0.013312 -0.014

0.000029 0.000121 0.883

0.001569 0.005348 0.376

0.000884 0.004430 0.325

std 0.000026 0.000086 0.022

std% 2.5% 1.9% 7.2%  
 

8.7 N-way PLS 

The program libraries of Spectroscopy and Chemometrics Section of the University of 

Copenhagen30,37 contain useful toolbox N-way (nway) (and few other)28. There is also a program 
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for multi-way PLS: npls.m. It has been applied to determine concentrations in Exercise 8.3. 

Program PLSm.m opens data file claus.m and performs three-way PLS on the data X and 

concentrations y. The self-predicted concentrations are displayed in Table 8.14. It is interesting 

to note that the standard deviations of these concentrations are smaller than those obtained using 

second order calibration or linear regression shown above. 

 

Table 8.14. Concentrations of three components auto-predicted using three-way PLS and their 

standard deviations. 

 

Component I II III

0.002689 0.000019 -0.014

0.000014 0.013312 -0.013

0.000015 0.000012 0.886

0.001549 0.005396 0.363

0.000874 0.004418 0.325

std 0.000031 0.000016 0.019

std% 3.0% 0.34% 6.0%  
 

8.8 Effect of noise 

To study the effect of the random noise, normally distributed noise was added to all the spectra 

in X in Exercise 8.3. The standard deviation was 50% of the largest value of fluorescence of the 

samples, sX = 470. Effect of adding such a noise on the spectrum of tryptophan is shown in Fig. 

8.21 and the noisy spectra of all the samples in Fig. 8.22. 

 

240

260

280

300

250

300

350

400

450
0

200

400

600

 
240

260

280

300

250

300

350

400

450

-1000

0

1000

2000

 
Fig. 8.21. Tryptophan spectrum (sample 1) before (left) and after (right) adding normal noise 

with standard deviation of 470. 
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Fig. 8.22. Spectra of four samples in Exercise 8.3 after adding normal; noise with standard 

deviation of 470. 

 

After adding so large noise spectra of the individual components are hardly visible. Results of 

the PARAFAC analysis of these data are displayed in Fig. 8.23 and 8.24. 
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Fig. 8.23. PARAFAC analysis of the noisy data in Fig. 8.22 using three components. 
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Fig. 8.24. Core consistency for the noisy data in Fig. 8.22. 

 

Despite the fact that the fluorescence spectra are hardly distinguishable from the random noise 

the fluorescence spectra and the scores are similar to those with the instrumental noise only, Fig. 

8.18, although they are more noisy. This is a remarkable achievement in comparison with the 

two-way methods. The core consistency is still 99% though the residual sum of squares of matrix 

X is much larger, 1.341010 (to be compared with 1.45106 in Table 8.11). 
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Exercise 8.4.  

Five chromatograms of the mixtures of two components were studied by the measurement of 

30 UV/VIS spectra as functions of time. They were registered at 28 wavelengths. They are in 

files X1.m to X5.m. The 3D spectra for different samples are displayed in Fig. 8.25. The 

concentrations of the components are shown in Table 8.15. 
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Fig. 8.25. Spectra of the mixtures of two components measured during elution in HPLC  

 

Table 8.15. Total concentrations of the species injected for five chromatograms. 

 

a b

1.0 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.4 1.0  
 

Use PARAFAC model and multiway PLS to calculate self-predicted concentrations. The 

PARAFAC model (flsc2.m) was executed for one to three factors. The obtained results are 

shown in Fig. 8.26. 8.28, and in Table 8.16. 
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Fig. 8.26. Loadings obtained using one factor. 
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Fig. 8.27. Loadings and core consistency for two factors. 
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second run 
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Fig. 8.28. Examples of two sets of solutions found using three factors. 

 

Table 8.16. Numerical results of the application of the PARAFAC model to the chromatographic 

data for one to three factors. 

 

factors 1 2 3 3

iterations 4 30 10 7

SSQ 12.326 0.07859515 0.078146 0.076204

corcondia 100 99.9999958 0.362439 -0.01994  
 

Using one factor in the PARAFAC model shows strange elution profile (Mode #2) with two 

overlapping peaks. By increasing number of factors to two dramatic decrease of the residual sum 

of squares is observed and core consistency stays close to 100%. However, when the number of 

components is increased to three no important changes in SSQ are observed, however repetition 

of the model gives each time different sets of loadings and the loadings are often negative. This 

is accompanied by very low value of core consistency close to zero. These results indicate that 

two factors should be used, in agreement with the two components analyzed. 

 

Comparison of the scores (Mode #1) with the concentrations indicates that the first column of 

scores is proportional to the concentrations of component b and the second is proportional to the 

concentrations of a.  
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Table 8.17. Values of scores in Mode #1 that is elements of matrix A. The first column 

corresponds to concentrations of component b and the second of component a. 

 

Scores A (Mode #1)

b a

6.515549 0.85472

1.956963 1.783488

3.26237 2.68788

4.566108 3.571523

2.614333 4.466589  
 

Relations between scores and concentrations are displayed in Fig. 8.29. The correlations are 

excellent. One should notice that scaling factors for different components are different. 

Theoretical elution profiles (Mode #2) and spectra of the individual components (Mode #3) were 

also compared with the theoretical values. They are displayed in Fig. 8.30-8.31. The correlations 

are excellent. 

 

 
 

Fig. 8.29. Dependence of the scores on concentrations for two components. 

 

 
Fig. 8.30. Comparison of the calculated loadings, matrix B (Mode #2) with the theoretical elution 

profiles of two components. 
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Fig. 8.31. Comparison of the calculated loadings, matrix C (Mode #3) with the theoretical 

spectra of two compounds. 

 

To predict concentrations first the second order calibration was also used. As the standard 

values first the sample #1 was used and later the same analysis was repeated assuming that the 

concentrations of sample #4 are known. The results are shown in Table 8.18. 

 

Table 8.18. Concentrations calculated using second order calibration and sample #1 or #4 as a 

standard value and the standard deviations obtained. 

 

from sample #1 from sample #4

Component a b a b

0.200 1.00000 0.1915 0.99890

0.417 0.30034 0.3995 0.30001

0.629 0.50068 0.6021 0.50013

0.836 0.70077 0.8000 0.70000

1.045 0.40120 1.0005 0.40076

std 0.038 0.00094 0.0051 0.00078

std% 6.1% 0.16% 0.51% 0.19%  
 

It is interesting to note that using sample #1 as the standard the standard deviation of 

component “a” is much larger than that of component “b”. However, when sample #4 is used as 

the standard, the standard deviation of the component “a” is over 10 times smaller. This behavior 

must be related to the relative concentrations in the samples. In sample #1 concentration of “a” is 

five times smaller than that of “b” while in sample #4 these concentrations are similar. 

Next, the multi-way PLS method (PLSm.m) was used to auto-predict the concentrations. The 

results are displayed in Table 8.19. This method gives the smallest standard deviations of 

concentrations. 
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Table 8.19. Self-predicted concentrations using multi-way PLS method. 

 

Component a b

0.2004 0.99988

0.3997 0.30009

0.5996 0.50013

0.7994 0.70017

1.0007 0.39977

std 0.0006 0.00017

std% 0.10% 0.03%  
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9 Exercises and programs  

 

All the exercises were solved using Matlab programs developed by Brereton3 in the site of his 

book. They were modified and corrected for this book. The data for Exercises were either taken 

from Brereton3 and Pomerantsev6 books but mainly they were simulated using only 

concentration and/or spectra from these books with added 1-2% Gaussian noise. For multiway 

models see below), 

The solutions are shown in Excel files located in the Exercise folders. The readers should use 

these data and check if the received the same results. 

The Matlab programs are located in three folders PCA, PCR, and PLS. The results might be 

simply transferred from Matlab to Excel using Copy and Paste or by saving them on the disk (see 

later). 

PCA and PLS analysis is also included in Origin although options are limited (standardized 

data were used) and e.g. in PCA the obtained scores were 1.054 times smaller. 

There are of course many commercial programs for example PLS_Toolbox/Solo from 

Eigenvector Research Inc.38 or The Unscrambler (CAMCO),39 with many useful tools and 

plotting tools. They also organize courses on aspects of chemometrics.  

In each folder of each Exercise there are working programs, all the necessary subroutines, and 

data, and they might be directly executed in Maple. 

9.1 Brief description of programs 

In all cases the functions centre.m and scale.m are used to center and standardize the X and C 

data matrices. 

9.1.1 PCA 

There are two programs to carry out PCA analysis: 

1) PCAtest.m: It performs PCA on data in file Xdata.m (X). It needs “maxrank” that is the 

rank, r, of the X matrix and “preoption” which is 1 for the raw data, 2 for the centered data, 

and 3 for the standardized data. It can display scores, T, loadings, P, calculated value of X̂
, and RSS. It uses subroutine pca.m 

2) PCAcross.m: It performs cross-validation on Xdata.m (X) on preprocessed data, according 

to the value of “preoption”. It produces RSS and PRESS parameters for each PC up to 

“maxrank”. It uses subroutine mpcacross.m. 

 

Mahalanobis distances were calculated using program maha.m and subroutine mahaldist.m3 

 

9.1.2 PCR 

There are  

1) PCRtest.m: It performs PCR on data in Xdata.m (X) and Cdata.m (C). It needs input 

“maxrank” and “preoption”, as above. It uses subroutine pcr1.m. It produces: 

a) Matrix of scores T,  

b) Matrix of loadings P,  
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c) Vector s containing eigenvalues for “maxrank” principal components 

d) Rotation matrix R, 

e) “Pred” containing self-predicted concentrations,  

f) Matrix “RMS” containing RMSsp values 

g) Transposed matrix Xc containing calculated spectra, X̂   

h) Vector RRR containing root mean-square of deviations between the calculated and 

experimental spectra: 

 

( )
2

, ,

1 1
X

ˆ

RRR ( )

I J

i j i j

i j

x x

r
I r f

= =

−

=
− −


  (9.1) 

   where I is the number of spectra, r number of principal components (concentrations) and  

  f is the loss of the degree of freedom due to preprocessing, see Eq. (5.9). 

2) PCRcross.m: It performs cross-validation of data in in Xdata.m (X) and Cdata.m (C). It 

needs input “maxrank” and “preoption”, as above. It uses subroutines: pcrcross1.m, 

pcr1.m, and pcrpred1.m. It produces: 

a) “PRESS” (transposed), Eq. (5.15), 

b) “RMS” that is RMScv, Eq. (5.16). 

3) PCRpred.m: It calculates predicted concentrations for the validation/test data XVtest.m 

(Xtest) using regression information from the training data in Xdata.m (X) and Cdata.m 

(C). When the concentrations for the test data are not known Ctest should be filled with 

zeros. In such a case the calculated residuals and RMStest do not have any meaning. When 

the data file CVtest.m (Ctest) is known validation of the method is performed. It uses 

subroutines pcrpredtest1.m, pcr1.m, and pcrpred1.m. The program produces: 

a) “Pred” predicted concentrations for the test/validation spectra 

b) “Resi” residuals ( ), ,

1

ˆ
L

i k i k

i

c c

=

−  (see Eq. (5.17) for definitions) 

c) “RMS” RMStest, Eq. (5.17). 

9.1.3 PLS 

There are programs: 

1) PLS1.m to perform PLS1 on Xdata.m (X) and a vector of concentrations, e.g. CA.m (c). It 

uses subroutine pls3.m. It produces: 

a) “Pred” vector of self-predicted concentrations, 

b) “RMS” one RMSsp value of root mean square error for one concentration (CA.m). 

2) PLS2.m: It performs PLS2 analysis on matrices Xdata.m (X) and Cdata.m (C). It uses 

subroutine pls3.m and produces: 

a) “Pred” matrix of self-predicted concentrations, 

b) “RMS” a vector of RMSsp for each component. 

3) PLS1pred.m: It performs PLS1 analysis on Xdata.m (X) and a vector of concentrations, 

e.g. CA.m (c). It predicts a vector of concentrations for the test/validation data XVtest.m 

(Xtest). In the case when the concentrations for the vector of test data CAp.m (Ctest) are 

unknown they must be filled with zeros. In such a case the calculated residuals and RMStest 



167 

do not have any meaning. It uses subroutines plspredtest1.m and pls3.m and plspred.m. It 

produces: 

a)  “Pred” vector of predicted concentrations for test/validation data. 

b) “RMS” one RMStest value of root mean square error for one concentration (CAp.m). 

4) PLS2pred.m: It performs PLS2 analysis on matrices Xdata.m (X) and Cdata.m (C), then 

predicts concentrations for XVtest.m (Xtest). When the concentration matrix CVtest.m 

(Ctest) is unknown matrix CVtest.m (Ctest) must be filled with zeros and the calculated 

residuals and RMStest do not have any meaning. When the concentration matrix CVtest.m 

(Ctest) is known validation of the method is performed. It uses subroutine plspredtest1.m 

and pls3.m and plspred.m. It produces: 

a) “Pred” matrix of predicted concentrations for test/validation data, 

b) “RMS” that is RMStest when concentrations CVtest.m (Ctest) are known. 

4) PLScross.m: It performs cross-validation of data in in Xdata.m (X) and Cdata.m (C). It 

needs input “maxrank” and “preoption”, as above. It uses subroutines: pcrcross1.m, 

pcr1.m, and pcrpred1.m. It produces: 

a) “PRESS” (transposed), Eq. (5.15), 

    “RMS” that is RMScv, Eq. (5.16). 

5) The use of PLS1 might be carried out supplying concentration column separately for each 

component but it can be automatized using PLS1anal.m where program choses 

sequentially all the columns for all the concentrations. 

 

The output is displayed on the screen and might be copied (Copy and Paste) to Excel. It 

might also be saved using simple Matlab instructions, for example to save matrix C: 

 

data=[C]; 

save output data -ascii –tabs 

 

and the matrix of concentrations is saved to the file “output”, separated by tabs.  

 

9.1.4 PARAFAC model 

Matlab PARAFAC model and some tools are available form 

http://www.models.life.ku.dk/algorithms, toolbox nway and others. The use of this model is 

illustrated in Exercises. The programs presented there (fac2.m, flsc1.m, flsc2, PLSm.m) display 

first the 3D plots of the data and the results are in shown the graphical form (loadings, core-

consistency: corecond) and the numerical values of the scores and loadings A, B, and C. 

PARAFAC program contains many explanations. 

The simplest use is to run it as: 

[Factors]=parafac(X,Fac) 

where X is the data box and Fac is the number of factors = components. 

The full syntax is: 

[Factors,it,err,corcondia]=parafac(X,Fac,Options,const,OldLoad,FixMode,Weights) 

 

PARAFAC can be controlled by Options; Options(2) controls the initialization method. The 

default value is zero. The analysis results can be confirmed by running with random 

http://www.models.life.ku.dk/algorithms
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orthogonalized initialization Option(2)=2; when each run produces the same results and the sum 

of squares “err” the solution seems correct. Option(3)=1 produces useful graphical results. 

Parameter const controls type of constrains with const = 2 for non-negativity of results. Other 

parameters are usually omitted and will not be discussed here. 

The obtained parameters are in Factors containing three loadings. They might be translated 

into numbers by running program: 

[A,B,C] = fac2let(Factors). 

Other results are it – number of iterations, err – residual sum of squares, and corcondia – core 

consistency factor. 

PLS on multi-way data is performed using PLSm.m which calls npls.m subroutine. As input 

the following parameters must be supplied: the measurements array X, concentration matrix y, 

number of factors Fac, and control parameter show=1. The output ypred contains calculated 

concentrations.  
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