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Preface

This course presents the fundamentals of the electrode-solution interface, theory of the
electrode potential and potentiometry, kinetics of mass and electron transfer, and the
electroanalytical techniques: chronoamperometry and chronocoulometry, chronopotentiometry,
linear sweep voltammetry, rotating disk electrode. Although these topics are already presented in
several books® this information is often dispersed in different books or reviews/articles. The
purpose of this course is to give unified theory of these topics.



1 Properties of the electrode-solution interface

1.1 Interface electrode-solution

Interfacial zone is different from the bulk of the phase. In the bulk of solution water has its
proper structure but there is neither net dipole orientation nor net charge density (if the ions are
present in solution). On average the solution is homogeneous although locally there is a dynamic
structure. However, close to the surface the water dipoles are oriented. There are electrical and
chemical forces between the electrode and solution. This zone where redistribution of solvent

dipoles and ions occurs is called the electrical double layer. This phenomenon is illustrated in
Fig. 1.1 and Fig. 1.2.

NO NET DIPOLE
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QDENSITY

NET GHARGE DENSITY i by

(20

INTERPHASE BULK OF SOLUTION
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Fig. 1.1. Interface electrode-solution. In the interfacial zone there is a net orientation of the
solvent dipoles and possible excess of charge.®
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Fig. 1.2. Interphase zone and bulk of solution.?



Similar orientation is observed at other interfaces, e.g. water-benzene, water-air, metal-
vacuum, etc. This orientation produces a potential difference. When there are ions in the solution
the excess of charge may exist in the electrode, gwm, and in the solution, gs, but the total charge of
the interface that is of the double layer is null.

v +0s =0 (1.1)

Chorged inter foce

Solution

e

£xcess posilive chorge density , Qg
on soluhion side of interfoce
Exoess negalive charge
density, qN on metfal

Fig. 1.3. Excess of charge in solution and in the electrode. The total charge of the interface
charge is null.?

Dimensions of the zone of the excess charge density in solution depend on the concentration of
ions. In concentrated 1 M electrolytic solution there are ~10%° ions per cm? and the thickness of
the space charge layer is ~5 A = 0.5 nm. For the concentration of 10* M the thickness of the
diffuse layer is ~300 A = 30 nm. On the other hand in metals the concentration of free electrons
is ~10%2 cm™ and the thickness of the space charge layer is ~0.5 A = 0.05 nm, therefore of the
atomic dimension. One can state that in metals the excess charge is localized at the surface. In
semi-conductors the space charge layer can be larger than that in the solution.

The term electrical double layer is used to describe the interfacial zone where exists excess
charge and orientation of dipoles. The first surface layer is occupied by the solvent dipoles (the
solvation layer of the electrode) and by the specifically adsorbed species as ions or molecules,
Fig. 1.4 and 1.5. It is called compact or Stern layer. In the presence of specific adsorption when
the species are in contact with the electrode and there are chemical interactions species-
electrode. The plane which passes through the center of adsorbed species is called inner
Helmholtz plane. The plane which passes through the center of solvated (not specifically
adsorbed) ions closest to the electrode surface is called outer Helmholtz plane or the plane of the
closest approach.
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Fig. 1.5. Schematic representation of the electrical double layer.*®



1.2 Type of the electrodes

There are two limiting cases of the electrode polarization: ideally polarized (or blocking) and

ideally non-polarized (or depolarized) electrodes. Their electrical equivalent circuits are
presented in Fig. 1.6.

b
2) C ) C
Il Il
[ [
R R
WA AN
R —»x R —0

Fig. 1.6. Schematic representation of the ideally polarized (a) and ideally non-polarized (b)
electrodes.

The ideally polarized electrode is the electrode where there is no charge transfer between the
electrode and solution. This corresponds to the case in Fig. 1.6a with the parallel resistance of
infinity. Such electrode behaves as an ideal capacitor. On the other hand the ideally non-
polarized electrode is the electrode with the parallel resistance of zero, Fig. 1.6b. It is impossible
to change the potential of such electrode as infinite current can pass without any resistance. In
practice the ideally polarized electrode behave ideally only in a limited potential range, Fig. 1.7.

<—A
A B
3 Electrode potential S Electrode potential
~<~—B
(a) (b)

© 2007 Thomson Higher Education

Fig. 1.7. Schematic polarizations curves for ideally and non-ideally polarized electrodes. They
keep their properties in a limited potential range or limited current range, respectively.!

Practical examples of the ideally polarized (blocking) electrodes are mercury, gold, glassy
carbon, etc. electrodes in the supporting electrolyte where there is no red-ox reaction. Of course
at the extreme potentials redox reactions involving the reduction/oxidation of the electrolyte or
oxidation of the electrode will always take place. An example of the ideally depolarized
electrode is a good reference electrode which can keep its potential despite the passing current.



However, in practice, because of the electrode kinetics its characteristics deviates from vertical
line and represents some slope, Fig. 1.8.
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Fig. 1.8. Non-ideally polarized electrode.!

1.3 The electrochemical potential

The chemical potential of the species i in the phase a, ui“ is a measure of the work of bringing

one mole of neutral species, i, from infinity where the molecules are in vacuum and well
separated (so there are no lateral interactions between them) into the phase « where they have

certain activity aj*. It is defined as:

wh= ,uio’a +RT In /" (1.2)
or
o« | 0G
P :(GTJ (1.3)
VT, PN
where ,uio’“ is the standard chemical potential of species i in phase «, G is the Gibbs free energy

and nj number of mols of species i.
For charged species the electrochemical potential was introduced (Butler, Guggenheim):

A= +ziFg (14)
where z; is the charge of the species and ¢* is the absolute electrostatic potential of the phase; for
non-charged species zi = 0 and the electrochemical potential is equal to the chemical potential.
Of course neither chemical nor electrochemical potential can be determined, however, the
change of the potential for the reaction can be measured.

In the thermodynamic equilibrium:



dz
=0 15
o (1.5)

1.4 Internal, external, and surface potentials

In order to understand internal, external, and surface potentials let us look what happens when
a test charge +q approaches a metallic sphere of radius r having electrical charge +Q, Fig. 1.9.

+Q +q

Fig. 1.9. Model of the interactions of the test charge +q with a metallic sphere having charge +Q.

The work necessary to bring the test charge from the infinity (where there are no Coulombic
interactions) to the distance x from the surface, Wy is given as:

X
Wy = [ Fdx (1.6)
o0
where Fy is the force of the interactions. There are two contributions to this energy:
1) Coulombic forces
2) image forces

Coulombic force between two charges is:

Fc =k Qg where k= ! .7
(x+T)? 4resg

where ¢ is the dielectric constant of the medium and & is the dielectric permittivity of the free
space, & = 8.85419x101?2 C2 Nt m2 (or F m™). This work is:

Wy =k qQ Sdx = kgQ (L.8)
o(x+r) X+r
The potential corresponding to this work is:
Ye :\%:k—x?r (1.9)

When a charge approaches metallic surface it induces a charge of the opposite sign in metal.
This space charge is distributed but it is equivalent to the charge of the same magnitude but
opposite sign at the same distance from the electrode, Fig. 1.10. The force of the interaction
between the test charge and its image is:



Fim =k 4 -2 (1.10)

and the corresponding work:
Induced charge

.? Test charge +q
*x

Image charge -q Test charge +q
B x@’
F T2

Fig. 1.10. Origin of the image forces.®

X 2 2

g kg
Wy =—kK|| ——5 |dx=—— 1.11
X OJO[ 4X2] i (111)

Finally, the image potential is:
Yimn = W _k_q (1.12)
Mg 4x '
The total potential is the sum of the coulombic and image interactions:

q, Q
VY=%Ye+Y¥iy=kl —+— 1.13
¢ im ( 4x  r+ XJ ( )

This equation has two limiting cases:
1) x>>r, ¥=¥c
2) x<<r,¥ =Y¥im

It is possible to define three potentials:

a) External potential, ¥, which is the measured by the work of bringing the test charge (+q)
from the infinity in vacuum to the point just outside the image forces. The difference of
external potentials is called Volta potential difference. This is the contribution attributed to
the coulombic charges of phases and this potential is measurable. It is illustrated in Fig.
1.11.



L- Just outside reoch of image forces

| from electrode
|
|

S ot
with charge —
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E FL[",—.S‘;;O‘ : Unit positive
/] torces | test chorge
- )

Fig. 1.11. lllustration of the definition of the external potential.

b) Surface potential, . At charged interfaces there is orientation of solvent dipoles. Such an
orientation is equivalent to the charge separation and produces a potential difference. This
surface potential is measured by the work of transferring the test charge from the infinity to
the dipole layer and then across this layer, when the electrostatic charge of the phase is
null, see Fig. 1.12. Such a potential exists at the metal-solution and metal-vacuum
interphase. In the latter case some electrons try to leave metal but are attracted by the
positive charge created by departing electrons, see Fig. 1.13. Neither the surface potential
nor its difference are measurable.

Uncharged
solution

i

Urat positive test
Work doneto chorge
take test chorge

across dipole layer

Oriented dipole
loyer

Fig. 1.12. lllustration of the surface potential.®
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Fig. 1.13. Metal-vacuum and metal-solution interface.’
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c) Internal potential, ¢, is defined by the work of bringing the test charge from the infinity to
the interior of the phase and includes the coulombic and surface potentials:

p=¥+x (1.14)
This is illustrated in Fig. 1.14.
-z /] Vocuum
(a) s | _

Q Lt e aiaes il 1 7N
Soluhon_~"} o L?SJ {+) @0
with chorgs,

Q.7 '
" lrmg: “~'Just cutside vonge of imoge
/l foll off forces
(b}

Vacuum

1)

Fig. 1.14. lllustration of the internal potential.

The difference of the internal potentials of two phases is called Galvani potential difference.
Because the surface potential is not measurable, A¢ is also not measurable. However, the
difference of Galvani potentials across more interfaces (at least three) can be measured. In
principle only the difference of the internal potentials between two pieces of the phases of the
same chemical nature, e.g. two pieces of copper, might be measured.

An example of the measurement of the Volta potential difference (difference of the external
potentials) is shown in Fig. 1.15.
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vibrating
capacitor
Cu
A i
N A
Cu
l/
I r CUZ
E
1

Fig. 1.15. Device used to measure Volta potential difference of phases o and f.

In this case phases  and o form a vibrating capacitor. The external potential is changed until
no ac current flows in the external circuit and the potential difference is compensated. One
should avoid any surface contamination.

Example 1.1.

Plot curves of the external, image, and total potential vs. log of the distance (in cm) around a
metallic sphere of radius r = 1 cm containing the electrical charge of 1.11x10*2 C.

Calculation can be carried out in Excel.

& 8.85E-12 F/m
r= 0.01 m

Q= 1.11E-12 C

k= 8.99E+09 F/m
g= 1.60E-19 C

log(x/cm) x/m Ec Eim Etot

-8 1.00E-10  9.98E-01  -3.60E+00 -2.60E+00
-7.9 1.26E-10  9.98E-01  -2.86E+00 -1.86E+00
-7.8 1.58E-10  9.98E-01  -2.27E+00 -1.27E+00
-7.7 2.00E-10 9.98E-01  -1.80E+00 -8.07E-01
-7.6 2.51E-10 9.98E-01  -1.43E+00 -4.36E-01
-7.5 3.16E-10 9.98E-01  -1.14E+00 -1.41E-01
-7.4 3.98E-10 9.98E-01  -9.04E-01 9.34E-02
-7.3 5.01E-10 9.98E-01  -7.18E-01 2.79E-01
-7.2 6.31E-10 9.98E-01 -5.71E-01 4.27E-01
-7.1 7.94E-10 9.98E-01 -453E-01 5.44E-01
-7 1.00E-09 9.98E-01  -3.60E-01 6.38E-01
-6.9 1.26E-09 9.98E-01 -2.86E-01 7.12E-01
-6.8 158E-09 9.98E-01 -2.27E-01 7.70E-01
-6.7 2.00E-09 9.98E-01  -1.80E-01 8.17E-01

-6.6 2.51E-09 9.98E-01 -1.43E-01 8.54E-01



-6.5
-6.4
-6.3
-6.2
-6.1

5.9
5.8
5.7
5.6
5.5
5.4
5.3
-5.2
5.1
5

4.9
48
4.7
4.6
45
4.4
4.3
4.2
4.1
-4

-3.9
-3.8
-3.7
-3.6
-35
-3.4
-3.3
-3.2
-3.1
-3

-2.9
-2.8
2.7
-2.6
2.5
2.4
2.3
2.2
2.1
-2

-1.9
1.8
1.7
1.6
15
1.4
1.3
1.2
1.1
1

3.16E-09
3.98E-09
5.01E-09
6.31E-09
7.94E-09
1.00E-08
1.26E-08
1.58E-08
2.00E-08
2.51E-08
3.16E-08
3.98E-08
5.01E-08
6.31E-08
7.94E-08
1.00E-07
1.26E-07
1.58E-07
2.00E-07
2.51E-07
3.16E-07
3.98E-07
5.01E-07
6.31E-07
7.94E-07
1.00E-06
1.26E-06
1.58E-06
2.00E-06
2.51E-06
3.16E-06
3.98E-06
5.01E-06
6.31E-06
7.94E-06
1.00E-05
1.26E-05
1.58E-05
2.00E-05
2.51E-05
3.16E-05
3.98E-05
5.01E-05
6.31E-05
7.94E-05
1.00E-04
1.26E-04
1.58E-04
2.00E-04
2.51E-04
3.16E-04
3.98E-04
5.01E-04
6.31E-04
7.94E-04
1.00E-03

9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.98E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.96E-01
9.96E-01
9.96E-01
9.95E-01
9.94E-01
9.94E-01
9.93E-01
9.91E-01
9.90E-01
9.88E-01
9.85E-01
9.82E-01
9.78E-01
9.73E-01
9.67E-01
9.59E-01
9.50E-01
9.38E-01
9.24E-01
9.07E-01

-1.14E-01
-9.04E-02
-7.18E-02
-5.71E-02
-4.53E-02
-3.60E-02
-2.86E-02
-2.27E-02
-1.80E-02
-1.43E-02
-1.14E-02
-9.04E-03
-7.18E-03
-5.71E-03
-4.53E-03
-3.60E-03
-2.86E-03
-2.27E-03
-1.80E-03
-1.43E-03
-1.14E-03
-9.04E-04
-7.18E-04
-5.71E-04
-4.53E-04
-3.60E-04
-2.86E-04
-2.27E-04
-1.80E-04
-1.43E-04
-1.14E-04
-9.04E-05
-7.18E-05
-5.71E-05
-4.53E-05
-3.60E-05
-2.86E-05
-2.27E-05
-1.80E-05
-1.43E-05
-1.14E-05
-9.04E-06
-7.18E-06
-5.71E-06
-4.53E-06
-3.60E-06
-2.86E-06
-2.27E-06
-1.80E-06
-1.43E-06
-1.14E-06
-9.04E-07
-7.18E-07
-5.71E-07
-4.53E-07
-3.60E-07

13

8.84E-01
9.07E-01
9.26E-01
9.41E-01
9.52E-01
9.62E-01
9.69E-01
9.75E-01
9.80E-01
9.83E-01
9.86E-01
9.89E-01
9.90E-01
9.92E-01
9.93E-01
9.94E-01
9.95E-01
9.95E-01
9.96E-01
9.96E-01
9.96E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.97E-01
9.96E-01
9.96E-01
9.96E-01
9.95E-01
9.94E-01
9.94E-01
9.93E-01
9.91E-01
9.90E-01
9.88E-01
9.85E-01
9.82E-01
9.78E-01
9.73E-01
9.67E-01
9.59E-01
9.50E-01
9.38E-01
9.24E-01
9.07E-01
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-0.9 1.26E-03  8.86E-01 -2.86E-07 8.86E-01
-0.8 1.58E-03 8.61E-01 -2.27E-07 8.61E-01
-0.7 2.00E-03  8.32E-01 -1.80E-07 8.32E-01
-0.6 2.51E-03 7.97E-01 -1.43E-07 7.97E-01
-0.5 3.16E-03  7.58E-01 -1.14E-07 7.58E-01
-0.4 3.98E-03  7.14E-01 -9.04E-08 7.14E-01
-0.3 5.01E-03 6.65E-01 -7.18E-08 6.65E-01
-0.2 6.31E-03  6.12E-01 -5.71E-08 6.12E-01
-0.1 7.94E-03  5.56E-01  -4.53E-08 5.56E-01
0 1.00E-02 4.99E-01 -3.60E-08 4.99E-01
0.1 1.26E-02  4.42E-01  -2.86E-08 4.42E-01
0.2 1.58E-02 3.86E-01 -2.27E-08 3.86E-01
0.3 2.00E-02  3.33E-01 -1.80E-08 3.33E-01
0.4 2.51E-02  2.84E-01 -143E-08 2.84E-01
0.5 3.16E-02  2.40E-01 -1.14E-08 2.40E-01
0.6 3.98E-02 2.00E-01 -9.04E-09 2.00E-01
0.7 5.01E-02 1.66E-01 -7.18E-09 1.66E-01
0.8 6.31E-02 1.36E-01 -5.71E-09 1.36E-01
0.9 7.94E-02 1.12E-01 -453E-09 1.12E-01
1 1.00E-01  9.07E-02  -3.60E-09 9.07E-02
11 1.26E-01  7.34E-02  -2.86E-09 7.34E-02
1.2 158E-01 5.92E-02 -2.27E-09 5.92E-02
1.3 2.00E-01 4.76E-02  -1.80E-09 4.76E-02
14 2.51E-01 3.82E-02  -1.43E-09 3.82E-02
15 3.16E-01  3.06E-02  -1.14E-09 3.06E-02
1.6 3.98E-01  2.44E-02  -9.04E-10 2.44E-02
1.7 5.01E-01  1.95E-02  -7.18E-10 1.95E-02
1.8 6.31E-01 1.56E-02  -5.71E-10 1.56E-02
1.9 7.94E-01 1.24E-02  -453E-10 1.24E-02
2 1.00E+00 9.88E-03  -3.60E-10 9.88E-03
2.1 1.26E+00 7.86E-03  -2.86E-10 7.86E-03
2.2 1.58E+00 6.26E-03  -2.27E-10 6.26E-03
2.3 2.00E+00 4.98E-03  -1.80E-10 4.98E-03
24 2.51E+00 3.96E-03  -1.43E-10 3.96E-03
2.5 3.16E+00 3.14E-03  -1.14E-10 3.14E-03
2.6 3.98E+00 2.50E-03  -9.04E-11 2.50E-03
2.7 5.01E+00 1.99E-03  -7.18E-11 1.99E-03
2.8 6.31E+00 1.58E-03  -5.71E-11 1.58E-03
2.9 7.94E+00 1.25E-03  -4.53E-11 1.25E-03

The plots of the external, image, and total potentials are displayed below.
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Fig. 1.16. Plots of the Coulombic, image and total potential as functions of the logarithm of the
distance from the metal surface, data as in Example 1.1.
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Example 1.2.

Is it possible to have charged phases in electrochemistry?

Let us consider a copper sphere of radius r =5 cm containing 10°2° mole of Cu?* (i.e. from
which 2x101° mole of electrons was removed). What will be the electrical potential at the Cu
surface?

Q = 2 F nmoles = 2 equivalents/molx96485 Clequivalentx10° mol = 1.9x10° C

-5

p=—1 2 _gogsx109Nm2 c219x10 C
dreg 1 0.05m

This charge would produce ~3 million Volts at the surface. However, in electrochemistry

potentials rarely exceed 2-3 V. This means that overcharging must be much lower, of the order

of 10718 moles of electrons.

~3x10%Vv

1.5 Distribution of energy levels

Isolated atoms contain well defined energy levels. Let us consider an atom of s group,
containing one s electron on the outermost orbit (it would be 3st electron for Na atom). If there
are two atoms in contact this level is split into bonding and antibonding levels. When a number
of atoms increases the number of levels created increases as well. For a metal in which there are
many atoms one can talk about continuous distribution of energy levels. This process is
illustrated in Fig. 1.17.

Distribution of electrons is described by the Fermi law. It gives the probability f(E) of finding
an electron having energy E:

1

E-E¢
1+exp T

where Es is so called Fermi level. At the temperature 0 K all the levels are occupied up to this
level and higher levels are empty.

With increase of the number of atoms the s and p levels overlap. In other words the valence
and conduction bands overlap and form one partially filled band. It is well known that only
partially filled bands can conduct. The Fermi distribution function is presented in Fig. 1.18. It
should be noticed that at temperatures larger than 0 K the Fermi level is occupied in 50%.

Electrons at the Fermi level possess the kinetic Fermi energy, &. Now, the energetic diagram
of electrons in metals might be constructed, see Fig. 1.19.

f(E) = (1.15)

The electrochemical potential of electrons in metal, ﬁeM , Is described as:
—M M M
He =g —F¢

:ﬂé\A _FZM_F\PM —_pM_pyM (1.16)

%/—/

_oM

where ,ueM is the chemical potential of electrons and ®M s the electron work function that is
the energy of removing of the electron from the Fermi level of non-charged metal and other
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symbols have their previously defined meaning.*2*® The work function is described as a sum of
the chemical and surface contributions:

@M:_(ugﬂ_FZM):_aeM (1.17)

where aé\/l is called real potential of electrons. This, as well as ®M | are measurable quantities.

p
I =
l ; S
—
atom
metal
A
ty Conduction band
3
% | Vacant
o R ~
ff= Fied
Valence band i A > :
i o I Interatomic
Metals-t;i Semiconduciors Isolated

| and insulators atoms
. .

Fig. 1.17. Formation of bands in metals.
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Fig. 1.18. Distribution of electrons in a metal characterized by the Fermi level Ef = 4.72 eV at the
temperature: a) black 0 K, b) blue 25 °C, c) red 200 °C.

Zero energy in vacuum

A

M —M

(DEA::_{IgA He He
v Vs=-Fy A

Y
A Fermi level
€F
Y

V
Y y S

Fig. 1.19. Energetic diagram of electrons in metals.
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The work function may also be described as:

OM = (g +V) = —(ep +Vp +Vg) (1.18)

where the total potential energy of electrons, V, is the sum of the bulk, Vy, and surface, Vs,
potentials:

V =V +V (1.19)
Vs =—FyM (1.20)

Finally, the chemical potential of the electrons is:
,ueM =eg+V +F;(M =& +V (1.21)

All these relations follow from the diagram in Fig. 1.19.

1.6 Two metals in contact

Let us look what happens if two different metals, M1 and My, are in contact. In equilibrium the
electrochemical potentials of electrons in two metal must be equal:
M _ My

o't = Fio (1.22)
or
- F ML = M2 M2 (1.23)
and
M2 — M Zé(uév'z —ﬂcla\/ll) (1.24)

This Galvani potential difference is not measurable. However, one can measure the contact
potential difference as VVolta potential difference i.e. the difference of external potentials which is
related to the difference of work functions:

;,eMl ——pM _pyML _ [leMZ =Mz _ pypM2 (1.25)
oM2 —CI)Mle(‘PMl—‘PMZ) (1.26)

The process of formation of the contact potential difference is illustrated in Fig. 1.20 and 1.21.
Some electrons from the metal having higher Fermi level go to the one having lower Fermi level
to create one common Fermi level in two metals. This produces the potential difference between
them.
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reference vacoum level

§
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\

Fig. 1.20. Two metals having different work functions: A separately and B in contact. In contact,
two metals have the same Fermi level but different external potentials.®

¢
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bt

(NRERRNE

22
B
Fig. 1.21. llustration of Eq. (1.14) for two metals in contact.’

1.7 Metal-solution interface

Let us look at the interface metal-solution where the following redox reaction takes place:
M*(s) + e(M) = M(M) (1.27)
where indice s denotes solution and M metal. For such reaction one can write equality of
electrochemical potentials:
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_ —M _
”i/ﬁ + M = I\ (1.28)
where the electrochemical potential of metal is equal to its standard chemical potential:
— 0
HM = HMv = (1.29)
Eqg. (1.28) might be rewritten as:
1S A RTInay, o+ Fg® o+ — FoM = iy (1.30)
or
M S 1( os M 0 RT
Mg :A¢:E(yM++,ue —,uM)+?|n a - (1.31)

This equation expresses the Galvani potential difference between metal and solution in terms
of the activity of metal ions in solution. It resembles Nernst equation; however the Galvani
potential difference (in parentheses) is not measurable. One can only measure the difference of
internal potentials between two pieces of the same (chemically) phase. This implies that there

must be at least three interfaces, e.g. Mll | M5, |solution | My where I\/Ill and My are two different
pieces of metal M. In this case the measured potential difference consists of three parts:

Emes = M - M1 = (M1 )+ (4 —¢M2)+[¢M2 —¢Mij (132
This is illustrated in Fig. 1.22.
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solution
()
&)
M,
M2 M]
solution

Fig. 1.22. Example of the simplest measurable cell and its potentials.

1.8 Absolute electrode potential

There was a great interest in the literature to determine the absolute electrode potential. 37 The
problem with the absolute potential is that it might be defined in different ways. The problem of
defining an “absolute” electrode potential consists of finding an appropriate reference level for
electrons. They are displayed in Fig. 1.23 as A, B, and C.1* Between them only the way B can be
experimentally verified. The absolute potential defined here is composed of the work function of
the metal and the differences of the external potentials metal-solution:
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vacoum . ___
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oM epM
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1

Fig. 1.23.Three different ways (A, B, C) of transferring an electron from M’ to M. 14
—M M M M
E M _ M _He —He _Fe —He!
mes = ¢ ¢ = =
€ e
M My
@ 7 M +(\PS—‘I’S)

because

and might be written as the difference of two absolute potentials (in parentheses):

M
(0]
Ez%'s :—+AéV"P
e

(1.33)

(1.34)

(1.35)

In this case the reference state is the electron in vacuum close to the solution surface just

outside of the image forces that is its external potential, P° . Both values can be experimentally

verified.

1.9 Absolute potential of the standard hydrogen electrode

The absolute potential of the standard hydrogen electrode might be estimated using the

thermodynamic cycle displayed in Fig. 1.24.
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~H
A(fion

H H + e(vac)

LH» —s S

AG igs qu+ —e'

41
v

H, H.," + e(vac.ats)

AGY

Fig. 1.24. Thermodynamic cycle to determine the absolute standard hydrogen potential.

In this cycle oxidation of H> might be obtained by direct electrochemical oxidation of H, to H*
or by dissociation of H2, Hy — 2H, ionization of in vacuum, H-e — H™, solvation of H* in

aqueous solution, H™ > H{, and transporting an electron from vacuum to the solution surface
just outside of the image forces, V.
AGY =M 1 eAMy (1.36)

=0 1 1 H,

AG% = MGy +AGly + 72, —e¥° = >AGGE +AGign +a (1.37)

Because AG® was written for oxidation and the absolute potential is the reduction potential:

AGY = FE (1.38)
Using the experimental values of the parameters:
Hy — 2H % AGHZ = 203.30 kI mol 2
HoH +e  AG{, =1313.82 ki mol™! (1.39)
H* -1
HYac = szo asy =-1088+ 2 kJ mol
one can get:
AG =203.20+1313.82 —1088 = 429.12 kJ mol ! (1.40)
and taking into account the experimental error:
AGY =429+2 kImol ™t (1.41)
This value leads to the absolute potential of hydrogen reduction reaction:
H™/H
Eabs 2 =4.45+0.02V (1.42)

Because of the large experimental error in the determination of the real solvation energy of
proton the error of the standard potential is large, ~20 mV. Because of that the potentials are



25

determined with respect of the standard hydrogen electrode and can be obtained with the
precision of the fraction of mV.
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2 Potentiometry
2.1 Activity

Chemical potential for the ideal solution depends on concentrations:
ﬂildeal = /Jio +RT Ing; (2.1)
however, in real solutions, because of the interionic interactions, concentration must be replaced
by activity:
real 0
4" =1 +RTIng aj = ¥iC;i (2.2)
or
real ideal
Mt =M =RTIny; (2.3)
where » is the activity coefficient. Of course, with increasing dilution (decreasing concentration)
the interionic distances increase and solutions becomes ideal:
lime_07i =1 (2.4)
Thermodynamically, it is possible to determine only the salt activity. Let us suppose a
completely dissociated salt M,, A,

My, A, v M% v A% v=v vl Yemza =D Azl ViZ, +v.2_ =0 (25)
for which one can write:

/JMV.FAV_ = V+ﬁMZ+ +V—ﬁAZ_ :V+NMZ+ +V—ﬂAZ_ (2'6)
where
V+,u+:1/+,u£3+v+RT|nm++V+RT|n7/+ 27)
V_u_ = V_,L19 +v_RTInm_+v_RT Iny_
Introduction of mean activities leads to:
v +v_u
vV, +v_
0 0 1/v 1/v
Vet TV RTIn (mi+m3—) +RTIn (yI+yK—)
v, +v_
e =2 +RT Inmy +RT Iny,.
0 0 2.8
0 _ Vil tV_H_ 28)
Hi=——————
vV, +v_

v v Uv
mi:(m;m_—)

v v 1/v
7¢=(7+*7:)

where m is the molality (in mol/1 kg of solvent).
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Exercise 2.1.

Determine relation between mean and single ionic parameters for NaCl, CaCl», and Fe2(SO4)3
salt concentration m (molality).

a) NaCl

s = Mna* * Hor-

- 2
_ 12 —m - -
my =(m,m_) me=m_=m mg=m (2.9)
1/2

Vi :(yNa”/CI )

b) CaCl:

py =—2 = (2.10)

2 1/3 2 1/3
+RTIn(m+m_ +RTIn(y,72

m_=2m m,=m
1/3
m, = [m(Zm)Z} — 4Y3m — 1.5874m 2.11)
5 1/3
Y+ = (?’Ca2+7CI_ )
c) Fex(SO04)3

V=V, +V
v
V. V.
my = m", m"-
+ ( Fe3* soz‘j

=3m (2.12)

T
Ye= (7Fe3+yso£‘J

In diluted solution molarity and molality are very similar, however, in concentrated solutions,
they are quite different.

Exercise 2.2.

Compare molar and molal concentrations in 0.275 M (d = 1.005 g cm™) and 30% (d = 1.198 g
cm) of HCI.
a) Muci = 36.47 g mol?, in 1| there is 0.275*36.45 = 10.0 g HCI.
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11-1005 g solution =10.0 g HCI + 995.0 g H.0

In 1 kg H20 there is % =10.05g HCI or 10.05 g / 36.47 g/mol=0.276 mol of HCI.
g

Threfore, molal concentration 0.276 m (and molar concentration is 0.275 M).

b) 11 of solutution weights 1198 g, mass of HCI 1198*0.30 = 359.4 g HCI (+838.66 g H20)
Mucl _ 359.4¢/1 9855 M
Mpyc)  36.47 g/mol

Molar concentration Cpy =

mol 1000g/kg _
| 838.66¢/I
It is evident, that in 30% HCI there is large difference between molarity and molality.

Solution consists of 1000g of solvent and HCI 9.855 11.75m

2.2 Debye-Huckel theory of ion-ion interactions

In the indefinitely diluted solutions the ions are separated and there are no interactions between
them. In such a case the activity coefficients are equal to one and the solution behaves as ideal.
However, when solutions become more concentrated interionic interactions cause deviation from
the ideal solutions and the activity coefficients must be introduced.>%!8 These interactions for the
individual ion are defined as:

4 (real) — g (ideal) = Aggj = RT Iny; (2.13)
where Ay is the free energy of ion-ion interactions. This term may be estimated by work of

charging on an “uncharged ion” to the charge zieo, where z;j is the ion valence and eo is the
elementary charge. Such a process is illustrated in Fig. 2.1 and the corresponding work is W.

® ® .' ® @ ®
. WORK OF CHARGING .
? & A MOLE OF REFERENGE ® ®
Y ION = Bp; i
“ | ®le |
! ™\ OTHER IS |
| ARE CHARGED ‘\
D'ﬁ' ‘::":EEEE:::RFWE REFERENCE ION

CHARGED

Fig. 2.1. Process of charging of the “discharged ion” in the solution.?

The chemical potential of charging is Avogadro number, Na, times individual fork W:

Apij =NpW (2.14)
The charge of an individual ion is:
q=Zj€g (2.15)
and the work of charging:
Zi€y
W= | viondd (2.16)
0

where the electric potential, y, at the distance r around the ion, is
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q

ion = 2.17
Yion Arseqr ( )
Then, the work of charging is:
Zj€p 2
1 (zieg)”™  zieg( ze Zie
W = dg = _ 4is0 i~0 |_“4*0, . 218
Areeyr £ 7% 8reegr 2 \ Amegyr 2 Vion (2.18)
and the chemical potential:
N A zi€
Aghi =NpaW = A2| 0 Vion (2.19)

Debye and Hickel have shown how to estimate theoretically the activity coefficients.
2.2.1 Limiting Debye-Huckel theory

When solutions are very diluted ions may be considered as point charges. Let us consider a
simple 1:1 electrolyte, where the charges are unitary and total number of cations and anions is
the same:

z,= |z_| =1, N9=NC=nN; (2.20)

In this theory it is considered that each ion is surrounded by the ionic cloud of the opposite
charge. The distribution, according to the Boltzmann law, is given by:

0 ,—equw /KT
N, =Ne ¥
2.21

where /s the total electrostatic potential at the distance ri. The volumetric charge density is:

N,
Pi dv 04i
and (2.22)
N, = dN;
dv
p=> pi=N,z.e0+N_z_ey=NDe (e_eOV’/kT —eeOV’/kT) (2.23)

Of course, the average charge density of the solution is zero. Eq. (2.21) may be linearized
when:

LeV g (2.24)
KT
and, in such a case:
a2
exp(—a):l—a+7...z1—a (2.25)

Such a linearization is a fundamental assumption of the D-H theory. In this case the charge
density is:
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p=> Nizieg = > NPzeq exp(~zieqy / KT ) =
i i
10,262

=Y N%ze al Ol// Nze Z' eol/j (2.26)
- i 4i%0 0~
e e _
- OWZNI 2 = _Ef;NPzz

To find the potential y the Poisson equation must be solved:

2 2 2
vy oy __» 2.27)
OX oy oz 2200)

As we are interested in the radial potential distribution around the charge the spherical
coordinates may be used. Spherical symmetry simplifies the problem and the Poisson Eq. (2.27)

simplifies to:

2
ig(rza_‘//j:_iz oV ZN zI =K y/
2 or or ceg  €60KT 5
(2.28)
d? l// 2dy _ 2y
dr? r dr
where Eq. (2.26) was substituted for p. To solve this problem a new variable y is introduced and

the derivatives calculated:

H

r

dv__u, ldu (2.29)

dr 2 rdr

l/j:

dzl// 1 du a1 du 1d2,u

- = "4 2 -~

dr? r2dr 3 2dr rgr
Substitution into Eq. (2.28) gives:

dz_w: 2du ,p 1du L id_ﬂ:KZE
) (2.30)
d
dr
Solution of Eq. (2.30) is given as a sum of exponentials:
p=Ae"" +Be""
A _or B (2.31)
=—e " +—e
v r r
with the condition:
r—w y—>0 B=0 (232)

and the following solution is obtained
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e—Kr

r

Parameter A may be found form the condition in infinitely diluted solution, when x—0 the
potential equals to that of the individual ion, Eq. (2.17):

w=A (2.33)

k—0
v = A __q P (2.34)
rAdregyr dregg
and the solution for the radial distribution of the potential around an ion is:
_ zigg e (2.35)
g .
dreeg
Distribution of the potential is displayed in Fig. 2.2.
POTENTIAL

I 1
1 2 3

DISTANGE FROM CENTRAL ION (IN /K UNITS)
Fig. 2.2. Radial distribution of the electrostatic potential around an ion.?

Next, we have to calculate the charge distribution around an ion. The charge is related to the
potential by Eq. (2.28):

2
) (2.36)
_ ziegxt e ™'
dr r

It is clear that the charge density decreases with the distance, similarly to the potential, Eq. (2.35)
and Fig. 2.2. However, the charge at the distance r in the spherical shell of the thickness dr is

dq= 47rr2pdr (2.37)

Dependence of this charge contained in the spherical shell 4zr2dr is displayed in Fig. 2.3 and
2.4.
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dr

(F—r

REFERENCE

OoN CHARGE IN SHELL = dq

. rr 4"&'

Fig. 2.3. Spherical shell of thickness dr at distance r from the central ion.?
dq

CHARGE ENCLOSED
IN A dr—-THICK

SPHERICAL SHELL
dq IS MAXIMUM AT r..('

O
l

=
(i7K)
DISTANCE IN X¥~! UNITS

Fig. 2.4. Variation of the charge dq contained in a spherical shell of thickness dr on normalized
distance r/x 1.2

This distribution of the charge density of the opposite sign around the central ion is visualized
in Fig. 2.5.

CENTRAL POSITIVE ION

. ~— SURROUNDED BY A
CLOUD OF NET CHARGE

EQUAL AND OPPOSITE
TO THAT OF THE CENTRAL
ION

<
r

Fig. 2.5. Distribution of the charge around a central ion.?
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The charge density in the spherical shell has a maximum. The distance of the maximum, rm,
can be found by differentiation of the charge:
dq_ i(—zieozczre_’“) = —zjepK? (e_’(Ir - rzce_"r) =0
dr dr
=Kk
It is equal to x*. Redistribution of the charge in solution around the central ion is called ionic

cloud. The charge of the ionic cloud is:
r—o0

% o _ 2 —KF o0

Qotoud = | da= [ pdrrPdr=—[ 052 47r%dr = —ziey e~ (xr)dr=-z8y  (2.39)
r=0 0 0 r 0

which means that the central ion is surrounded by the ionic cloud of the opposite sign and its

total charge is equal to that of the central ion, Fig. 2.6.

(2.38)
1

THIS CHARGE (-Z 8y GIVES THE
SAME EFFECT AS THE IONIC
cLouD

(b) \

NEGATIVELY~GHARGED GENTRAL ION (+Z &)
IONIC CLOUD
WITH CHARGE —Zj €

Fig. 2.6. lonic cloud of the total charge —zieo around the central ion zieo.?

The total potential around the central ion, yr, is composed of two contributions, one due to the
presence of the central ion, wion, and due to the ionic cloud, wcioud, Fig. 2.7:

Yy =Vion * ¥cloud (2.40)

w.e |

on

Fig. 2.7. The superposition of the potential, wion, due to the central ion (b) and the potential due
to the ionic cloud (c), weioud, around the central ion.?
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From which potential due to the ionic cloud might be obtained using Egs. (2.35) and (2.17):

Zi€ e_Kr Zi€g Zj€ ( —Kr )
o _ — e -1 2.41
Veloud = ¥r —V¥ion (4”&90 r Areggr Aresyl ( )

As before, the exponent might be linearized at low concentrations when:

kr<<l, e ' =1—kr
Zifgk _ Zi€g (2.42)
dmeey  Ames (K‘)_l

Comparing the ionic and cloud potentials it is possible to notice that the cloud potential is
equivalent to the ion of the opposite sign at the distance «, Fig. 2.6 and Fig. 2.8

2V

Yeloud = —

CLOUD OF NET CHARGE
> <2
-7; €,

Fig. 2.8. Contribution of the ionic cloud is equivalent to the charge equal in magnitude and of
opposite sign to that of the central ion, placed at the distance x*.2

The distance «* is called thickness (radius) of the ionic cloud or the Debye-Hiickel length.
Taking into account that the concentration is:

Ci = Ni_ mol dm™
Na (2.43)

Nj = NAC
where Na is the Avogardo number. Substitution into Eq. (2.28) gives

2 1/2 2 1/2
€ N € 2
K:|: 0 ZNiZi:| :|:NA Q ZCiZi:l =

sgokT sgokT
(2.44)
2Naed [ 1 Y TN 1 2 T?
A®0 2 A®0
=| Z2A0 | =N g =| Z2A0 | =F | =BVl
lggokT {22 ' 'J] {ggOkT :l o L“gORT} =gt
where 1 is the ionic force of the electrolyte:
1= ¢z (2.45)

For the electrolyte 1:1 the ionic force equals to the concentration and for the electrolytes with
|zi| > 1 it is larger than the concentration. The parameter B is:

B =502.90 (¢T) Y2 dm¥2 mol Y2 nm L (2.46)
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or for water at 25 °C:

B =3.2864 dm®2 mol Y2 nm~! (2.47)
The values of the parameter x* are shown in Table 2.1.

Table 2.1. Dependence of the ionic cloud thickness, &, in nm, on the electrolyte concentration.?

Charge type of the electrolyte

c(mol-dm™) 1-1 1-2 2-2 1-3 2-3

10°° 96.1 55.5 48.0 39.2 24.8
10°* 30.4 17.5 15.2 12.4 7.8
107° 9.61 5.55 4.80 3.92 2.48
1072 3.04 1.75 1.52 1.24 0.78
10! 0.96 0.56 0.48 0.39 0.25
1 0.30 0.18 0.15 0.12 0.08

Deviations from the ideal solution described in Egs. (2.13) and (2.14) are related to the
electrostatic ion-ion interactions and ionic cloud potential:

Api_i = Hreal — Hideal = NAW = RT Iny;

zie
W= ITol//cloud
and (2.48)
2,2
A =~ NaZi & — = RTIny;
2(4reey) K
The activity coefficient is
2 2
|n7/i :_Le_olzizz—wzizﬁ=—p\'zi2*ﬁ (2.49)
8reggx "RT 8reeoRT
or
logy; =—Az2\I (2.50)
where
1/2
B—F|—2 /
eggRT
(2.51)
n__ N2F%e A
87 (egoRT )3/2 In(10)

The parameter A is:
A=182481x10°(sT) ™32 dm¥?2 mol Y2 (2.52)
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and for water at 25 °C:

(2.53)

A=0.50925 (
mol

1/2
dm3j
The activity coefficients of the single ions can be estimated by theory but cannot be
determined experimentally. In order to compare the results of the Debye-Hickel theory
calculated mean activity coefficients of the electrolyte should be with those determined
experimentally. Keeping in mind that the activity coefficient of the electrolyte is:

v 1/v
7+ (7++7_ ) V=V, Vo

2
1 1| Naegx 2 2
Inyi:V(VJ“IM/J’+V_Iny_)2_;{ﬁV+Z++V_Z_ﬂ:
(2.54)
1 NAeO K
== z vV|=-A|z,z_
{87[55RT|+ |} |+ N_
v+z;?'_+v_zg

where =|z,z_| and v, z, =v_z_ (electroneutrality)

v, +V_

Egs. (2.50) and (2.54) describe so called Debye-Hiickel limiting law. It is applicable to very
diluted solutions with the ionic force usually lower than | = 0.001 for 1:1 electrolytes (sometimes
more). Comparison of the experimental and calculated activity coefficients is shown in Fig. 2.9
and 2.10. Different slopes correspond to different values of |z+ z.|.

0

e O EXPERIMENTAL POINTS
-001 —

log n L

-002—

[ R [N [ [ VO Y] Y ) RSN IO G VA |
I 5 7

JT xidt

Fig. 2.9. Comparison of the experimental (points) and calculated (line) activity coefficient of
HCI.2
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Fig. 2.10. The experimental log = versus 1¥2 for three different types of electrolytes: 1:1, 2:1,
and 2:2.2

However, at higher concentrations (higher ionic force) deviations from the linear dependence
are observed, see Fig. 2.11.

0
| EXPERIMENTAL
CURVE
-02 b
log 7, =R LLINITING LAW
| EouaTiON 3
-06
-0-8 I 1 R B | 1
02 04 06 08 10 2 14
e

Fig. 2.11. Dependence of log 7 (here f.) versus 1¥2. Linear relation is observed only at very low
concentrations.?
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The first source of deviations observed might arise from the assumption that the ions are point
charges. The Debye-Hiickel limiting law is valid when the thickness of the ionic cloud is much
larger than the ionic radius, 1/x>> ri. This problem will be considered in the next chapter.

2.2.2 Influence of the ionic radius

In the previous chapter in Eq. (2.39) integration of charges around the central ion was carried
for the parameter r from 0 to . However, because each ion has an effective radius a the
integration must be carried out from a to o. The procedure carried out in this case will affect the
parameter A in Eq. (2.33):

e—Kr

r

yr=A

A/czggo —Kr
e
r
dq = parr?dr = - Ac?4xreege ™ dr

2
p=—Kkesqyy =

© (2.55)
Ueloud = —Zi€g = —I AK247rggOre'Krdr
a

—KkT
J.re_Krdr:—e (1+xr)

> + const

K
Oeloud = —Adrresge 3 (1+ xa) = —zjg)
From which the parameter A is obtained:
ziege™?
dregy(1+Ka)
and the potential as a function of distance becomes:

z.e el('a e—K‘I’
wr = '0{ J (2.57)

_472550 l+xka ) r

A= (2.56)

The difference between Eq. (2.57) developed for the ions of radius a and Eq. (2.35) developed
for the point charges is the presence of the term in parentheses in Eq. (2.57). When a = 0 this
term is equal to one. As earlier, Eq. (2.41), we can calculate the cloud potential:

Yeloud =¥r —V¥ion =
_ zigg ( e~@ ]e_’“ Zieo _ Zi€ [e"(a_r)_l} (2.58)

- dreeg| 1+xa | r  Amegyr - 4dreegr| 1+xa

After linearization of the exponential (as above) the following equation is obtained:
Zi€o

Ycloud = — (2.59)

472'6‘80]('_1 (1+xa)

and the corresponding activity coefficient of a single ion is obtained using procedure in Eq.
(2.48)-(2.50)



39

N azie
RT Inyj = Ay :ATIO‘//cIoud
2 2 2 2 o2
N ae Zi N AeqB zi| A'zEI
In]/i:_ A*0 IK —_ A*0 | - _ | (260)

8recgRT (1+kxa)  8meggRT (1+ Ba\/l_) (1+ Ba\/I_)

AziZ«/I_

logy; =
97 1+ Bav/l

and for the electrolyte:

Alz,z |1

lo =— 2.61
g7i 1+ Ba«/l_ ( )

The parameter a is the effective ion diameter. It is an experimental parameter and its values are
displayed in Table 2.2. These values are given for single ions but the values for the electrolytes
are not well defined which is the weakness of this theory.

Table 2.2. Values of the parameter a and activity coefficients of various ions at different ionic

forces. !
Activity Coefficients at Indicated lonic Strength

Ion axmm 0001 0005 001 005 01 |
H;0* 09 0.967 0933 0914 086 083
Lit, CgHsCO0 0.6 0965 0929 0907 084  0.80
Na*, 103, HS0O3, HCO3, HyPOQ, HAsO4, OAc™ 04-0.45 0964 0928 0902 082 078
OH", F~, SCN~, HS, Cl0;, C107, BrO3, [03, MaO; 0.35 0.964 0926 0900 081 076
K+, Cl", Br~, I, CN", NO3, NO3, HCOO™ 0.3 0964 0925 08%9 080 076
Rb*, Cs*, TI*, Ag*, NH | 0.25 0.964 0924 0898 030 0.5
Mg?*, Be?* 0.8 0872 0755 069 052 045
Ca?*, Cu?t, Zn2*, So?*, Mn2*, Fe2*, Ni?t, Col*, Phthalate?~ 0.6 0.870  0.749 0675 048 040
Se2%, Ba?t, CdZt, Hg2*, §2° 0.5 0.868 0744 067 046 038
PR+, CO3™ 8037, C05° 0.45 0868 0742 0665 046 037
Hgl", 5037, 5,037, Cr03", HPOS ™ 0.40 0.867 0740 0660 044 036
AP* Fed*t Cr3*, La¥t, Ce?t 0.9 0738 054 044 024 0.8
PO}, Fe(CN)}~ 04 0725  0.50 040 016 0095
Thi*, Zett, Cett, Sntt 1.1 0588 035 0255 010 0065
Fe(CN)g~ 0.5 057 031 020 0448 0021

aFrom . Kielland, /. Am. Cherm. Soc., 1937, 59, 1675. By courtesy of the American Chemical Society.

As one can see the values of a for many ions are around 3 nm which gives aB =~ 1 and a

simpler form of Eq. (2.61) is often used:
logy =_A|z+z_ |JT
* 1+41

(2.62)
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Bates and Guggenheim proposed an equation used in the pH determination:
jog = Alzz INT
1+1.5J1
The last two equations do not require any specific information about the individual ions. To

account for the variation of the experimental activity coefficients at higher ionic forces, Fig. 2.12
and 2.13, another semi-empirical equation was proposed:

__Alzz VT,

lo =
e 1+Bal

This equation works well for ionic strengths up to 0.3. The approximations of the experimental
activity coefficients by different equations is illustrated in Fig. 2.14. The value of the parameter
C =-0.1z+z- was used.

(2.63)

(2.64)

[3e] of
\
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[o2-1 A
\ NaCl
! \
rt [+ -] =
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05 ] 1 | |
o] [+2.] +o 18 20 285

N
Fig. 2.12. Dependence of the mean activity coefficients on the square root of the concentration.?
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Fig. 2.13. Variation of the mean activity coefficients with concentration.



41

L T T T
[+] -
(e}
R
-§ I 5 5 k
i.g.
£ oaf- .
G
[}
2
5 i 5 T
- 0
g o2l .
1 2
i | 1
0 1 . 2
Vu:_,mul"ﬁ.dm'i

Fig. 2.14. Dependence of the mean activity coefficient of NaCl on square root of molar
concentration at 25 °C. Symbols — experimental, curve 1 calculated using Debye-Hiickel limiting
law, Eq. (2.54); curve 2 according to Eq. (2.62); curve 3 according to Eq. (2.61) with a = 0.325
nm; curve 4 according to the Bates-Guggenheim Eq. (2.63); curve 5 according to the Bates-
Guggenheim + 0.1C; curve 6 according to Eq. (2.64) with a = 0.4 nm, C = 0.055 dm?® mol™.5

More complex equations were also proposed in the literature for concentrated solutions.®

2.3 Electrode potentials

Physically one can measure potential difference between two electrodes. If the reference
electrode is the standard hydrogen electrode the word electrode potential can be used.

Reversible hydrogen electrode, Pt|Hz( pH2)|H+(aH+), consists of Pt/Pt black electrode

immersed in solution and bubbled with H: gas, Fig. 2.16 and 2.16.
Standard hydrogen electrode, SHE, (earlier called normal hydrogen electrode, NHE) is the
reversible hydrogen electrode with to the hydrogen activity of one:

A (CH+ /co) (2.65)

where Vgt is the activity coefficient of protons in solution, C_,+ is the concentration of H*, and

H+
¢® = 1 M is the standard concentration, and the hydrogen gas fugacity of one:
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fiay =74, (P, 1 9°) (266)

where p0 ~10°Pa is the standard pressure (earlier a pressure of 1 atm = 1013251 Pa was used).
The real hydrogen pressure should be corrected by the water vapor pressure, py ,0 which are

tabularized,® and the solution depth, h, at which hydrogen is bubbled:

PH, = Pparometric — PH,0 *+4-2 x10~°h (2.67)

where pressure in in atmospheres and h in mm. The potential of the standard hydrogen
electrode is by definition zero at all the temperatures. Practical tips on preparation of hydrogen
electrodes are found in ref. 5. It should be stressed that the standard hydrogen electrode does not

exist because it is not possible to prepare solution of aH+ =1 exactly and only the RHE can be

used in practice. However, it is possible to determine the electrode potential versus SHE by
extrapolation to low concentrations, see Chapter 2.8.
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. e P !

Fig. 2.15. Reversible hydrogen electrodes.®
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Fig. 2.16. Schematic view of the reversible hydrogen electrode Pt | H2 | H*; 1) Pt black electrode,
2) gaseous hydrogen, 3) solution of fixed pH, 4) gas bubbler to avoid air entrance, 5) ionic
connection with another electrode.?

The definition of the measured parameters is resumed below:

1) potential difference or cell voltage is the potential difference between two electrodes
(current might flow)

2) electromotive force, EMF, is the potential difference measured in the open circuit, without
any current

3) potential is the potential difference when the reference electrode on the left hand side is the
standard hydrogen electrode

4) standard cell potential is the electrode potential when all the concentrations and fugacities
are equal to one.

2.4 Nernst equation

The Nernst equation is the consequence of the electrochemical equilibrium. It can be easily
obtained from the electrochemical potentials. Instead of solving a general case let us look at the
example of the cell without liquid junction potential:

Cu’|Ag| AgCIICI™, Zn?*|Zn|Cu (2.68)
The reactions taking place at the electrodes are:
1) Zn®*+2e (Cu) = Zn

2) AgCl+e (Cu’) =Ag+CI™ x(-2)
(2.69)

Zn?* +2 Ag+2Cl™+2e (Cu) =Zn+2 AgCl +2 ¢ (Cw’)
or

Zn?*+2 Ag + 2 CI~ = Zn + 2 AgCl
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In order to get the total equation both reactions are written as reductions and that at the left hand
side is multiplied by -2 to be able to cancel the electrons on both sides. It is important to notice
that the final redox reaction does not contain electrons:

Zn%*+2 Ag+2 ClI™ =Zn +2 AgCl (2.70)
To develop the Nernst equation one should write the electrochemical potentials for all the
species including the electrons in Eq. (2.69):

2AipgS) + N + 208" = . v2ripg v2i w2l @T)
but
B . = yg§2+ +RTIna 5, +2F¢°
= ugf'_ +RTIna_ - F¢°
ﬁﬁg = ﬂg\g ﬁﬁg&l = ﬂg\gCI ﬁzzr? = ﬂgn (2.72)
ﬁgu _ ﬂé:u _ F¢Cu ﬁeCu' _ ﬂeCu . F¢Cul

—C _Z —_Cu' _ A
,Ueu:/uen ﬂeu:ﬂeg

and after substitution
2F (¢! - 4“Y) = 2FE =

0 0 0 0 0 2 (2.73)
(ﬂ2n2+ —ﬂZn)— 2(ﬂAgCI — HAg —ﬂCI_)+ RT |ﬂ(aZn2+aC|_)
which might be rearanged as:
o RT ( 2 )
E=E"+—In|a a 2.74
2F \"zn*%er (749
with
0 0 0 0 0
M o —#zn)—z(ﬂA Cl—HAg — U _)
Eo:( zn% g 9 el (2.75)

2F
Eq. (2.74) is the Nernst law for the cell in Eqg. (2.68). It is obvious that it is the consequence of
the equality of the electrochemical potentials for this cell. In general, the Nernst equation is
written in the form:

RT
E=E0+ " |n2ox (2.76)
nF  aneq
but all the species involved in redox reactions must be included in this equation.
It should be stressed that according to the IUPAC convention the cell potential corresponds to
the potential difference: right minus left:
E = Eright — Eleft (2.77)

From the thermodynamic point of view the cell potential is related to the Gibbs energy of
reaction AG =-nFE . The sign of the cell potential can tell us in which direction the reaction is
spontaneous:

E<0 AG>0 Reaction spontaneous to the left
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E>0 AG<O0 Reaction spontaneous to the right

In the above example the standard potential of the cell is -0.985 V which means that when the
two electrodes are connected through the resistor the reaction (2.70) will proceed to the left.

In the electrochemical cells one vertical line “|” denotes separation of phases and two lines
liquid junction that is contact of two different solution containing different electrolytes, different
concentrations or different solvents. The liquid junction of two different solutions is connected
with the formation of the additional potential difference: the liquid junction potential.

77||77

2.5 Formal potentials E*

Calculations of the electrode potentials demands knowledge of the activities. However,
activities are rarely determined and, in some cases, they are difficult to estimate. In such cases
instead of the activities one can use concentrations and replace standard by the formal potential,
EO:

E-g04 Rl jp8ox g0, BTy Yo  RT Cox _ por RT ), Cox (2.78)
nF A NF 7red NF Creqg NF Creg
=4

Of course the formal potential depends on the solution ionic force and electrolyte nature, but
can be used when they constant. Another example is for the potential of Fe3*/Fe?* in HCI:
RT a3 + RT, Cp3
ALY T -y~ ALY P = il (2.79)
nF a2+ nF Cre2+

E-gY+

where
e oor =[Feﬂ+[FeC|2+}+[FeClﬂ+[FeC|3}+[Fequ

[recit] [recit | o

2.6  Types of the electrodes

There are few principal types of the electrodes.
2.6.1 Electrodes of the first kind

Electrodes of the first kind are of the type metal-metal ions in the solution, M*|M. The
Nerstian potential of such an electrode is given as:
M7 +ze22M (2.81)
0 RT
E=E +—1Ina 2.82
MM ZF M (2.82)
Examples of such electrodes are: Ag*|Ag, Cu?*|Cu, Zn?"|Zn, etc. Another example are the
amalgam electrodes, e.g. Cd?*|Cd(Hg), where its potential is given by:

RT |naCL2+

E=E +— 2.83
Cd2+|Cd(Hg) 2F acd(Hg) ( )
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where acdHg) in the activity (~concentration) of cadmium amalgam.

2.6.2 Electrodes of the second kind

Electrodes of the second kind consist of the metal, its poorly soluble salt, and anions of the salt
in solution, e.g.: M|MX|X". Below examples of the electrodes of the second kind will be shown.
a) CI]AgCI|Ag

AgCl+e =2 Ag+Cl™ (2.84)

Potential of this electrode may be developed form the Nernst potential of Ag* ions which are
always, in small quantities, in the solution saturated with AgCI:

0 RT
E=E +—Ina 2.85
AgtlaAg F Ag (285
In the saturated solution there is a thermodynamic equilibrium described by the solubility
product

AgCl
Kolw' =a Agtacr (2.86)
Substitution of the activity of Ag* to Eq. (2.85) gives:
0 RT Agcl RT
E=E +—InK ——Ina _ _ 2.87
Ag+|Ag F SO F Cl ( )
or
=0 RT
E = EAgCI|Ag —? In aCI_ (288)
where
0 =0 RT . AgCl
Eagciiag = EAg+|Ag "'?In Kso (2.89)

Eq. (2.89) allows for the determination of the solubility product from the standard potentials.
b) C,03 |1ZnC,0,)Zn

ZnC,04 +2e =2 Zn+Cy05" (2.90)
The equilibrium potential is developed as above:
0 RT
E=E +—1Ina ,
?*zn 2F zn?t (2.91)
ZnC,0
K Z1C204 =343 02 (2.92)
0 RT, znc,0, RT
E=E +—InKg 7274 ———Ina . ,_
%z 2k P 2F  Cy0% (2.93)
=E° Rl jna 2.94
ZnC,040zn 2F  C207° (2.94)
0 0 R KZnC204 (2.95)

ZnCy040zn  zn?*|zn
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¢) HgHgY?|Y# where Y* is the anion of EDTA
HgY?+2e = Hg+Y* (2.96)
0 RT
E=E +—1Ina 2.97
Ho®*Hg  2F  Hg”" (2.97)
The complex stability constant is:

a -
HgY
gy =5 e d - (2.98)
0 RT RT . 3Hgy2-
E= AL P g HY 2.99
Hg?*|Hg 2F Prgve-*+ 58 a4 (2.99)
a 2
E=E® , 4Ry HoY™ (2.100)
HgY“"|Hg 2F aY4_
0 0 RT
E - ——In . 2.101
HgY2"Hg  Hg?*Hg 2F h HgY? (2.101)

Electrodes of the second kind are often used as the reference electrodes or in analytical
potentiometry as the ion selective electrodes.

2.6.3 Electrodes of the third kind

Electrodes of the third kind consist of the metal 1, its sparsely soluble salt, another sparsely
soluble salt of the same anion with another cation 2, and cation 2 in the solution, e.g.:
M1 | M1X | M2X | M2, It is important that the salt M1X must be much less soluble than M2>X
(otherwise an exchange of ions will occur leaving M1 and M2X).
a) Zn|ZnCz04 | CaC204 | Ca®*

E-£%,  +RTjhk2nC0s _RT,

Zn%*|zn nac,02- (2.102)
KSCOaC204 =a_ 2+ aCzoﬁ_ (2.103)

ZnCy0y
E= Egn2+|2n+; n%+;ln a2+ (2.104)
} ga2+|CaC204|ZnC204|Zn ’ % Inac o+ (2.105)
: ; RT | K 21 (2.106)

= +—In—S0____
Ca?*|CaCy0,4/ZnC,040Zn  zn?*jzn  2F KS%aCzO4

with the condition: KSZOnC204 << Ks%ac204

This electrode of the third kind allows to obtain electrode reversible to Ca2*, which because of
the hight activity of calcium toward water is impossible using the electrode of the first kind:
Ca?*|Ca.Hg | HgY? | CaY? | Ca?*
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a _
e, -Rlyng , +RUypTHey? (2.107)
Hg“"Hg 2F HgY 2F a,4-
a 2-
Brgy2- = —Cay* (2.108)
Bca2+y4-
E_g0 _ﬂn'gHgYZ‘ RT, gy RT na_ .
Hg?*Hg 2F Bogo- 2F a2 Ca
. (2.109)
- g0 RT HgY* Ina_ »
- 2- 2-1~22+ o o | %ca%t
Hg|HgY <~ |CaY“"|Ca 2F aCaYz_
RT, Phgv?
E L, L, =EY . I (2.110)
HgHgY <~ |CaY<~|Ca“* Hg="|Hg 2F ﬁCaYZ*

with the condition: ﬂHgYZ_ >> 'BCaYZ‘
This kind of the electrode is used in potentiometry and potentiometric titrations.
2.6.4 Redox electrodes

Redox electrods are made of an inert metal (which does not react with the components of the
solution) in the solution containing redox couple, i.e. ox and red forms. Metallic electrode most
used is platinum; examples are: Fe**/Fe?*, MnO4/Mn?*, Cr,0-%/Cr**, etc.

2.6.5 Concentration cells

Concentration cells are composed of two electrodes of the same type but containing different
concentrations. There are two types of such cells:
a) with liquid junction, in which two solutions with different ionic concentrations are in
dirtect contact
An example of such cell is: Ag’|Ag" 0.1 M ||Ag" 0.01 M |Ag. The cell potential difference is
equal to the potential difference of two electrodes and contains the liquid junction potential.

0
+—7Ina .

AgflAg  F Ag™ (right)

0 + RT Ina

AgtlAg F Ag™ (left)

Eright =E

Eleft =E (2.111)

a, 4+,
E = Evight — Eeft = RT |p _Ag(righy) Eliquid junction
aAg+(Ieft)
b) without liquid junction potential and ionic transfer
In this case two solutions are separated by a metallic electrode, e.g.
Pt’|H2|HCl(a1)|AgCI|Ag|AgCI|HCI(a2)|H2|Pt. The potential difference of the cell is the sum of the
potential differences of two cells connected in series, assuming the the hydrogen pressure is

10° Pa and the standard potential of hydrogen electrode is zero:
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0 RT 0 2RT
Eright = —EAgcliag +?In 3-8~ = ~EAgeliag + Ina, , (2.112)
0 RT 0 2RT
Eieft = EAgCliag —?m a 8- = EAgcliag —Tln at 1 (2.113)
2RT ay»
Ecell = Rright + Eleft = F Ina+_1 (2.114)

Another example of the cell without liquid junction potential and ionic transfer is cell with
amalgams, e.g.: Ag|AgCI|NaCl (ar)|Na(Hg)|NaCl (a2)|AgCIl|Ag or
Pt|H2|MOH(a1)[M(Hg)|[MOH(az)|H2|Pt where M is a metal. In the last cell the electrode reactions
at the right may be written as:

H20+€=%H2+OH_

M* +e=M(Hg) (2.115)
N 1
H>O+M(Hg)=M" +OH +§H2
and the total potential difference of the complete cell is:
2RT, a RT , 8H,0,2
AL =" S ALY LY (2.116)

a2 Foap,01
2.6.6 Primary and secondary batteries

Primary batteries are non-rechargeable and secondary are rechargeable. Below few examples
of these batteries are displayed.?
1) Primary batteries

a) Leclanché, acid
C|MnO2|MnOOH|NH4CI,Zn(NH3)2Cl2|Zn

b) Leclanché, alkaline
MnO2|Mn203|KOH|ZnO|Zn

C) zinc-mercury
Zn|Zn(OH),|KOH|HgO|Hg

d) zinc-silver
Zn|ZnO|KOH|Ag20|Ag

e) zinc-air (or aluminum-air)
Zn|air|C

f) lithium-SO,
Li|SOz, LiBr,AN|C
2Li+2S02=2 Li2S,04

g) Li-SOClI;
Li|[SOCIy, LiAICI4C
4 Li+2SOCl; =4 LIiCl +S + SO

h) Li-FeS;
Li|Lil,PC|FeS2
FeS;+4e=Fe+2S%
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i)
)
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Li-CuO

Li|LiCIO4|CuO|Cu
Li-MnO2

Li|PC, LiCIIMNnO2|LixMnO;

Secondary

a)
b)
c)
d)
e)
f)
9)

lead-acid
Pb|PbSO4|H2S04|PbO2|PbSO4|Pb
Cd-Ni
Cd|CdO|KOH|NiOOH|Ni(OH)|Ni
Cd-Ag
Cd|CdO|KOH|Ag20|Ag
Ni-H>

NiOOH|H:

Ni-metal hydride
NiOOH|ABsHy
zinc-silver oxide

AgO|Zn

Li-ion

negative

LiCe, LIWO2, LiM0O>
positive

LiCo0O2, LiNiO2, LiMn204
organic solvents

y-BL, PC, THF, DME...
salts

LiClOg4, LiPFs,...

3) Fuel cells
a) alkaline H2-O>

Alkaline Fuel Cell Structure

Hydrogen Gas

i i & Anode [Nickel Mesh]

Porous Memhrane (Platinum C atalyst)

Porous Memhrane (Silver Catalyst)

T T T Cathode [Hickel Mesh)

Oxygen Gas

b) polymer membrane (acidic) PEMFC

c) phosphoric acid

d) direct methanol DMFC
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e) solid electrolyte SOFC

2.7 Reference electrodes

In practice, certaine reference electrodes are used, depending on the solutions studied. The best
way is to avoid liquid junction potentials.

The most popular reference electrode is the saturated calomel electrode, SCE: Hg|Hg2Cl2|sat.
KCI. Its potential at 25 °C is E = 0.2444 V. However, the solubility of KCI depends strongly on
temperature and normal calomel electrode is sometimes used using 1 M KCI solution. Of course
its potential also depends on temperature as AGP is also temperature dependent but this
dependence is smaller.

Another reference electrode is Ag|AgCI|CI™ electrode in diluted chloride solutions. In more
concentrated solutions AgCl is slowly dissolved forming soluble complexes as AgCl.".

Other popular electrodes are Hg|Hg2S04|SO4", Hg|HgO|OH™ or reversible hydrogen electrode,
RHE, in the studied solution, Pt|Hz|H* (or OH").

To avoid contamination of the working solution by the ions from the reference electrode
special junctions were proposed, Fig. 2.17 and a double junction reference electrode is
sometimes used, Fig. 2.18. The reference electrode used in electrometric experiments should be
characterized by low resistance (impedance), < 1 kQ. However, reference electrodes with higher
resistance might be used in potentiometric measurements.

A. Vycor, polyethylene, or teflon frit B. Ceramic junction C. Glass wool, cellulose pulp, or agar
\\RE body
RE
body
- Heat shrink —Glass
Frit . fubing celhulose
pulp, or Agar
F. Luggin capillary
D. Platinum, quartz, or asbestos fiber E. Cracked glass bead
Glass RE
G]ﬂSSRE/ body
body
Wire or Glass
/ fiber bead

Fig. 2.17. Different types of junctions for reference electrodes.’
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A. Temporary Double Junction
using an independent RE
B. Permanent Double Junction
Independent -, [ with the RE built-in

RE
Internal -,
RE {1st) RE (1st)—.
juncti:.m A junction
-
Double <
.l)Ol:Ir_\]u N junction
Junthmn i
nine solution
solution
Double —,
Double —, PN
(Znd) N N \
junction \\L junction \‘H

Fig. 2.18. Double junction for the reference electrode.®
2.8 Determination of the standard electrode potential

Although the standard hydrogen electrode does not exist it is possible to determine the
standard electrode potential. Such a procedure will be shown for the determination of the
standard potential of AgCI|Ag electrode. The cell necessary to determine this parameter is shown

below:

Cu’|Pt|H2|H*, CI'JAgCI|Ag|Cu (2.117)
The reaction in the half-cells are:
1) AgCl+e (Cu) =Ag+Cl 2)
2) 2H"+2e (Cuw’) =H, (-1) (2.118)

2 AgCl+Hy+2e (Cu) =2H+2Ag+2Cl +2e (Cw)

0 0, C C
2upgel +yHg +RT |I”I]/H2 +244p U_2Fg-Y =

(2.119)
2405 +2RTING | +2F¢° +2u3g +24° +2RTInG’  —2F ¢+ 245" ~2F g™
2F (¢°Y —¢~Y) = 2FE =
0 0 0,s 0,s 0 aS+aSI_
= 2(upgel — Hag — 45 ) = (u03 — p39) - RT In-H_CL (2.120)
Cl H 2 YH,
S S
a
H™ CI”

= 2FERgciag —RTIn -
2
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0 RT 4 +a.-
E =Eagiciag —?mHl—/ZCI
H, (2.121)

0 2RT RT 1/2
= EAgiciiag _Tln my fy +?|”7H2

a 8- = m?2 2 Inf, ~A' 12 = A'mi/2 (2.122)

where m, =(m,m_ =m is the electrolyte (HCI) molality. To obtain the standard potential

of AgCI/Ag electrode Eq. (2.121) is rearranged to:
£+ 2R inm- Ry, 2 _go_2RTA sz (2.123)
F F 2 F
where all terms on the left hand side are known and are plotted versus mY/?; the intercept gives us
the standard potential. Such a plot is displayed in Fig. 2.19. The extrapolated value is E° =
0.2225 V.

)1/2

0,222 y
am\f\taw
- 20,226
8 0.22
§,~o,230ﬁ ,
W 0,232 oo

\‘ o
0,234} : X o
0,236
0

o1 02 a3 04
WV

Fig. 2.19. Plot to determine the standard potential of AgCI/Ag electrode.??

Knowing standard potential of one electrode allows using AgCI|Ag as a reference electrode
and determine standard potentials of other electrodes.

In the cases when the equilibrium at the electrodes cannot be reached because of sluggish
kinetics of the electrode reactions the standard potential can be calculated from AG? of the total
reaction. For example the standard potential of the O./H20 reaction can be calculated form the
standard Gibbs energy of water formation AG® = -237.2 kJ mol* for the cell: Hz|H*, H20|O..
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%oz +2e+2H" =H,0

2H" +2e=H, (-2) (2.124)
1
EOZ + H2 = Hzo
and
0
g0 __AG _ 287200 |, _; orgy (2.125)

C2F  2x95485
Another example is the calculation of the standard potential of the cell: Pb|PbO2|Br,H.O|Br:
knowing that the Gibbs energy of formation of PbBr, AG® = -210.14 kJ mol™:

Brp +2e=2Br
PbBr2 +2e=Pb+Br— (—1) (2.126)

BI’Z + Ph = PbBr2

AGY 210140

2F  2x96485
In this case the potential difference measured is independent of Br concentration, E = E° of
the cell.
Finally a more complex example will be shown for the calculation of the standard potential of
Ca?|Ca couple. Of course direct measurements are not possible because of the reactivity of
metallic Ca with water. One looks for the standard potential of:

E0-_

V =1.098V (2.127)

6) Ca’*+H,=2H"+Ca (2.128)
E° might be calculated by addition of several reactions:
1) H2+%02:H20 AH{ = —285 838 mol ™
2) CaO + H,0 = Ca(OH), AH, =66 683 J mol
3)Ca+ %02 =Ca0 AH3 =-629 293 ] mol ™
4)H,0=H" +OH" AG, =798821 mol ™ (2.129)
5) Ca(OH), = Ca?* +20H™ K =3.1x107°
0 _ 0 _ 0 _ 0 _
ASca =41.63  ASc,o =39.74 ASCa(OH)2 =76.14 ASH2 =130.58

0 _ 0o _ -1,.-1
A802 =205.028 ASHZO =70.0 J mol "K

(6) = (1) +2(4) - (2) - (3) = (5)

(2.130)
AGS = AGY + 2AG] - AGY - AGS - AGY
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ASP =Sy1,0 —%soz ~ Sy, =70.0-205.028/2-130.58 = —163.094 J mol ™ K™

ASJ = Sca(oH), — Scao — SH,0 = 76.14—-39.74-70.00 = -33.60 ) mol * K

ASS = Sca0 —%502 —Sca =39.74-102.514 — 41.63 = —104.404 J mol 1 K1

AGY = AHY —TAS? = —285 838 — 398* (—163.094) = —237 236 J mol (2.131)
AGY = 626293 — 298* (—104.404) =598 181 J mol ~*

AGY = -RTInK =25 710 Jmol™*

AG§ = 237236+ 2* 79880 — 56671+ 598181 — 25710 = 551666 J mol~*

o AGY 551666
6~ " OF ~ 2%06485

E

=-2.853V (2.132)

2.9 Potentiometric determination of the activity and activity coefficients

Electrolyte activities and activity coefficients might be determined using physicochemical
methods (osmotic coefficient, decrease of the melting point and increase of the boiling point of
solutions) and by potentiometric measurements. The potentiometric method will be illustrated in
for the activity of CdCl,.

Exercise 2.3

Determine the activity coefficients of CdCl, using data from Table 2.3. To do this the following
cell should be used:

Pt’|Cd(Hg) 11%, (saturated)|CdCl. m|AgCl|Ag|Pt

Table 2.3. Data for the determination of activity coefficients of CdCl..

m/ E/V 1 Lhs of Eq. i
mol kg J(m/mol kg ™) (2.137) I V g
0.0005  0.85390  0.022361 0.5788062  (0.870
0.001 0.82997  0.031623 05815866  0.809
0.002 0.80701  0.044721 0.5853370  0.734
0.005 077851  0.070711 05921463  0.615
0.007 0.76862  0.083666 0.5952222  0.568
0.01 075846 0.1 0.5088067  0.518

Nernst potentials of this cell and its right and left half-cells are:
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0 RT
Eright = EAgcl/ag _?ln a-

0
E.; =E +—Ina
left = “ca2+/cd(Hg) | 2F cd? (2.133)
o RT 2
E=E,-E =E;;——Ina a
r | cell = Cd2+ cr-
and
Ina a? =In m2m2( 2 ):In m 3 In( 2 ):
cd®* o1 ( (2m) ) e U L L A A (2.134)
3 3
=In(my) +In(7/i)
where
2\Y3 3
mi:(m(Zm) ) =4"°m (2.135)

In very diluted solutions one can use the Debye-Hickel limiting law to estimate the activity
coefficients:

log 7 :—zizA\/I_ I =%(m 22 +2m) =3m
2 _ 1 _A! _ 1 _ 3
In(}/Cd2+7/CI_)— 4AT +2(~AT) = 6AVT =Iny3 (2.136)
Inyy =—2A'\/I_=|z+z_|A'\/I_
logy+ =2A1

where A and A’ are constants. The salt activity coefficient may be substituted into Eq. (2.134)
and the standard potential may be estimated by extrapolation of the straight line to zero
concentration:
RT 3\_r0 3RT _ 0 _3RT _ 0
E+ = In(4m )— Ecell = Iny, = Egel oF J3m = Eggyy — p/m

3RT

o (2.137)
3 0o _
E+Eln(4m )—Ece” =~F Iny,

Knowing the standard potential the activity coefficients might be determined at each
concentration m. The plot of Eq. (2.137) is shown in Fig. 2.20.
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0.60

o
al
©
1
1

E + RT/2F In(4m®) / V

0.58 E

0.02 0.04 0.06 0.08 0.10
12

(m/ mol kg™
Fig. 2.20. Plot according to Eq. (2.137) to determine standard potential.

Regression analysis gives Ege" =0.5734 (+0.0004) V with its standard deviation. The numerical
vues are displayed in Table 2.2 calculated using f = RT/F=0.02569 V.

2.10 Physicochemical methods of determination of the activity coefficients

2.10.1 From osmotic coefficient

When pure solvent and is in the contact with the electrolytic solution and the separator is a
membrane semipermeable to solvent the equilibrium condition demands that some amount of the
solvent is moved to the electrolyte compartment to increase pressure, called osmotic pressure,
Fig. 2.21, and the following equation for chemical potentials of the solvent and solution might be

written:6:23

18 (T.p)=s5 (T, p+7)

,ug(T, p):ySO(T, p+7)+RT Inag
where term on the left side of Eq. (2.138) corresponds to the pure solvent and that on the right to
the electrolytic solution, « is the osmotic pressure and as is the solvent activity in the solution.
Taking into account that molar volume of solvent, Vs, is:

(2.138)

0
s _y, (2.139)
op
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P p+I1

Height
proportional to
osmotic pressure

Equal at
equilibrium

719 The equilibrium involved in the

calculation of osmotic pressure IT is

between pure solvent A at a pressure p Solvent
on one side of the semipermeable

membrane and A as a component of the

mixture on the other side of the

membrane, where the pressure is p + I1.

Semipermeable
membrane

7.20 In a simple version of the osmotic
pressure experiment, A is at equilibrium
on each side of the membrane when

enough has passed into the solution to
cause a hydrostatic pressure difference.

Fig. 2.21. Equilibrium involved in the osmotic pressure.?

and its integration leads to:
(T, p+7)-1d(T,p)=Ver =—RT Inag

RT (2.140)
r=——-Inag
VS
The activity of solvent equals practically to its molar fraction and:
Inag ~Inxs =In(1- %)~ =Y % ~—Ms Y m (2.141)
where Ms is the molar mass of the solvent and the molalities of electrolytic components are:
m=—i_ X _mm Doy (2.142)
| nsMs Ms 1 S ns | :

For the ideal solution the osmotic pressure is:

RT
m* = V—MsZmi (2.143)
S
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and for the real solution it is z (which is experimentally measurable). The osmotic coefficient ¢m
is defined as the ratio of the real and ideal osmotic pressures:

p/a Inag
== 2.144
== S (2.144)
or
Inag =— @y Mg > m; (2.145)
and its total differential is:
dinag = —g,Mg > dm; — Mg > m; de, (2.146)

From the Gibbs-Duhem equation one can obtain:
ngdlInag+ Y nidina; =0

2.147
ngdInag+ > midInm; +> nidIny; =0 (2.147)
Using number of moles per unit mass of solvent (molality — per kg of the solvent):
nS:Mi np=m > mdinm; =" dm
. ° (2.148)
M—dlnaS +Y dmj+> midIny; =0
S
it is possible to eliminate d In as from Eqgns. (2.146) and (2.148) obtaining:
~gnMg D dm; — Mg m;j dgy =—Mg D dm;j — Mg > m; diny; 2.149)
2. midIny; = > m;ddy — (1 ¢p) D dm;
and taking into account that:
dYmj=vm  >'dmj=vdm D midInyj=vmdIny, (2.150)
the following equation is obtained:
dinyy =dgy, —(1—gy)dInm (2.151)
but
m
[ddm = dm -1 (2.152)
0

activity coefficient may be obtained by integration with increasing electrolyte concentration, m:

Inyiz—(l—@n)—}](l—¢m)dlnm (2.153)
0

2.10.2 From changes of the boiling or freezing point

Similarly, the osmotic coefficient may be obtained from the decrease of the freezing
temperature, Ty, or increase of the boiling point, Tp:
ATg ATy

fin = KCZ:mi B KeZ:mi

where K is the cryoscopic and Ke ebullioscopic constant.

(2.154)
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2.11 Determination of the equilibrium constants

Potentiometric method was often applied to the determination of the equilibrium constants of
complex formation.?*2?" Using classical potentiometry one has to prepare a series of solutions
containing the studied metallic cation with different concentration of the ligand and the metal in
reduced form. To avoid formation of passive layers usually amalgams containing constant
concentration of the metal are used. If preparation of stable amalgams is difficult one can use the
polarographic method where amalgam is dynamically formed during the reduction of metal
complex at the dropping mercury electrode. The equations for both methods are similar. It is also
necessary to assure that the redox process is reversible and the complexation is fast.

2.11.1 Complex formation equilibriums

Let us assume that metal cation M** forms series of complexes with the ligand L:

M*t +L=ML =%

[MZ][L]

[ML,]

ML +L =ML __Mbal

T 2T ML
ML, + L = MLg [MLg] (2.155)

T IMAILE
I
ML)

where fi are the cumulative stability constants of metal complexes. The total (analytical)
concentration of metal ions is:

Cyz+ =[M* 1+ [ML]+[MLp]+...+[MLj] =

:[MZ+]{1+ﬂ1[L]+/32[L]2+...+/3j[|_]j}= (2.156)

MLj_1+L=MLj J

J o
=[M*1> ALY =D [ML] bo=1
i=0 i=0
and the noncomplexed metal ion concentration is:

J
> ML)
[MZH] = '=JO— (2.157)

> ALl

i=0
In the absence of the ligands when metal ions are not complexed the equilibrium potential is:
RT  [M*" 10
nF [M/Hg]
where metal is in the form of the amalgam. In the presence of ligands the Nernst potential is:

ELo=E%+ (2.158)
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J
> ML)
Z+ , .
E L =E%+ RUnIM7] _por (RT - io (2.159)
nF  [M/Hg] J i
[M/Hg] Y AL
i=0
The difference of these two equilibrium potentials is described by:
[|V| "o _ J
AE=E E —== I L 2.160
L=o-BL =" M, NF Izcl)ﬂr[ I (2.160)
In the case of the polarographic half-wave potential analysrs a similar equation is obtained:
RT , =0
Etfz" — Effp = AEyjp = T '|— Zﬂ.[ I (2.161)
L

where i1, L=0 and i, L are the limiting currents in the absence and presence of ligand. The second
term is the same as in Eq. (2.160) and the first one takes into account the changes in the diffusion
coefficients of the complexes. Eq. (2.161) may be rearanged into:

exp{%AEﬂzﬂn ':—I: } 1+ﬂ1[|_]+ﬁ2[|_]2+_“+ﬂj[l_]j (2.162)

Knowledge of the stability constants allows for calculation of the fraction of each complex, ai,
as a function of the ligand concentration:

ML) _ [ML;] B BiILT

= = : (2.163)
Cyzt  [MTTT+[MLI+[MLy]+...+[ML]] 1+ B[L]+...5L]
and the average number of ligands per metal cation:
o[l _ AlL+280LF +. 4 L) (2.164)

Cyze 1+ AL+ Bo L +...+ B[L]]

Examples of the plots of i and n versus logarithm of ligand concentration are showed in Fig.

2.22 and 2.23 for the complexes of Mn?" with NHs. To assure the constant concentrations of
neutral metal a saturated Mn(Hg) amalgam was used.?
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L

=5 -0 -05 0 0,5
log [NH;]

Fig. 2.22. Dependence of «; for Mn(NHg)iZJr on logarithm of NH; concentration.?®

 §

Fig. 2.23. Dependence of the average coordination number of ligands n of Mn(NH3)i2+ on
logarithm of NHz concentration.?®

2.11.2 One complex in solution

When only one complex, ML exists in the solution Eg. (2.160) is simplified to:
RT i\ RT jRT
= -0 — = — H J ~— i —_— 2.1
AE=Ei B =" |n(1+ BiIL] ) = In B+ L] (2.165)
when the stability of the complex is large 1+ S[L]= £i[L]. In such a case equilibrium potential

(or half wave potential) in the presence of ligand is a linear function of the logarithm of ligand
concentration:

OB, :—ﬂj or —EL__ 005020 v at 25°C (2.166)

olIn[L] nF olog[L] n
For the half wave potential similar equation is obtained:
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D i Z+
E1/20—|51/2——ﬂ|n M= +E|nﬂj[L]J——ﬂ| LM

2zF DMLJ zZF zF I MLJ'

These equations are valid when [L]>>[M?*] that is the complexation reaction does not change

the total ligand concentration. An example of such process is reduction of lead ions in alkaline
solutions where plumbite ion is formed:2°

Pb(OH)J?'j — PbZ+ jOH™

RT i
+ ;In pilL)! (2.167)

(2.168)
Pb?* +2e = Pb
The plot of the half wave potential versus log [OH] is shown in Fig. 2.24.
2-0f
r.—| | |:|..
I-TE- |
580 avs 080
EL volls (vs. 5.C.E)
Fig. 2.24. Dependence of E1/2 of plumbite reduction as a function of —log[OH].%
The slope is:
L
dE _
——12 __ _g4 mVdec? (2.169)
dlog[OH ]

Theoretical plot for n = 2 and j = 3 equals 88 mV dec? which idicates that j = 3 and the
following reaction takes place:

Pb(OH)3 =Pb%"+30H™ or HPbOZ + H,0 =Pb?" +30H"

Pb?* +2e = Pb

Similar situation is observed when few complexes of largely different stability constants are

formed. In such a case local straight lines in the plot E - log [L] with the slopes corresponding to

the complex stechiometry are observed. An example is shown in Fig. 2.25 where three straight
lines may be distinguished correspomding to the cadmium complexes with 2, 3, and 4 ligands.

(2.170)
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Fig. 2.25. Plot of E1/ of reduction of cadmium (11) versus log of imidazole concentration.?®

However, such systems with well distinguished stability constants are rare and, in practice, a
contnuous curve is found.

2.11.3 Determination of consecutive stability constants

In general, when few different complexes are formed Eqgs. (2.160)-(2.162) must be used. There
are two methods of the determination of stability constants: a) graphical and b) numerical
method.

a) Graphical method

This method was proposed by De Ford and Hume.?” Eq. (2.162) may be written as:

E-(L) = exp| NF =0 |_ 2 i
o(L) =exp R—TAE1/2—In : =1+ B[L]+ Bo[L]” +...+ Bj[L] (2.171)
L
and it defines function Fo(L) which is a polynomial in [L]. It can be rearanged into F1(L):
Fo—1 i
Fl(L):—E)L] :ﬁl+,Bz[L]+...+,[)’j[L]J L (2.172)

which has an intercept of 1 and the slope at low ligand concentrations of 2. One can continue
with other functions:

Fa(L) - Fl[jl — By + BelL+ ...+ BILI

(2.173)
£ _Fii=fia
L
Such a procedure was applied by De Ford and Hume to the determination of stability constants

of the complexes of Cd(Il) with thiocyantes: Cd(SCN)i?'. The constructed functions are
displayed in Fig. 2.26.
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Fig. 2.26. Dependence of functions Fi[L] versus [SCN'] for complexes Cd(SCN);?* 2727

The results indicate that complexes up to j = 4 are present in solution. The determined stability
constants are: =11, fBo =56, f3=6, [,=50.

b) Numerical method

Eqg. (2.171) represents a polynomial and its coefficients might be obtained using weighted
polynomial fit to Fo. Application of the error propagation method shows that the standard
deviation of Fo is ai = f exp(nf AE;) oe (neglecting the error of the limiting current). This means
that the statistical weight which should be used are wi = 1/a%. Application of the weighted least-
squares method gives the following results: p1 = 10 (2), £ = 52 (15), s = -6 (28), s = 56, where
numbers in parantheses indicate the standard deviations. The results clearly indicate that the
complex with three ligands cannot be statistically detected and the standard deviations of the
obtained stability constants are large. Then, the modeling was repeated with three statistically
important parameters and the obtained results were: f1 = 10 (1), £ = 49 (4) and £ = 53 (2). In
principle more experimental points should be used to determine many equilibrium constants.

It should be added that if the concentration of the ligand is not sufficient single polarographic
wave might be separated into two coresponding to the reduction of the complexed and free metal
ions, Fig. 2.27.
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Fig. 2.27. Polarographic waves in the presence of insufficient complexing agent concentration: I)

1 mM Cd? in 3 M NaClOg, 1) 1 mM Cd?* in 2 mM CN-, 3 M NaClO4.%®

2.11.4 Formation of ion pairs

Polarographic method was also applied to the determination of the ion pairs of the anoin
radical of indantrione, R, with metal cations in DMF in the presence of the supporting
electrolyte (C2Hs)sNCIO4, (TEAP), with which there are no complexes formed:*°

R+e=R™"

R~ + Ba’* =R™"..Ba%"

The slope dEi2 /d log [Ba?*] = 0.86+0.25 ~ 1 which indicates 1:1 ion pair stechiometry, Fig.
2.28. The plot of exp(f AE112) vs. [Ba?*] shows a straight line with the intercept ~1 and the slope
Kass = (2.0£0.6)x103. It should be noted that when metal complexes are formed with metal
cations (form ox) the potential shift due to the complex formation is in the negative direction but
when the product (red) forms complexes the potential shift is in the positive direction, in
agreement with the Nernst law.

(2.174)

a) 4
. o1
-8
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N
W
<]
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. . L 0 Il 1 e -
-10 -2.0 =30 , 11072 24077 3197
log [Ba*"] (Ba?*]

Fig. 2.28. Plots used for the determination of the stoichiometry and stability of ion pairs
(indantrion™)...Ba%".%°
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3 Double layer thermodynamics

Simple measurement of the double layer parameters as the surface tension, double layer
capacitance or charge allow for determination of the surface excess and adsorption of neutral
molecules or ions,3810:31

3.1 Gibbs adsorption isotherm

The interfacial zone (interphase) occupies the region between two pure phases o and B. In the
interfacial zone these phases are perturbed. Somewhere in that zone there is an interface dividing
two phases (dotted line).

Pure phase o ‘ Interfaoiial zone ‘ Pure phase 3

The excess of the number of moles of the species i in the interfacial zone is defined as:
0y =rp - (31)
where n is the number of moles, index S represents interfacial zone and R the reference zone
which is the bulk of the pure phase. In the bulk of solution (reference zone) the electrochemical
Gibbs free energy is a function of three parameters: temperature, T, pressure, P, and number of

moles, niR:
GR =GR(T.P.nf) (32)
but at the surface it is also function of the surface area, A,
G>=G>(T,P,AN) (3.3)
The total differential of these functions are:
=R =R =R
dGR =| 2 a1 +| L |ap+ 3| L |anR (3.4)
oT oP ~| anR
and
=S
065 =[ 2 |41 4 [ 287 |gp o[ 27 |g4a Z 06> dn® (3.5)
(3T 5P aA 5n|
At constant temperature and pressure the electrochemical potentlal is defined as:
oGR ) (oGS
fi = - (3.6)
! (8niR J (aniS]

and because of the thermodynamic equilibrium electrochemical potentials of species i at the
surface and in the bulk of the phase are equal.
It is possible to write the differential of the excess electrochemical Gibbs free energy:
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dG® =dGS —dGR = ydA+> 44 d ( —n,R)

' (3.7)
=ydA+ Zﬂi dn?

i
oG?
= = 3.8
= o
The surface tension is a measure of the energy necessary to increase surface area; it depends on
the chemical composition of both phases.

The excess electrochemical Gibbs free energy,G?, depends on the surface area, A, and

where and surface tension, y, is:

numbers of moles, n;, GO(A, nig). It is a linear homogeneous function of these parameters and
one can write the Euler theorem:
o O'
G = [6; JA z[a ]n, =yA+> ind (3.9)
i
The total differential of this function is:

dG7 =ydA+ Ady + > mdn +> nCdg; (3.10)
i i
Comparing Egs. (3.7) and (3.10) leads to:
Ady +> ' ndz =0 (3.11)
i
Introducing the surface excess concentration, I'j, in mol cm™,
n?
ri=-1 3.12
= (3.12)
gives the Gibbs adsorption isotherm:
—dy = Zl“idﬁi (313)

i
where I'i might be negative or positive.

To be able to determine the surface excesses this equation must be rearranged. This will be
shown in the next chapter.

3.2 The electrocapillary equation

To develop equation allowing for determination of the surface excesses and charges we will
consider an example of aqueous KCI solution containing also neutral species M, the mercury
working electrode and Ag|AgCI reference electrode. The mercury electrode behaves as an ideally
polarizable electrode:

|K™, CI”, M| Hg |Cu (3.14)
The Gibbs equation for the Hg | solution interface is:

dy = (ngdﬁHg +redﬁe'*91)+(rK+o|ﬁK+ +FC|_dﬁCI_)+(FMdﬁM +Th,00f,0)  (3.15)
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In equilibrium the electrochemical potentials of electrons in metals in contact are the same,

,qu = ,ue . To simplify Eq. (3. 15) one can use the foIIowmg relations:

HH,0 = HH,0 H\ = (3.16)
— —0
dizyg =dupg =0
which gives
—~dy =Tedzg" +[F +di .+ du —}+[F|\/|dﬂ|v| +I'h,001H o]
KT K cl— “cl 2 2 (3.17)
—dy =Tedzg" + [(—FK+ + FC|—)dﬁC|— } +T +duker + [FMd#M + FHZOd/UHzo:I
Introducing the excess charge density on metal and in the solution:
o =-Fr, (3.18)
S _ B _ M '
7= F<FK+ 1ﬂcl‘)_ e
because &° + o™ =0 one can rearrange the first two terms in eq. (3.17):
—Cu — _
Tedi ( Py +rcr)d“cr =
GM —Cu —
=~ Uk _(FK+ Lo )d”cr (3.19)
M oM
__ o —Cu o
= du + 2 = d/JCI_
For the reference electrode: AgCI + e = Ag + CI- one can write:
_ _Cu'_ — _ —C =
Apgl +He" =Hpg+Ay-  — A" =dig- (3.20)
Then Eq. (3.19) becomes:
M M
—_C — o —Cu, 6O —Cu'
Fed,ue u +(—FK+ +FC|_)d'uC|_ :—?d,ue u +?d,ue U=
M M (3.22)
- —G—(dﬁgu —dﬁeC“') -7 ¢ (¢C“ 4V )F - oMdE_
F F
using relations
d—CU =d Cu _ Fd Cu
He ¢ (3.22)

d—Cu _d—Cu Fd(¢C“ _¢Cu')=—FdE_

where E_ is the potential of the mercury electrode with respect to the Ag|AgCl electrode in the
same solution, which is reversible to anions. Finally one can write:

M
—dy =0 "dE_+T +dugcr +Tmdem + TH,004H,0 (3.23)



70

It should be noticed that not all the parameters in Eqg. (3.23) are independent because one
cannot change the chemical potentials of KCI, M, and H2O independently. They are related by
the Gibbs-Duhem relation which, at constant T and P, is:

D Xjdy=0 (3.24)
i

where X; is the molar fraction. Applying it to our problem gives:
XH,0dup,0 + Xkerduker + Xm v =0 (3.25)
and Eq. (3.23) becomes:

M X X
—dy =cdE_ +(FK+ —XLCIFHZOJdﬂKCl J{FM ~X M ngO}dﬂM =

H,0 H,0 (3.26)
M
=o "dE_+ FK+(H20)dﬂKC| +I'M(H,0)d4m
where FK+ (H,0) and I'pH,0) are the relative surface excesses with respect to water:
_ XKl
Pkt my0) =Tkt _mero
y 2 (3.27)
TM(H,0) =M ~%——Th,0
(H20) XHZO 2
M : : .
Parameters o' , FK+(H20), and I'y(H,0) Might be obtained from Eqg. (3.26) as:
oM = _[8_7} Lippmann equation
OE_
HKCIHM P T
Tt oo =_(5_7J =_i(a—7j (3.28)
( 2 ) a/lKC| E_,yM,P,T RT | dIn aKC| E_,,uM,P,T
M(H,0) =~| 77 Eare—
oM e et RTLONAMJE P
In general, for AB salt one can write:
—d]/ = GMdEi + F-T-(HzOdIUAB +... (3.29)

where E+ and E. are the potentials measured versus the reference electrode reversible to cations
or anions, and I', (,0y and I'_(y,0) are the relative surface excesses of cations and anions.

In diluted solutions the absolute and relative excesses are similar:

r XKcl

K¥(H,0) ~ ~ K* (3.30)

however, in more concentrated solutions they are different. From thermodynamic analysis the
absolute surface excesses cannot be determined.

Although the thermodynamic analysis can determine relative surface excesses in the absence
and in the presence of specific adsorption separation of the quantities of ions adsorbed at the
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surface and in the double layer is not possible. Only using double layer models it is possible to
obtain these parameters separately.

3.3 Experimental determination of the double layer parameters

The parameters might be determined from the measurements:

1) Surface tension
Surface tension at the mercury-solution (and other liquid electrodes and amalgams)
interface might be measured directly using capillary electrometer, Fig. 3.1, by measuring
the height of the mercury reservoir to the defined place in the capillary (compensation).
The mercury pressure, p, compensates the electrocapillary surface tension for the Hg
height, h:

2
p= r_7 =hdpgg (3.31)
C
where r¢ is the radius of the capillary, dng is the density of mercury, and g is the
gravitational acceleration.

_ .
7% I o
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/ |
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Z |
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% |
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| 7z |
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| 7
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| ) ;
| Z ] i
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Fig. 3.1. Electrocapillary electrometer.?

Surface tension might also be measured from the drop time of mercury flowing from the
capillary. At the moment when the drop falls mercury drop weight and surface tension
forces are equal
MQtmax = 2771y
_ MYtmax (3.32)
27l

The drop time might be measured by measuring time for several drops or by computer
measurements. An example of such measurements for 0.1 M KCl is displayed in Fig. 3.2.
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Fig. 3.2. Electrocapillary curve measured from the drop time for 0.1 M KCI at Hg electrode.®

2)

3)

The maximum of the electrocapillary curve appears at the potential of zero charge, Epzc at

which oM =0.

In practice, the surface tension is measured by comparison with the solution for which the
surface tension is known thus eliminating the capillary radius.

Double layer capacitance determined by impedance spectroscopy

The electrode charge might be determined by integration of the capacity curve:

E
oM = [ cde (3.33)
Epzc
and the surface tension by the integration of Lippmann Eq. (3.28):
E E
Y =7pzC— J oMdE_ = ypzc - ﬂ C de? (3.34)
Epzc Epzc

Electrode charge determined chronocoulometrically
When the electrode potential is changed capacitive current flows but quickly drops to zero.
By integration this current electrode charge might be obtained. Its integration gives the

surface tension
E

y=rpzc— | oMdE (3.35)
Epzc
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Fig. 3.4. Charge density-potential curves obtained from chronocoulometry (left) and from
differential capacity curves (right) in 0.04 M KCIOs in the presence of different concentrations

of cyclohexanol.®®

3.4 Experimental results for the thermodynamic double layer studies

Examples of the surface tension, electrical charge, and cations and anions charges determined
at mercury-solution interface for several electrolytes are displayed in Fig. 3.5. Surface tension
represents parabolic curves with the maximum at the potential of zero charge. Epzc depends on
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the ionic adsorption. This is illustrated in Fig. 3.6 where displacement of the PZC potential
towards negative values increases going from F to I". The values of Epzc are shown in Table 3.1.
In the absence of the specific adsorption Epzc is independent of the electrolyte concentration.

(—aEmaXJ =0 (3.36)
dlna, ) m_,
From the results in Table 3.1 it follows that only in NaF there is no specific adsorption.

The derivative of the surface tension versus potential, Eq. (3.28) (Lippmann Equation) gives
the electrode charge and the derivative versus electrolyte activity gives the ionic charge in the
double layer. These curves are shown in Fig. 3.5. Closer analysis in the absence of specific
adsorption, Fig. 3.7, reveals that at the potential of zero charge there is no ionic excess for cation
and anions:

r 0 (3.37)

K*(H,0) ' F(Hz0)
On the other hand, in the presence of ionic specific adsorption, at Ercn, there is an excess of
cations and anions, e.g. for KBr

r >0 and |T >0 (3.38)

K" (H,0) Br~(H,0)
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Fig. 3.6. Electrocapillary curves at Hg electrode in 0.9 M solutions of 1) NaF, 2) NaCl, 3) NaBr,
4) Nal.

Table 3.1. Potentials of zero charge in different electrolytes.®

Concentration, E,,
Electrolyte M V vs. NCE?
NaF 1.0 —0.472
0.1 —0.472
0.01 —0.480
0.001 —0.482
NaCl 1.0 —0.556 .
0.3 —0.524
0.1 -0.505
KBr 1.0 —0.65
0.1 -0.58
0.01 —0.54
KI 1.0 -0.82
' 0.1 -0.72
0.01 —0.66
0.001 -0.59

%From D. C. Grahame, Chem. Rev., 41, 441 (1947).
bNCE = normal calomel electrode.
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Fig. 3.8. Surface excesses (expressed as charges) of K* and Br- at Hg electrode in 0.1 M KBr.2

Moreover, with increase of the electrode positive charge the surface excess of cations also
increases. This is related to the fact that the total anionic charge is increasing even faster and
cations are necessary to compensate this excess. In this case the slope:
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Br~
9 51 (3.39)
oo
at large metal charges is larger than one while in the absence of the specific adsorption it is one:
-
&’—M -1 (3.40)
oo

In the case of neutral organic compound the specific adsorption takes place around the
potential of charge null. Specific adsorption causes decrease of the surface tension. This
phenomenon is illustrated in Fig. 3.9.
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Electracapillary curves for the interface mercury-0.1 F HCIO, + amyl! alcohol
concentration indicated [from (44)]. (By permission of the American Chemical Society.)

Fig. 3.9. Electrocapillary curves at Hg in 0.1 M HCIO4 and different concentrations of the amyl
alcohol .1

The total analysis in the presence of adsorption of n-butanol is presented below. The
electrocapillary curves are shown as surface pressure, (z or ¢) i.e.
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(3.41)

where j» and y are the surface tensions in the pure electrolyte and in the presence of organic
compound, respectively. They are displayed in Fig. 3.10 as functions of the electrode potential

and charge.
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Surface pressure © versus g™ for n-butyl alcohol. O, base solution 0.1 F KF;

A, base solution 3 F KCI [from (53)]. (By permission of Elsevier.)
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Surface pressure 7 versus electrode potential E for n-butyl alcohol. O, base
solution 0.1 F KF; A, base solution 3 F KClI [from (53)]. (By permission of Elsevier).

Fig. 3.10. Surface pressure versus electrode charge and potential at Hg, 0.1 KF, and different

concentrations of n-butanol. 1°

Further analysis gives the relative excesses of butanol, Fig. 3.11.
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Variation of coverage 8 = I'/T', for n-butyl alcohol versus g™ [from (21)]. (By
permission of the Royal Society.)
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(By permission of the American Chemical Society.)

Fig. 3.11. Surface coverage and relative surface excesses of n-butanol at Hg versus electrode

charge and potential.
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An example of adsorption isotherm of amyl alcohol at Hg is presented in Fig. 3.12
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Plot of the relative surface excess of n-amyl alcoho! at the mercury-0.1 F

HCIO, solution interface for various values of the electrode potential relative to ECM.

Abscissae ¢fco; whete ¢ is the saturation concentration of m-amyl alcoho! in 0.1 F

HCIQ. taken as 0.222 F(¥ is the potential E — E, for 0.1 F HCIO, in the absence of
amyl alcohol) [from (44)]. (By permission of the American Chemical Society.)

Fig. 3.12. Adsorption isotherm of n-amyl alcohol at Hg in 0.1 M HCIO;4 at different electrode
potentials.

In the presence of specific adsorption of neutral organic compounds sharp peaks are observed
on the differential capacitance curves obtained by the impedance method, Fig. 3.13.
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Differential capacity curve for 1.0 F KNOj solution with and without addition of octyl alcohol(saturated solution) at 25°C. Frequency
of ac signal indicated. Potential scale is E— E, for the KNO; solution in the absence of octyl alcohol [from (69)]. (By permission of the
American Chemical Society.)

Fig. 3.13. Differential capacity curves at Hg in 0.1 M KNOs in the absence and presence of n-
octanol.*
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For solid electrodes the surface tension is not measured directly but the double layer and
adsorption parameters are obtained by integration of the capacitance curves obtained by the

impedance spectroscopy, Egs. (3.33) - (3.35), see Fig. 3.14.

S pooit
-20l-

Figure 10. Charging curves of a bis-
muth electrode (obtained by inverse
integration of the C-E curves) in the
solution of 1 N mixture of K 50, +
H;S0, (1)and also witha-C,H,;COOH
additions inconcentrations: 2,0.04 M';
3,0.06 M; 4, 0.08 M. (From Palm and
Damaskin.""®)

Figure 11. Electrocapillary curves of a
bismuth electrode (oblained by inverse
integration of the oE curves) in the
solution of | N mixture of K;50, +
H;50, (1) and also with a-C,H,COOH
additions in concentrations: 2, 0.04 M: i \

3,0.06 M; 4, 0.08 M. (From Palm and -a5 10 -:'.-r
Damaskin,/'#) Evfice)

Fig. 3.14. Charging and electrocapillary curves obtained at Bi electrode in 0.05 M K2SO4 in the
presence of different concentrations of n-CsHyCOOH from the capacitance curves.®’

3.5 Adsorption criteria

1) From electrocapillary curves

oE . . :

——max =0, Emax different than that in the non-adsorbing electrolyte. Moreover,
dlnay ) m_g

the maximum moves towards more positive potentials for adsorption of cations and

towards more negative potentials for adsorption of anions (with respect to the non-

adsorbing electrolyte).
For organic compounds decrease of the maximum is observed.
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2) At Epcn

F4(H;0) =T ~(H,0) =0
3) Slope of the ionic charge versus electrode charge far from the Epcn
ao_ion
oM
4) Formation of peaks on the capacitance curves in the presence of neutral compounds

>1

3.6 Adsorption isotherms

Adsorption isotherms describe dependence of the surface versus bulk concentration. In
equilibrium the electrochemical potentials of the species in the bulk and at the surface are equal:

—a_-b
W= H (3.42)
where index a denotes adsorbed and b bulk species, and
722 1 RT Inaf = 2> +RT Inaf (3.43)
but:
—0 _ —
AG™ =@ - )" (3.44)

and the adsorption isotherm is

0
af =aP e7ACH/RT _ 3P (3.45)
where the isotherm equilibrium constant is
—0
AG
K =exp| —— 3.46
i p{ nT J (3.46)

The value of AG® must be known in order to describe adsorption. Below the most often used
isotherms in electrochemistry will be presented.

3.6.1 Langmuir isotherm

The Langmuir adsorption isotherm is based on several assumptions:
a) there is no interactions between adsorbed molecules/ions

b) surface is homogeneous i.e. all adsorption sites are equivalent

c) adsorption arrives at saturation value at higher bulk concentrations

First, let us suppose simple adsorption without electron transfer:

At A (3.47)
kg
The rates of adsorption and desorption are:
V= kl(l— Q)CA y V1= k_lg (3.48)
where @is the surface coverage. In equilibrium:
1=V

(3.49)
ki(1—0)Cp =k 10
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and the isotherm is:

0 Kk
7 =1 Ccp=KaC 3.50
120 kg ATIANA (3.50)
or
A kel 0-A (351)
I, -Tp Ty,

where I'« is the surface concentration at large bulk concentrations of A (saturation value).

In the case of electrosorption there is an electron transfer during adsorption reaction. The
simplest example is H UPD at some noble metals:

+ Kt
H™ +e = Hyqgs (3.52)

koq
v =k @-6)C,+ exp[—a f(E - EO)] =k 1-0)C,,-
~ (3.53)
V.= k_leexp[(l—a) f(E - EO)] —k 0
At equilibrium vy =v_4
0 Kk 0y]_ N
e k—_ch+ exp[— f(E-E )J =KC,,. exp[— f(E-E )] =RC,.  (354)
and in this case the equilibrium constant depends on the electrode potential. Potential EC is often
chosen as the potential at = 0.5.

3.6.2 Frumkin isotherm

Frumkin isotherm assumes that there are lateral interactions between the adsorbed species and
the adsorption Gibbs energy depends on the surface coverage:

AGY = AG_g +T0 (3.55)

or
RT INK =—AG) = —(AG§=0 ; r9) (3.56)
ool [ AGO=0+16 | _ _ro 3.57
K_exp{ [ =T J_Koexp[ RT)} (3.57)

The adsorption isotherm may be written as:

%exp(r&/ RT)=KoCa (3.58)

or

0

nexp(ge) =KoCa (3.59)

where §=r/RT is a dimensionless interaction parameter. Its sign depends on the type of
interactions:
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g <0 attraction

g > 0 repulsion

g = 0 Langmuir isotherm.
It is interesting to note that Frumkin isotherm reduces to Langmuir isotherm when g = 0.
Plots of the adsorption isotherms are displayed in Fig. 3.15.

0,5

=20 -10 0 +1,0 +2,0 log 3'c

Fig. 3.15. Frumkin adsorption isotherms for different values of the interaction parameter g.

The Kkinetic equation for the reaction rate for the Frumkin isotherm is:

v=k{ exp(~pro/ RT)(1-0)Cp —k% exp[ (1- #)ro/RT ]9 =0 (3.60)
or for the electrosorption reaction of H UPD:
v =k exp(-Bg6)(1- 0)C, . exp(-afn)- k% exp[ (1~ B)96]0exp[ (1-a) 7] =0 (3.61)

where £ is the transfer coefficient for adsorption, between 0 and 1, usually close to 0.5 and it is
an analog of the electrochemical transfer coefficient «. The electrochemical isotherm depends on
the electrode potential and these plots are displayed in Fig. 3.16.
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0.5+

0

Fig. 3.16. Dependence of the surface coverage on electrode potential for the Frumkin adsorption
isotherm for different values of the interaction parameter g. For g =0 Langmuir isotherm is
obtained.

3.6.3 Temkin isotherm

When 6~ 0.5 Frumkin isotherm is simplified to:
exp(ré/RT)=KCp (3.62)
This equation represents Temkin isotherm which predicts that adsorption is a linear function of

the logarithm of the bulk concentration. It was introduced for heterogeneous surfaces with
different adsorption sites.

3.6.4 Experimental adsorption isotherms

In practice, the adsorption isotherms are usually more complex. For example the
electrochemical adsorption isotherm can be obtained from the voltammetric currents:
. do
=oV— 3.63
=0 e (3.63)
by integration. Comparison of the surface coverage and its derivative is displayed in Fig. 3.17.
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de/dEN'

EN EN
Fig. 3.17. Electrochemical Frumkin isotherms and their derivatives for different parameters of
the interaction parameter g.%

Examples of cyclic voltammograms for polycrystalline Pt and Rh in 0.1 M H,SO;4 are displayed
in Fig. 3.18. At polycrystalline Pt two peaks are observed suggesting at least two types of
adsorption sites while at Rh only one very sharp peak is visible. In sulfuric acid there is also
adsorption of bisulfate, therefore the isotherms are more complex. The derivative of the surface
coverage of H versus potential is displayed in Fig. 3.19.

In the recent years monocrystalline surfaces were intensively studied. The geometry of the
basal planes is displayed in Fig. 3.20. Examples of the derivative isotherms for Pt monocrystals
in 0.5 M H2SO4 are presented in Fig. 3.21.

Only in the case of Pt(111) in HCIO4 the experimental isotherm might be explained by the
Frumkin isotherm with g = 11.9 indicating strong repulsion between adsorbed H atoms.*® In all
the other cases the isotherms are more complex involving different adsorption sites.
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100

— Platinum (poly)

| | — — Rhodium (poly)

ICurrent (A)

|
-100 l‘li
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0.0 0.2 04 0.6 0.8 1.0 1.2 1.4 1.6

Potential (V)

Fig. 3.18. Cyclic voltammograms of polycrystalline Pt and Rh in sulfuric acid. The features at
more negative potentials correspond to the H UPD reaction.*°

N W B O O
—T T

d@/dn/V-

00 01 02 03 04 05

'V

Fig. 3.19. Derivative of the surface coverage of H versus potential (continuous line) at
polycrystalline Pt in 0.5 M HS04.%8
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Atop site

Bridge site
4-fold hollow site

1-fold atop site
2-fold bridge site
3-fold hollow site

(111)

Face-centered cubic (FCC) structure
Fig. 3.20. Geometry of the surfaces (100), (110), and (111) for the face-centered cubic structure.®
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Fig. 3.21. Plots of d6/dE at different Pt(hkl) in HCIO4 and H2S04.*°
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4 Models of the double layer

Historically, several models of the double layer were proposed.

4.1 Helmholtz model

Helmholtz (1879) considered double layer as a simple capacitor, Fig. 4.1.

2ONORS,
electrode "@ electrolyte ®
0 ©
= X
0 PH A
q
electrode I electrolyte
0 x
0PH
Qm
B
]
electrolyte
bs
electrode :
E Adrys = Om =05
LT S N D b e
x
0PH c

Figure A2.2 : Modéle de Helmholtz de la double couche électrochimique ; les ions
sont représentés dans I’électrolyte sans leur sphére de solvatation.

A : cas d’une électrode portant un excés de charges négatives,

B : localisation des exceés de charge,

C : évolution du potentiel avec la distance a ’interface électrode, électrolyte.

Fig. 4.1. Helmholtz model of the electrical double layer; top: ions in solutions at negatively
charged electrode, middle: localization of charges, bottom: potential drop.*!

The charge stored in a simple capacitor is:
6= ‘gdﬂv (4.1)
where d is the distance between the capacitor plates and V is the applied voltage. From the
charge capacitance is simply obtained:
0o

~ =Ca=" (4.2)
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From Eq. (4.2) it follows that the capacitance should be constant. However, in practice it is
well known that the double layer capacitance is a function of the applied potential, see e.g. Fig.
4.2, which means that this model is too simple.

32 — —
01 M

og |- NaF ]

C,, nFiem?

OI_EIIIIIIIIIIII

08 04 0 -04 -08 12 16
E-E, (V)

Fig. 4.2. Double layer capacitance at mercury at different concentrations of NaF.%

4.2  Gouy-Chapman model

Gouy and Chapman (1910-1913) have developed double layer model based on statistical
physics. The distance from the electrode surface towards solution may be divided into small
layers called laminae of the thickness dx, Fig. 4.3.

Laminae . | dx

—— Reference lamina
e ° e e @ = in bulk solution

Electrode Electrolyte

Fig. 4.3. View of the solution near the electrode surface as a series of laminae.®

Each layer is in equilibrium with other layers and with the bulk of solution therefore
electrochemical potentials of ions are the same:
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i = ﬁls (43)
wX +RT Inc +ziF ¢y = u? +RT In¢; +z;F¢°
where index s denotes solution. This leads to the Boltzmann equation for the distribution of ions
in the double layer:

* Z.F _¢S * H
Ci =Cj exp —% = Cj exp{—z'R—'?} (4.4)

It may be assumed that the potential in the bulk of solution is equal to zero

b=d -9 = (4.5)

In this model charges in solution are considered as point charges without dimensions,

ON6 O,
electrode = @ electrolyte @
= + :
X
0
A
q
electrode %@ electrolyte

electrolyte

electrode

Om

Fig. 4.4. Gouy-Chapman model of the double layer. The charges are distributed in the solution.*!

To obtain potential distribution in solution one should solve Poisson’s equation:
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d?p(x) __p(x) (4.6)
dx? &)
where p(x) is the charge density in solution per unit volume described by the Boltzmann
equation

p(x)=> zjFci = Zz Fc; exp[ R'?j 4.7
i

Substitution gives Poisson-Boltzmann equatlon.
) > ziFe exp(—zli?lfr(/ﬁj
g2 “8)
dx €€ g€
The second derivative can be rearranged into the form easy to integrate:

2
(d¢) _ d¢d¢ dy)? _,, dy
dx

dx dx gx?2 dx ) dx (4.9)
g _ Ed_Xi(d_rfj _ li(d_rfj
dx? 2dgdx\ dx 2dg dx
which gives:
d¢ 2 * z-F¢)
==Y ziFc; exp| - 2= 4.10
d¢(dx) 850; v p( RT (4.10)
The first integration gives:
2
(3—¢j = ZﬂZc, exp( ‘i ¢j+const (4.11)
X
The integration constant can be found from the condition far from the surface:
¢=0and 3—¢ =
(4.12)
0= 2RT > c; +const
€& i
and Eq. (4.11) becomes
2
d 2RT * iF
(—¢j =—)> G exp(—z'—¢j -1 (4.13)
dx &€y RT

For z:z electrolyte (e.g. 1:1, 2:2, etc.) c+=c.=cand z+ = z. =

z
dg\” _2RTc* AN
(dxj = - {exp( J 1+exp(R j } (4.14)

2

but:

a
a a A

a
2.2 2_g2
€8 _24e@=pd 22 24e =4/ %" :4sinh2[%j (4.15)
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then

Further integration gives:

x=0 ¢=d
X ¢
7 dg X [gRTC"
I = :—_[ dx
(/5osmh(Z ¢) oV &0
2RT
The solution is:
ZF¢
tanh *
2RT | o (4RT) _ [8RTc
ZF tanh(ZF%j £€
4ART
where
tanh x <SP X _ e —e ¥

cosh x B eX =X
or
tanh(zF¢/4RT) .y
tanh(zF gy / 4RT)

where 1/k is the characteristic thickness of the diffuse layer:

* 1/2
2¢ 72F?
K=| ———
egg RT

For aqueous solutions at 25 °C, ¢ =78.49, and c in M:
K= (3.29 X 107)zc*1/2 incm™!

The plot of ¢ versus distance is displayed in Fig. 4.5.

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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Fig. 4.5. Potential profile in the diffuse layer according to Guy-Chapman for 102 M electrolyte
1:1, 1U/x=30.4 A8

It is obvious that at large ¢o the potential drop close to the electrode is extremely fast but as it
becomes smaller the potential drop is more gradual. For small argument (x < 0.5) tanh(x) = x and
Eq. (4.19) becomes:

b= e ™ (4.22)

and potential decreases exponentially with distance (for ¢ < 50/z mV).

Table 4.1. Characteristic thickness of the diffuse layer for 1:1 electrolyte in water.

c* (M) 1/x (nm)
1 0.3
101 0.96
1072 3.04
107 9.62

104 30.4

The thickness of the double layer depends strongly on the electrolyte concentration and it
decreases with increase of concentration.

To obtain relation between the metal charge and potential one can use the Gauss law:

- = d¢

= E ds E == 423

q=eg 4) ™ (4.23)
surface

which allows to determine charge under closed surface by the integration of the electric field

strength £ , where dS is the element of the surface with the vector perpendicular to the surface.
For our case let us construct the Gaussian box as in Fig. 4.6.
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Electrode surface

Gaussian enclosure

End surface
Area=A
@ _gq
Surface against electrode dx

Fig. 4.6. Gaussian box enclosing the charge in the diffuse layer and extending to the solution
until dg/dx =028

It is evident that the integral (4.23) is zero except at the electrode surface:

d¢ dg
q= &5 (d_xj | ds= €€oA(d—Xj (4.24)
X=0 glectrode x=0
surface
where A is the electrode surface area. The charge density in solution and in electrode, using Eqg.
(4.16), are:
2A
Fdy ZF ¢y

q s__M * . (2 .

A =70 =0 \8RT&gC si (ZRT] si (ZRT) (4.25)
where

A=2RTzzc” (4.26)

or at 25 °C, when c* isin M and o™ in uC cm

M _ *12 .
o =11.7¢c = sinh (19.52¢p) (4.27)
The differential capacitance of the double layer is obtained by differentiation of charge versus

potential
M 202 *
cy=%° =«/22 F~s6C cosh(ﬂ) (4.28)
dey RT 2RT

or for Cq in pF cm2 and ¢* in M at 25 °C

Cy = 2282¢ Y2 cosh (19.52¢) (4.29)
The plot of Cq versus potential is displayed in Fig. 4.7.
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C, uFflem?

200 01M
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0
150 100 50 0 ~-50 =100 =150

Fig. 4.7. Differential capacitances of the double layer predicted by the Gouy-Chapman theory for
1:1 electrolyte at 25 °C.8

The minimum is observed at the potential of zero charge but the capacitance increases rapidly
to very large values on both sides. This graph might be compared with Fig. 4.2 where sharp
minimum is observed at low electrolyte concentrations further form the PZC capacitance curve is
flattened. This comparison suggests that the G-C theory might be partially valid ion a limited
potential range at low electrolyte concentrations.

4.3 Gouy-Chapman-Stern model

The main problem with the G-C theory is that it assumes that ions are point charges which can
approach the electrode surface at any small distance. In fact, ions are solvated and have their
thickness: they can approach the surface to the plane of the closest approach called outer
Helmholtz plane, OHP, Fig. 4.8.
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slectrode : q clectrolyte

I—— _?Iectrﬂlyde , ¢E—

Fig. 4.8. Guy-Chapman-Stern model of the double layer. The charge in solution is located from
the plane of the closest approach, OHP.*

In this case Eq. (4.16) should be integrated from the OHP at the distance x. where potential is
¢ to the bulk of solution because between x = 0 and X there are no ions. This also means that the
potential drop between x = 0 and x2 is linear

¢
dg 8RTc
IWZ ( J j dx (4.30)
%3N opt
with the solution
tanh(zF¢/4RT) _ o K(x-x0) (4.31)
tanh (zF ¢, / 4RT)

The electric field at the OHP is:

(%)X:XZ \/ZRT P [exp( @j } (4.32)

or for z:z electrolytes
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(d_¢] _ fﬂ Sinh[chﬁz) (4.33)
dx X=%o £gg 2RT

Use of Eq. (4.24) allows for the calculation of the charge density
\1/2
oM =6 =—&8) (d—¢j =(8RT ggn C ) sinh(ZFqﬁzjz
dX X=Xo

2RT
(4.34)
= 2Asinh (Zf ¢2)
2
The charge in solution consists of charges of cations and anions
GS=G++G_=‘Z+‘FF+—‘Z_‘FF_ (4.35)

Knowing that the concentrations are affected by the potential, Eqg. (4.4), it is possible to find
total surface excesses of anions and cations in the diffuse layer by integration of concentrations

Eq. (4.4)
«° * *OO Z-F
Fi,d = '[ (Ci (X)—Ci )dX =Cj I {exp(—l_\:—_l_¢)—l}dx (4.36)
X2 X2
To facilitate integration the following rearrangement may be used
ZiF . ZiF ZiF
exp| ———¢@(x) |-1=12sinh| ——@(X) |exp| ———@(X 4.37
p( RT ¢( )) [ZRT ¢( )} p[ 2RT ¢( ) (4-37)
« 7 (ziFg(x) —zjF¢(x)
[ g=22¢ | sinh| = ex ! dx 4.38
hd == XI ( 2RT J p( 2RT (4.38)
2
but for z:z electrolytes
d_¢=_ 8RTc sinh{zin
dx &8 2RT
dx = — _ d¢ (4.39)
\/8RTC sinh(zinj]
£&q RT

which gives
id

=0
_ &£gnl J'exp(_ ZiF¢jd¢:
\AZRT b 2RT

=ii0c e 2 -1

ZiF

(4.40)

Ng

Using z = -z. = z+ one gets charge of anions

J2RT &g ¢ {exp(zf@j_l} (4.41)

I 4=
d zF

and cations
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V2RTegC {exp(—ﬂ%j —1} (4.42)

+d = zZF

and the total charge
oM =_5%= ~(2_FT_g+2,FI, 4)=

= 1}2550 RT ¢ {exp(ZfT@) —1} - «/2550 RT ¢ {exp(—ﬂ%j _1} =
g g (4.43)
1P5q)RTC*{exp( 2 ] exp( 2 j}2:

2
= 2Asinh(2f7¢2j

which is Eq. (4.34).

In this model the total capacitance is the sum of the capacitance of the compact or Helmholtz
layer between x = 0 and x2 and that of the diffuse layer from xo. The potential drop in the
compact layer is liner as there are no ions in that layer and that in the diffuse layer is described
by Eqg. (4.31), Fig. 4.9. The total potential drop is described as:

v =(om—h)+b (4.44)
and in the compact layer
__(9¢

The capacitance is the derivative:

doy _d(ow-4) , dy

dJM dGM daM (4.46)
1 1 1 '
_——

Cs Ch Cp

which corresponds to the connection of the capacitance of the compact layer Cn and that of the
diffuse layer, Cp in series.
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Fig. 4.9. Potential distribution in the double layer according to the G-C-S model

The capacitance of the diffuse layer might be estimated form the electrode charge:

c doM
D =
dg (4.47)
M = \ISRT &g ¢ sinh(%j
Cp=1F 2880 C_osh (@J (4.48)
RT 2RT

As Cp goes to large values at larger potentials, Fig. 4.7, it is important only around the
potential of zero charge when it is small, Eq. (4.46). Fig. 4.11 presents the capacitance of the
double layer at Hg in non-adsorbing electrolyte NaF; at lower concentration a minimum around
Erzc is visible because diffuse layer capacitance is small, at other potentials capacitance of the
Stern layer is mainly observed. This is also illustrated in Fig. 4.10.
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Fig. 4.10. Double layer capacitance according to: A) Helmholtz model, B) Gouy-Chapman

model, C) Gouy-Chapman-Stern model.**

From Eq. (4.43) it is possible to determine potential ¢ using:

arcsinh x = In(x+\/x2 +1)

M
T c
¢2 —
\/8RT £gg ¢

For large values of |oM| this equation might be simplified:

2R
& ~const+—|n‘ M‘

(4.49)
M2

T B G (4.50)

8RT &g C

M

. 0
+——m ° z (4.51)
GM <0
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Fig. 4.11. Double layer capacitance of mercury in the non-adsorbing electrolyte 0.1 and 0.01 M
NaF.42

This equation indicates that the potential ¢ changes with logarithm of the electrolyte
concentration. It is of course valid only in the absence of specific adsorption. An example plot of
¢ versus electrode potential for Hg electrode in NaF is displayed in Fig. 4.12.
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@ ,.volts

Fig. 4.12. Dependence of potential ¢, versus E-Epcn at Hg in different concentrations of NaF in
aqueous solution.*3

4.4 Parsons-Zobel plots

Parsons-Zobel plots permit determination of the capacitance of the compact layer. The
reciprocal of the total capacitance of the double layer, Eq. (4.46) is the sum of the reciprocal
capacitances of the compact and diffuse layers. The capacitance of the diffuse layer depends on
the electrolyte concentration while that of the compact layer is concentration independent.
Plotting inverse of the total capacitance against that calculated of the diffuse layer at constant

oM s a straight line with the intercept of 1/Cy . Such an analysis can be performed in the

absence of the specific adsorption. An example for the Hg — NaF aqueous solution interface is
displayed in Fig. 4.13.
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Fig. 4.13. Parsons-Zobel plots for Hg|NaF4q interface at different electrode charge densities.

4.5 Gouy-Chapman-Stern-Graham model

Graham modified the G-C-S model in the presence of specific adsorption. The additional
charge due to specific adsorption is localized at the inner Helmholtz plane, Fig. 4.14. In this case
the double layer potential is determined by the sum of charges of o™ and the charge at the inner

Helmholtz plane, &'. This might cause formation of minima (maxima) on the potential-distance
plots, Fig. 4.15.

Exercise 4.1.

Calculate charge of the specifically adsorbed of CI"at Hg in 0.1 M HCI at 25°C when
oM=4.0 uC cm?, o =-7.5 uC cm2,

First, the total charge of H* is:
=% %

_d ___M_ o 2 _ 2
Oyt —O'H+ =-0" —0- (-4+7.5) puCem™= =3.5uCcm

H* is not adsorbed and it is located only in the diffuse layer and the charge balance is:

M d 1 d

o} =—(0H+ +0CI_ +0CI_ where index d denotes diffuse layer and 1 inner Helmholtz

plane (specific adsorption). Presence of H* is determined only by the potential ¢. It can be
calculated from Eq. (4.42):
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GS'+ = W{exp(—%]—l} = A{exp(—ﬂT@j—l}

e

b= —2in| —H" 41| A=263x105Cem?
zf A

¢ =-0.04354 V
PiH PEH
- Slecirolyte
- A
électrode : C%j
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Fig. 4.14. Gouy-Chapman-Stern-Graham model of the double layer in the presence of specific
adsorption.*!
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Fig. 4.15. Calculated potential profiles in then double layer in 0.3 M NaCl. At positive potentials
the profile has a sharp minimum because chloride is specifically adsorbed.®

The amount of CI" in the diffuse layer is also determined by ¢. From Eq. (4.41) one gets:
adl_ = —A{exp(Lj —1} =1.50x10"°C ecm™ =1.50 uC cm™2

C 2
and the amount of CI" adsorbed is determined from the charge balance:
_ 1 d
e T % "%
G(lil_ =0 -~ ng_ =(-7.5-1.5)uC cm™? =—9.0 pCem™

It can be noticed that when the metal charge is positive (4.0 nC cm?) there amount of
adsorbed CI is large, -9.0 uC cm and charge o™ +Jé|‘ is negative -5.0 uC cm and the

potential ¢ is also negative. In fact, to be able to use Eq. (4.50) one should use the effective

electrode charge: M +aél_ =-5.0 uF em ™2 instead of o™ . The final results of the double

layer analysis are:
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oM =40 puF cm 2 aiJr =3.5uF cm ™2

2 dq _ _
o.._=—(5uFcm o =1.5uFcm o =-9.0 uF cm
cl n o ju c u

¢ =—0.0435 V

Examples of the analysis of the adsorption at Hg electrode are displayed in Fig. 4.16 and 4.17.
]

D |
5 |
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o
lb-“
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=005
O
S0

Fonr 0C cM~2

Fig. 4.16. Specific adsorption of ClI- at Hg as a function of the electrode charge at different
concentrations.
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Fig. 4.17. Charge of the specifically adsorbed CI™ at Hg as a function of the logarithm of the salt
activity at different electrode charges.
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5 Fundamentals of the electrode kinetics

5.1 Potential dependence of the electrode kinetics

Let us suppose an electrode reaction

k
Ox + ne kﬁ Red (5.1)
b

at the standard electrode potential E = E? and at the same concentration of red and ox species. In
the theory of the activated complex standard Gibbs energy is plotted versus reaction coordinate,
Fig. 5.1.

Red Ox + ne

GO

A4

reaction coordinate

Fig. 5.1. Representation of the reaction free energy versus reaction coordinate.

Under these conditions the activation energy of the cathodic and anodic process are the same:

AG) ¢ =AGj, = % (5.2)

where A is so called reorganization energy.

When E #E° the cathodic and anodic activation free energies are different, that of the
reduction process includes free energy of electrons which depends on the electrode potential

AG, =—nF(E—E°) (5.3)

Gibbs energies under these conditions are shown in Fig. 5.2. When potential becomes more
negative the reactant (Ox+ne) system parabola moves upward and the activation energy of the
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reduction process decreases while when the potential becomes more positive the activation
energy of reduction increases.

GO

N
N

reaction coordinate

Fig. 5.2. Gibbs energy versus reaction coordinate for the redox reaction at different potentials.

From simple geometric consideration it is evident that only a part « of AG, decreases the
activation energy of the reduction:

AGZ = AGj ¢ — a AGg = AGG . — anF (E — E°) (5.4)
and 1-« increases the activation energy of oxidation:
AG = AG§ 5 +(L— @)AGg = AG§ , + (1 a)nF (E — E°) (5.5)

When the free energy curves of reactant and product are the ideal parabolas of the same shape
(but only shifted) the parameter « is exactly 1/2. This parameter is called transfer (or symmetry)
coefficient. Its effect is shown in Fig. 5.3.
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Fig. 5.3.Effect of the electrode potential on the Gibbs energy of activation.®
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The rate constant of the chemical reaction is described as:
+*
k = 5 KL o-AG™/RT (5.6)

where x is the transmission coefficient and for adiabatic processes it is close to 1. The reduction
reaction rate constant, ks, may be written as:

ke = kTTexp(—AGé& / RT) = kTTexp(—AGafC / RT)exp[—%(E - EO)}
0 (5.7)
ke = kO exp[—anf (E - EO)}
and for the oxidation reaction
Kp e exp[(l—a)nf (E—EO)} (5.8)

Egns. (5.7) and (5.8) show that the reaction rate of the electrochemical reactions is potential
dependent. The units of heterogeneous rate constant are cm s
From the geometric considerations, Fig. 5.3:
tand = aFE / x

tang = (1- a)FE / X (5.9)

and

_ tan @ (510)
tang+tan o

and when 8= ¢, = 0.5.
Changes in symmetry of the free energy curves affects transfer coefficient, Fig. 5.4.

Standard free energy

Reaction coordinate

Fig. 5.4. Influence of the symmetry of free energy curves on the transfer coefficient.?

There are two types of reactions: inner-sphere and outer-sphere electron transfer. In the outer-
sphere reaction the substrate and the product do not differ much and do not interact specifically
with the electrode (e.g. Ru(NHas)6*"2*). In the inner sphere reaction there is a strong interaction of
the substrate, product or the intermediate with the electrode (reduction of O2, H> evolution,
reactions involving ligand bridge). Schematically, the latter process is shown in Fig. 5.5.
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Quter-sphere Inner-sphere

Electrode Solvent

Fig. 5.5. Schematic representation of the outer-sphere and inner-sphere electron transfer to/from
metal complexes.?

Theory (Marcus, Hush, Levich, Dogonadze,...) considers outer-sphere electron transfer in
which reactants and products do not change their configuration (or change very little). Moreover,
because of the Franck-Condon principle nuclear position of the reactants do not change during
the act of electron transfer. This means that reactant must change its configuration and the
electron transfer takes place when the curves of the standard free energy of the substrate and
product are identical, Fig. 5.6.

Theory also considers adiabatic processes, in which probability of electron transfer when the
reactants are in the active complex configuration is close to one and the energy splitting is large,
Fig. 5.7. This means that each substrate reaching the active state passes to products.

03+ R{2+)
L
e%e ® ]
. e — .
... @ ™
L

G*ta)
R
ot ) 1
A _/ i .0,
~+ - Giclas)
o AGE ) A LT
Bl f———— —
L1 ‘Ji R

q

Figure 3.6.2 Standard free energy, GY, as a function of reaction coordinate, g, for an electron
transfer reaction, such as Ru(NI—I-j}g*’ + e = Ru(NH,)z*. This diagram applies either to a
heterogeneous reaction in which O and R react at an electrode or a homogeneous reaction in which O
and R react with members of another redox couple as shown in (3.6.1). For the heterogeneous case,
the curve for O is actually the sum of energies for species O and for an electron on the electrode at the
Fermi level corresponding to potential £, Then, AG” = F(E — EY). For the homogeneous case, the
curve for O is the sum of energies for O and its reactant partner, R’, while the curve for R is a sum for
R and O’. Then, AG" is the standard free energy change for the reaction. The picture at the top is a
general representation of structural changes that might accompany electron transfer. The changes in
spacing of the six surrounding dots could represent, for example, changes in bond lengths within the
electroactive species or the restructuring of the surrounding solvent shell,

Fig. 5.6. Free energy curves of the ox and red forms; electron transfer takes place when the

reaction coordinates reach qf .8
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Figure 3.6.6 Splitting of energy curves (energy surfaces) in the intersection region. (a) A strong
interaction between O and the electrode leads 1o a well-defined, continuous curve (surface)
connecting O + ¢ with R. If the reacting system reaches the transition state, the probability is
high that it will proceed into the valley corresponding to R, as indicated by the curved arrow.
(b} A weak interaction leads to a splitting less than £1". When the reacting system approaches the
transition state from the left, it has a tendency to remain on the O + ¢ curve, as indicated by the
straight arrow. The probability of crossover to the R curve can be small. These curves are drawn for
an electrode reaction, but the principle 1s the same for 4 homogeneous reaction, where the reactants
and products might be O + R" and R + (', respectively.

Fig. 5.7. Splitting of the energy curves for a adiabatic and nonadiabatic processes.®

According to Marcus theory the activation Gibbs energy is described as:

2
21 wred o ox nF(E—EO) [nF(E—EO)+Wred—WOXJ
+ +

<0
AGg ==+ 5.11
! 2 2 47 1D
w® and w'? are the energies of bringing the ox and red forms to the reaction site:
(0):4
W =274 F
oxF & (5.12)

W = ZeqF dp = (2ox —N)F
and A is the reorganization energy composed of the inner and outer parts:
A=A+ 4 (5.13)
Ao is related to the changes in the solvent polarization outside the reactants (it is assumed that
solvent is a dielectric continuum):

he =1(ne)2(1_i] 11 (5.14)
2 a Ry )| Dop Ds

where a is the radius of the molecule, Re is twice the distance of the molecule to the electrode,
Dop and Ds are the optical (measured at very high frequencies) and static dielectric constants of
the solvent. The inner 4; is related to the internal changes in the reacting molecule necessary to
reach the activated complex:

1
Ai =Z§kj(QO,j—qR,j)2 (5.15)
j

where the sum is running over all vibration modes (assuming harmonic oscillator model), k; is
the force constant and q; are the displacements in the normal mode coordinates. It is assumed the
main contribution to the activation energy arises from the outer reorganization energy.

The free energy of activation is composed of the potential independent (chemical, ch) and
potential dependent (electrochemical, el) parts:
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AGS =g AGS +¢ AGP (5.16)
where the chemical part is:

cnAGE = (5.17)

I G N NY

and the heterogeneous rate constant:

ki = Kp oVnkel EXP(—AGY / RT) (5.18)
where Kp o is the precursor equilibrium rate constant i.e. ratio of the concentration of the
reagents in the precursor state at the electrode to that in the bulk solution, v is the nuclear

frequency factor related to the bond vibrations, and x| ~1 the transmission coefficient.

The most important consequence of the Marcus theory is the dependence of the transfer
coefficient on potential:

e OAG]

oAGP (5.19)
a:iaAGg 1. F(E-E%-4)

F 6E 2 2

which suggests that the transfer coefficient should be 0.5 and potential dependent. It should be
stressed here that the potential dependence can be observed only for fast reactions when A is
small, unfortunately in a very narrow potential window. An example of such relation is presented
in Fig. 5.8.444546

i i
= {bB) 0_ -_;l

%ap

05 B

logk(E)
F

0.2} i

I 1 1 d 1 1
01 0 0.1 0

I 1
Fig. 5.8. Dependence of the transfer coefficient and the log of the rate constant of nitromesitilene
in DMF on potential.*

5.2 Influence of the double layer on the electrode kinetics; Frumkin relation

Potential in the OHP of the double layer influences the kinetics of electron transfer reactions.*’
Let us consider steps involved in this reaction:

kf '
O’ +ne __’R? z'=z7-n (5.20)
Kb
1) O% in the bulk of solution plus n electrons in the electrode

GP =1 +ni = 1 + zF ¢ +npdM —nF M (5.21)
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1)  O%atthe OHP

GO = 1 +zF ¢ + @M —nF gV (5.22)
[1l)  transition state
G2 (5.23)
IV)  R? atthe OHP
GO 0 '
vV =4UR+Z'F¢ (5.24)
V)  RZinthe bulk of solution
GO 0 '
v =HR +2'Féy (5.25)
The activation energy for reduction reaction is:
AGY =G2-G) (5.26)
and for oxidation reaction:
AGY =GP -Gy (5.27)

The potential dependent part of the free energy the of activated complex and the stage Il is a
part of the difference of stages IV and 11

), -{0), o), (o8]
- a[z'F;ﬁZ —2F 4, +nF¢M}= anF (M 4,

This is relation clearly visible from Fig. 5.9.
The activation energy of reduction, Eq.(5.26), is composed of the chemical and
electrochemical parts and may be written as:

AGY =G0 -G0 - (Aég)ch +(AGO) (AGO) ( ) (‘ )e -
-(a69) {(Gg)e ~(Gh )J + [(G,l ) - (6P )J - (5.29)
- (AGQ)Ch +anF (¢'V' —¢2)+ zF ((;52 —¢s)
Similarly, for the oxidation reaction one gets:
AGO = (AGO) . (1—a)nF(¢M —¢2)+z'(¢2—¢5) (5.30)
It is usually supposed that ¢ = 0.

(5.28)
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Standard electrochemical
free energy,
Go

Standard chemical
free energy,
G0

(AG}),

Electrical component,
(«°),

Reaction coordinate

Fig. 5.9. Separation of the free energy into chemical and electrical components.2

The relations displayed above lead to the rate constants:
ke = kot exp[—anf (¢M —~ ¢2) — zf ¢2} (5.31)

kp = kb exp[ (an—z) f¢2:|exp[(l— a)nf ¢M] (5.32)

where only kgf and kEb are potential independent rate constant at zero potential versus the
reference electrode used. Introduction of the standard potential
oM :E:(E—Eo)+ E° (5.33)

ke = kt(?f exp(—anfEO) exp[(an — z) f¢z] exp[—anf (E - EO)} =
y (5.34)
=k{ exp[(an—2) T | exp[—anf (E - EO)} — kO exp [—anf (E - EO)}




118

Only kgf and kt0 are potential independent rate constants at E = 0 and E = E°, respectively,

and k° depends on potential because ¢ is potential dependent (it also depends on the ionic
strength of the solution). Similar relation is obtained for the oxidation reaction:

ky = k{ exp [(an-2)fg, ] exp[(l—a)nf (E - EO)} =k% exp [(1—a)nf (E - EO)} (5.35)

0
Sometimes the I::modic transfer coefficient is writtenas f=1 - «:
kp =k exp[ﬂnf (E - EO)} (5.36)
Similar relations might be obtained for currents and exchange current densities:
i =i =nF co(0,t) Kk exp| (an—z) f ¢, | exp[—anf (E - EO)} (5.37)
0
ig = nF k¢ exp[ (an-2) f@]cg(l_a)c};a (5.38)

In order to analyze kinetic curves in the presence of the double layer effects one may carry out
so called corrected Tafel plots:

Inks + 2f ¢ = Ink{ — anf (E—E% - 4,)
Ini + zf ¢, = In(NFACo (0,1)k{) — anf (E —E% — )

which should be linear.
The Frumkin correction factors, exp[(an-z)fd2, might be quite important, Table 5.1 and 5.2.

(5.39)

Experimental example for the reduction of S,0s* in the presence of different concentration of
the supporting electrolyte is displayed in Fig. 5.10. Large minimum is obtained at low
concentrations of the supporting electrolyte where ¢ is important. With the increase of the
concentration (ionic force) the absolute value of ¢ decreases and the double layer effect
decreases. In fact, after correction for the double layer the corrected Tafel plots are linear.
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Table 5.1. Frumkin correction factors, exp[(an-z)fdz, in 0.1 M NaF; Epcn = -0.472 VINHE, o =
0.5.8

Frumkin correction factors (a = 0.5)"’

E-E, oM b>
V) (uClem?) (V) =0 z=1 z=-1
0.010 M NaF (E, = —0.480 V vs. NCE)
—-1.4 —-23.2 —0.189 0025 395 1.6 X 1072
-1.0 ~16.0 —0.170  0.037 273 4.9 x 1072
-0.5 ~8.0 -0.135 0072 13.8 3.8 %1074
0 0 0 1.0 1.0 1.0
+0.5 11.5 0.153 19.6 0051 7.5x10°
0.10 M NaF (E, = —0.472 V vs. NCE)
—1.4 —24.4 —0.133 0075 13.3 43 x 107*
-1.0 —-17.0 —0.114  0.11 9.2 1.3x 1073
—0.5 -89 —-0.083 020 5.0 7.9 x 103
0 0 0 1.0 1.0 1.0
+0.5 13.2 0.102 7.3 0.14 3.8 X 107
1 M NaF (E, = —0.472 V vs. NCE)
—1.4 —25.7 —0.078  0.22 4.6 1.1 X 1072
-1.0 —18.0 -0.062  0.30 3.3 2.6 X 1072
—-0.5 -9.8 —0.039 047 2.1 0.10
0 0 0 1.0 1.0 1.0

+0.5 14.9 0054 29 035 23




120

Table 5.2. Experimental results showing double layer effects.

A) Zn?* + 2e = Zn(Hg) - Mg(ClOa)2

Supporting b2 lo ot
electrolyte (M) (mV) (mA/cm?) (mA/cm?)
0.025 -63.0 12 0.4

0.05 -56.8 9 0.43
0.125 -46.3 4.7 0.37

0.25 -41.1 2.7 0.38

B) Reduction of aromatic compounds at Hg, DMF, 0.5 M BusNCIO4

Eu» -bo ke kO
Compound (yjgcs) @ (mV) (cmis) (i)
benzonitrile -2.17 0.64 83 0.61 49
anthracene -1.82 0.55 76 5.0 27.0
p-dinitro -0.55 0.61 36 0.9 2.2
benzene

-]

140 Afem?

[ .
16 E% 8

Fig. 5.10. Left: i - E curves for the reduction of 10 M S,0g?" in the presence of 1) 0, 2) 0.004,
3) 0.05, 4) 0.5 M NazSOy4; Right: corrected Tafel curves.*®

v .

1 g |
-0,5 - 50 -5 F

Exercise 5.1.

Calculate and trace:
1) In ks versus potential
2) In ks corrected for the double layer effects
for the irreversible reduction :
A¥ +2e=2B*
in 0.1 M NaF. Determine the transfer coefficient and the rate constant corrected for the double
layer effects assuming: Epcn = -0.4700 V vs. SCE using the following data:
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E (V vs. ECS) Inke  ¢2/V
-0.35 -7.652  0.0344
-0.45 -8.142  0.0067
-0.55 8723 -0.0210
-0.65 -8.805  -0.0437
-0.75 -8.309  -0.0606
-0.85 7375 -0.0731
-0.95 -6.172  -0.0829
-1.05 -4780  -0.0908
-1.15 -3278  -0.0976

These data should be recalculated using Eq. (5.39):

EV  Inkk @IV EErcnV  E-Epzc-dlV  Inketzf ¢

-0.3500 -7.652  0.0344 0.1200 0.0856 -10.33
-0.4500 -8.142  0.0067 0.0200 0.0133 -8.66
-0.5500 -8.723 -0.0210 -0.0800 -0.0590 -7.09
-0.6500 -8.805 -0.0437 -0.1800 -0.1363 -5.40
-0.7500 -8.309 -0.0606 -0.2800 -0.2194 -3.59
-0.8500 -7.375 -0.0731 -0.3800 -0.3069 -1.68
-0.9500 -6.172 -0.0829 -0.4800 -0.3971 0.29
-1.0500 -4.780 -0.0908 -0.5800 -0.4892 2.30
-1.1500 -3.278 -0.0976 -0.6800 -0.5824 4.33

Fig. 5.11 presents plots of In k¢ versus E-Epcn and the corrected Tafel plot In ke+zfg, versus
E-Ercn-¢2. It is evident that after correction for the double layer effect plot is linear.

Analysis of the corrected data gives transfer coefficient « = 0.28 and the rate constant at
potential of zero charge (the standard potential of this reaction is not known) k,Q =2.25x10*
cmst,
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Fig. 5.11. Plot of 1) In ks versus E-Epcn and 2) In ke+zf ¢ versus E-Epcn-¢2 for Exercise 5.1.

Importance of the correction of the standard rate constants for the double layer effects are
illustrated in Fig. 5.12 where experimental and corrected for the double layer effect rate
constants of the reduction of Cd?* versus donor number of the solvent are plotted. It is obvious
that without the correction no systematic dependence is found.

0 0
DMF -2
~ | AN o] —I"
|(n -2 o " 1
c 0 OMSO e T4
o © 1
~ ~. —61
" F HMPA o 1
= & o] _V.m ]
= = -8+
P PC
£ 6 o = 1 O HMPA
_ ] O_.
]
-8 T T - ] 2 T T
10 20 N 30 40 10 20 30 40

Fig. 5.12. Dependence of the standard and corrected standard rate constant of the reduction of
Cd?* in different organic solvents.*°
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6 Formal kinetics of electrode reactions

The electrode reactions are different from the chemical reactions in the fact that their kinetics
depends also on the electrode potential. Below, current-potential relations will be presented for
the reversible and irreversible processes.

6.1 Reversible electrode processes

Reversible process in electrochemistry means that the redox reaction is in equilibrium and the
concentrations may be described by the Nernst law. This also means that the slowest process is
the mass transfer (as the redox reaction is in equilibrium). The current is described by:

I =nFAJ (6.1)
where n is the number of electrons exchanged in the process, A is the electrode surface area, and
Jis the flux, in mol cm2 s, is proportional to the concentration gradient at the electrode surface:

- D(@j 6.2)
X x=0
and the current becomes:
i = nFAD (@j (6.3)
ox x=0

where D is the diffusion coefficient in cm? s, In the further text the reduction current will be
considered as positive and that of oxidation as negative.

Nernst proposed that the concentration gradient can be considered as linear inside the so called
Nernst diffusion layer of thickness o. In stationary (steady-state) conditions, when oc/ot=0,
the diffusion layer thickness and the current are also stationary. Stationary conditions in the
presence of mass transfer may be obtained in the hydrodynamic conditions (rotating disk
electrode, wall jet electrode) or on ultramicroelectrodes. The concentration profiles at different
potentials are displayed in Fig. 6.1.

1.04

0 1 2
X/

Fig. 6.1. Dependence of the dimensionless concentration on the dimensionless distance from the
electrode surface.
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When the potential becomes more negative, the surface concentration of ox decreases in
agreement with the Nernst low.

Although in reality the concentration gradients are not strictly linear the equations involving &
are valid. Using Nernst diffusion layer theory one can write:

(8_0) _c*—c(x=0) 6.4)
Xlog 6 '
and

. NFADT =

= 5 [c —c(x=0)} (6.5)

Let us consider few examples for different reactions.
6.1.1 Metal oxidation

a) Let us consider metal M oxidation in solution containing metal ions at concentration c*:

M -ze = M*" (6.6)
The Nernst equation for this system is:
o RT
E=E"+—Ina Xx=0 6.7
—hna . (x=0) (6.7)
and in the absence of the current:

_g0 RT .»

Eeq=E" + F In a2t (6.8)

The difference between the electrode potential in the presence of current and that at
equilibrium is called overpotential; in this case it is so called mass transfer overpotential 7p:
c (x=0)
D = ﬂ In MZ:— (69)
zF Cuz+
When the potential goes to very negative values the surface concentration of metal ions goes to
zero and current reaches the maximal value called limiting current, i

. ZFAD =~
== Oy (6.10)
and Eq. (6.5) may be rearranged:
i= ZFAD e c(x=0)]=ii - Z2L ¢(x = 0)
X o (6.11)
i —i= ZFADC—c(x:O):i| c(x=0)
c* c*
which leads to:
c(x=0) _i i _exp[i )
cx g RT D
(6.12)

i
—=1-exp(zfnp)
I
Plot of Eq. (6.12) is presented in Fig. 6.2. When the number of electrons increases the curves
become steeper. Of course, in practice, anodic current cannot increase to infinity because of
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precipitation in concentrated solutions or changes in reaction mechanism. The logarithmic plots

are displayed in Fig. 6.3. It should be noticed that there are no linear parts (except the limiting
current).

-0.15 -0.10 -0.05 0.00 0.05
T

Fig. 6.2. Current versus mass transfer overpotential for the metal dissolution reaction for number
of electrons exchanged 1 and 2.

2.0

1.54 &

1.0+ .

log(i/i))

-0.5+ .

-1.04 .

015 010 005 000 005
To
Fig. 6.3. Logarithmic plot of the data in Fig. 6.2.
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b) Let us now consider the case where there is no M*" in the bulk of solution. In this case one
does not have the equilibrium potential and current-potential relation mut be considered. Taking
into account Egs. (6.7) and (6.11) wityh ¢* = 0 leads to the following equation:

. ZFAD _ZFAD ZF 0'
= X =0)= E-E 6.13
i C(x=0)=-—> exp[ T ( )} (6.13)
The plot of the current and |ts logarithm on potential are displayed in

5

4
“1 2
= g
A 31 fa)
< =
S 5
=2 =
= T
o 2
1<
O T T '4 T
-0.10 -0.05 0.00 0.05 0.0
E-E°/V E-E°/V

Fig. 6.4. Plot of the curren and its logarithm on electrode potential of the metal dissolution when
c*=0.

6.1.2 Heterogeneous redox reaction with ox form in the solution

Let us consider reversible heterogeneous redox reaction in which only ox form is initially in
*
solution, i.e. Cr =0:

O+ne 2 R (6.14)
In this case one can write the following equation using the ox form
_ NFAD nFAD,
O[5~ co(0) | =ilim ~ =20 (0) (6.15)
o)
or red form
. __NhFAD nFAD
i= R ek -cr(0)]="R cr (0 (6.16)
OR R

The surface concentrations might be obtained from these equations and substituted to the
Nernst equation

. N 00 OR

co(0) = (ijjm —1 =1 6.17

0(0) (Ilm )nFADo cr(0) NFADR ( )

E=g%+ R n%O _gor RT 1 %0Dr  RT ) him =1 _g o RT plim =1 (g 1)

nF ¢z (0) nF O6rDp nkF i nk I
where
Eyp = E0 + XL n20PR (6.19)
nF §RDO
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is so called reversible half-wave potential. Eq. (6.19) might also be shown in the other form
[ 1

i 1+exp|[nf (E—Eyp)]

Plots according to Eq. (6.18) allows for determination of the number of electrons exchanged in

the redox reaction. Plots for one and two electron transfer reaction are shown in Fig. 6.5.

Logarithmic plot (c) allows for the determination of the number of electrons exchanged in the

process and the limiting current allows for the determination of the diffusion coefficient if the
bulk concentration, thickness of the diffusion layer, ¢, and the electrode surface area are known.

(6.20)

1.0 n=2 1
a) b)
0.14
< 05- - =3
= [=2]
o
0.01
n=1
0.0 T T
-0.1 0.0 0.1
E—EUZ E'E1/z
2 c) B
0 slope=RT/nF
>
L
-2 4
n=1
n=2
-0.2 -0.1 0.0 0.1 0.2

In[(i,-i)/i]

Fig. 6.5. a) Dependence of dimensionless current on potential, b) dependence of the logarithm of
dimensionless current on potential, c) logarithmic analysis of current for the one and two

* *
electron reversible process, only ox form initially in solution, ¢cg #0, Cgr =0.

6.1.3 Heterogeneous redox reaction with ox and red forms in the solution

Let us assume now the heterogeneous reversible electrode process with the nonzero bulk

* *
concentrations of ox and red, Co#0 and cg #0. Current might be determined using ox and
red forms:
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. hFAD * ]
L
%)

nFAD * .
DRt 0)]=ira

nFAD
9 ¢5(0)
0

nFAD
R cr(0)
R R

where anodic and cathodic limiting currents are, in general, different. Surface concentrations are
easily obtained from Eq. (6.21):

(6.21)

%0 . R
co(0) = (ljm —1 cr(0)=(i-i 6.22
0(0) = (iim ~1) 3 - RO=(1=ha) 5 (6.22)
and substitution into the Nernst equation gives:
1 ' i _I
E:EO +%|nco—(0): EO +%|nM+%|n_l’c—_
n n n i—i
cr(0) orDo la (6.23)

| — il'a
or for the current-potential dependence

i
1—exp|[nf (E - El/z)]ili

Lo o 6.24
e L1+exp[nf(E—Eyp)] 629

RT
E=E,»+—In
1/2 E

1.0 - 0+
0.51
AU
= Ep é -1+
0.0 2
-0.5 1
_2 T T T
-0.5 0.0 0.5 -0.2 -0.1 0.0 0.1 0.2
E_Euz E-Euz

Fig. 6.6. Plot of the dimensionless (i/iic) current and its logarithm versus potential for the one
electron reversible redox reaction with both ox and red forms in the bulk of solution.

It should be noticed that the half-wave potential is observed at:
i = e ; ll.a (6.25)
It might also be noticed that the logarithm of current vs. potential curves for all the above
discussed cases of reversible processes are nonlinear.
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6.2 Quasi reversible and irreversible heterogeneous electrode reactions

6.2.1 Heterogeneous redox reaction with ox and red forms in the solution

The rates of reduction (forward, f) and oxidation (backward, b) heterogeneous reactions are
described by the following equations:

V§ = kf Co (O,t) =L

nFA (6.26)
i
=kp cr (0,t) = —2-
Vp =kp Cr ( ) nEA
The net rate is:
i
=V -V, =kiCH(0,t) —ki,.Cr (0,t) =—— 6.27
VVbefO()bR()nFA (6.27)
or
i:if—ib:nFA[kaO(O,t) —kyCr (O,t)] (6.28)

This is a fundamental current-potential equation in electrode kinetics. At the equilibrium an
equilibrium potential is obtained:

i=0 kaO (O,t) = kbCR (O,t)

kO exp[—anf (Eeq - EO’)JCO (0t) = kO exp[(l— a)nf (Eeq - EO’)} cr(0,t)  (6.29)

Sl <]

CrR

It is evident that at the conditions of equilibrium the Nernst law is obtained from the kinetic
current-potential equation. At the equilibrium conditions the observable current is zero but there
are cathodic and anodic currents flowing; they are equal to the exchange current, io:
i=0, iy =i. =l

* ' 6.30
ip =nFA kO Co exp[—anf (Eeq ~g° )] (6.50)
In equilibrium one can use Nernst equation, after rearrangement it is:
* \—Q&
exp[—anf (Eeq - Eoﬂ = CTO (6.31)
CRr
and the exchange current density is:
i = nFAK? ¢l “ere (6.32)

It is directly proportional to the standard rate constant and to the bulk concentrations to the
power 1-¢ and e, respectively. Knowledge of io allows for the determination of k°® while its
dependence on bulk concentrations allows for the determination of transfer coefficients.

The current-potential relation, Eq. (6.28) can be rearranged into current-overpotential
equation:
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i =nFA[ksCo (0,t) —k,Cr(0,t)]=
= nFAK® {co (0,t) exp[—anf (E - EOI)}—CR (0,1) exp[(l—a)nf (E - EO')}} = (6.33)

o (O,t)exp[—anf (E - EO')} R (O,t)exp[(l—a)nf (E - EO')}

:io

cg(l_a)cE“ cg(l_a)cE“
| co(0) ~an(E-£%)( 5 )" cr(04) (e (E-E”)( ¢y )
—=——x—"¢ | ——=—¢ - (6.34)
lo Co Cr Cr Cr
but
* \O * _(1_a)
C_Q = exp[anf (Eeq — EO')} CTO = exp[—(l— a)nf (Eeq ~g° )} (6.35)
CR CRr
Introducing overpotential 7 = E — Eo, One gets the current-overpotential equation
.. |co(0,t Cr(0,t
i =g %)exp(—anfn)—yexp[(l—a)nf 7] (6.36)
Co Cr
A plot of this equation is presented in Fig. 6.7.
ifiy
1.0+ !
0.8~
06— 7
04— // Total current
€ 02//
>”'/r- ~100 —200 -300 —400
! 1 Y. S 1 1 I
400 300 200 100 — - n, mv
€/ 4702
il
7N r——OA
/&ﬁ", — 0.6
——0.8
, |10
Fig. 6.7. Current overpotential relation for: o = 0.5, iic = -lia = i, io/ii = 0.2. Dotted line are the

component currents ic and ia.8

In order to be able to plot such equation one should calculate the concentration ratios using Eq.
(6.22):
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CO(,?’t)=i|’.C_i =1—_L and R (,?’t)=i|’.a_i =l—.L (6.37)
o i c I c CR la Ia

substitution gives:
l: 1_# e—anfn_ 1_# e(l—a)nfn
iO I|,C 'I,a

e—anf n_ e(1—05)nf n

1= 1 e—anfn e(l—a)nfn
—t+— + -
i Il i a (6.38)

or
i e—anfn _ e(l—a)nfn

e e | g-anfy , g(-a)nfy 'l
o I,a
Eqg. (6.38) allows for plotting current-overpotential curves. Examples of such plots for
reversible and quasi-reversible/irreversible processes are displayed in Fig. 6.8.

4 i 0.0 + E
1.0 c b a
-0.5 1
c b a
0.5 4 -1.0-
e < 151
. =3
0.0 < 20
-2.5 1
-0.54
T T T T -3.0 T T
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
nlV nlV

Fig. 6.8. Dependence of the dimensionless current i/ijc and its logarithm on overpotential for the
reversible (a) and slower processes: (b) io/iic = 0.05 and (c) 0.005; & = 0.5.

It is interesting to see what will happen when the exchange current density increases and the
redox reaction becomes more reversible. From Eq. (6.36) for fast kinetics one gets:

i cp(0t)e™ ™ cp(0,t)el-entn

A —0 (6.39)
o co CR
or
co(0t) _co enf(E—Eeq) (6.40)
cR(0) cg

From the Nernst equation:
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* 0'
c nf(E E )
o (%

(6.41)
CrR
after substitution to Eq. (6.40) the following equation is obtained:
f(E-E® :
CO (O,t) — en ( ) or E — EO +ﬂ|n—co (O't) (642)
cr (0,t) nF  cgr(0,t)

which indicates that for the fast (reversible) redox reaction surface concentrations follow the
Nernst equation.

At low overpotentials when |anfr| << 1 Eq. (6.36) may be written as:

1 [1—_i—](1—anfn)—[l—ilL][l+(l—a)nf77]:

Io Il c

:(1—_L](l—anfn)—{l—;j[lvt(l—a)nfn]:

[ [
l,c la (6.43)
i [ i i i
=——+—+nfp| - a+a—-1+ —+a-a—|=
e Na { e Ia 'I,J
__ 1,1 _nFy
ijc ila RT
which gives
RT.[1 1 1
n=-——W—+—-—
nF (g ¢ g
or (6.44)

n=-i (Rct +Rmt,c + Rmt,a)
The values of the charge transfer resistance, Rc, and mass transfer resistances of the cathodic and
anodic processes are defined as (at very mall overpotentials):
RT 1 RT 1 RT 1
Ret = T

— R =—— R = 6.45
nF ig mt,c nF il,c mt,a nF il,a ( )

Around the equilibrium potential the total resistance of the redox process consists of the
charge transfer and mass transfer resistances.

6.2.2 Heterogeneous redox reaction with ox form in the solution

In this case Eqg. (6.36) reduces to (totally irreversible process):

* 0
i =i i, =NFA[ksCo (0,t) —kyCr (0,t)]=nFAk{Co {Cgfo) - Cgfo) e (E-E") | (6 46)
0 0
which can be rearranged to:
o 1

i i
ll.c 11y exp[nf (E- EO)J

Ik (6.47)
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whwre
_ nFADCg

II,C = 5 ik = nFAkaS

(6.48)

i _( D ] 1
ik Oks ) exp[—anf (E-E®)]
Dependence of the current on potential for different values of D/Sks is displayed in Fig. 6.9.

1.0
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Fig. 6.9. Dependence of the normalized current on potential for quasi-reversible reduction of
oxidized form Ox for different values of the parameter D/dks.

For totally irreversible reaction:

i =i iy = NFA[kfCo (0,t) ] = nFAKsCo {CO—EO)}—“”E (6.49)
Co
which can be rearranged to:
: o —l ; Iy —1
E—g% RT ko RT e _ 1'75+£In e (6.50)
anF D anF I ankF I
or
L 1 _ (6.51)
e 1+exp [anf (E —~ El'frz)}
where
BN, =% PLALI. (6.52)

anF D
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Comparing with the reversible case, Eq. (6.20) and (6.23), it is evident that the difference is
the presence of the transfer coefficient « in the slope and the presence of the half-wave potential
which has kinetic significance while for the reversible case it has a thermodynamic significance.
The corresponding plots are displayed in Fig. 6.10.

1.0 0

0.8 v
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0.2

0.14
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-0.14 RT / anF irreversivle

E-E,,/V

-0.24 pas
034

-0.44

0.5+~

In[Gi, - i)/l

Fig. 6.10. Plot of the dimensionless current, logarithm of current, and logarithmic analysis for the
reversible (continuous line) and irreversible (dashed line) reduction process.

In general, the half-wave potential of the irreversible process is more negative than that for the
reversible process and the logarithmic slope dE/d log[(iic-i)/i] is larger, for & = 0.5 it is 118.3/n
mV that is two times larger than that for the reversible process 59.16/n mV at 25 °C.

6.2.3 Metal oxidation

Let us consider metal M oxidation in solution containing metal ions at concentration c*, Eq.
(6.6). Under these conditions Eq. (6.36) may be written as:
i =i {C_S)ce—anfn _ e(l—a)nfn}

C
but (6.53)
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i=i0 1_; e—anfn_e(l—a)nfn
llim

or (6.54)
i e—anfq_e(l—a)nfn

and

To illustrate this behavior let us consider an example where io/iiim = 0.025 and z = n =1 or 2.
Examples of simulations are shown below.

i/ilim log(i/i lim)

0.1

- *
c(x=0)/c* log(c(x=0)/c*)
4
1
3.5 05
3 _ o —
25 -0.3 3 BT 05 0 0.1
1
2 —_—=1
1.5
15 =2
—/ 2
25
0.5 3
0 3.5
03 025 02 015 01  -005 0 005 01 015

Fig. 6.11. Plot of the dimensionless current, its logarithm and dimensionless concentrations on
overpotential assuming io/iiim = 0.025and z=n =1 or 2.

6.3 Butler-Volmer equation
When the currents are very small and the bulk concentrations large the surface concentrations
are practically equal to the bulk concentrations:
co(0) zcg and cr(0) zc]; (6.55)
and Eq. (6.36) simplifies to:
i =ip {exp(—anf 17) —exp[(L- a)nf 7]} (6.56)
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This is so called Butler-Volmer equation. The plot of currents versus overpotentials are
displayed in Fig. 6.12.

(b)
/
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Fig. 6.12. Current-overpotential plots in Butler-Volmer conditions for three exchange current
densities jo: (a) 102 A cm, (b) 10° A cm2, (c) 10° A cm2, for one electron process with « = 0.5
at25°C.®

The effect of the transfer coefficients is shown in Fig. 6.13.
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Fig. 6.13. Effect of the transfer coefficient on the current overpotential curves for jo = 10°A cm™?,
other parameters as in Fig. 6.12.8

It is evident that when the cathodic transfer coefficient, «, is larger the cathodic current
increases more rapidly with overpotential while in such conditions anodic transfer coefficient
1-« is smaller and anodic current increases more slowly. Only for symmetric process when « =

0.5 both currents are symmetrical.
It should also be noticed, that at low overpotentials: |nfn| << 1, € ~ 1 + X, and Eq. (6.56)

reduces to:
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i =ig(—nfn) (6.57)
that is a liner relation between current and overpotential exists. This relation allows for a very
simple determination of the exchange current density. The charge transfer resistance at zero
overpotential is as defined earlier:

Ry =-22- L _RT (6.58)
di  nfig nFig
and it is inversely proportional to the exchange current density.

6.4 Tafel relation

Butler-Volmer equation might be simplified when |nfn| >> 1 that is for the cathodic reaction,
n<0: exp(-anfn) >>exp[(1-Anfy] or for anodic reaction nNn>0 when:
exp (-anfn) >> exp [(1-p)nfry]. These conditions correspond to the totally irreversible reaction,
when oxidation or reduction might be completely neglected. For the cathodic reaction one may
obtain:

i=igexp(-afn) (6.59)
which produces linear logarithmic plots:
nzﬂln I —ﬂln i
anF anF (6.60)
n=a+blogi
where
. 2.3RT log iy b=—2'3 RT :_0.0592 V at 25 °C (6.61)

anF anF an
This is so called Tafel relation. It allows for the determination of the transfer coefficient and
the exchange current density. Such a plot is shown in Fig. 6.14.

log Il

| 1 | 1 | | | |
200 150 100 - 50 -50 =100 -150 —200
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Fig. 6.14. Tafel plots for anodic and cathodic branches of the current-overpotential curve for
jo=10° A cm?, other parameters as in Fig. 6.12.8

Tafel relation is linear with the error of 1% when:



e(l—a)nf n

e—anf n

or with 5% error when:

=" <0.01 that is when | >
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0.077
n

\Y

] >

Examples of the experimental Tafel curves are shown in Fig. 6.15 and 6.16.
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Fig. 6.15. Tafel ploys for the reduction of Mn(IV) to Mn(lll) at Pt in 7.5. M H2SO4. The dashed
line corresponds to a = 0.24.%°
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Fig. 6.16. Anodic and cathodic Tafel curves for TI®*/TI?* reaction at various concentrations of

TI* at Pt in 0.05 M H2SO4 with stirring.>
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Another example of the reduction/evolution of oxygen in acid solution
Oy +4H" +4e=2H,0 (6.64)
is shown in Fig. 6.17. Reaction was carried out at p(O2) = 1 atm and the condition of stationarity

was that dE/dt < 1 mV//10 min. The obtained results were log jo = -9.89, jo = 1.3x10° Acm?, o =
0.64 and 1-a = 0.47.

40
5,0

6,0

log |i| (A-cm™®)
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9,0 " A 1

1 L 1
0_ -02 -0,4 -06
E-E%)

Fig. 6.17. Tafel curves for the anodic and cathodic reaction of oxygen reaction at Pt in 1 M
H2S504.%?

It is obvious, that the sum of the experimental anodic and cathodic transfer coefficients exceed
slightly the value of one, but this is an experimental result. At lower overpotentials some
deviation from linearity (despite the fact that the overpotential is sufficiently large) is observed,
probably because the steady-state conditions were not met. On the cathodic part, at larger
overpotentials deviation due to the oxygen transport in solution is observed while for water
oxidation no such effect is visible.

6.5 Study of the mechanism of the electrode processes

Usually, heterogeneous redox reactions involve transfer of more than one electrons and
involve other chemical species from the solution. They might be studied by determination of the
number of electrons, general transfer coefficients and reaction orders.

6.5.1 Determination of the number of electrons

Of course, the first step should be the analysis of reaction product by chemical analysis of
products of electrode reaction after complete electrolysis. This procedure also allows for the
coulometric determination of the numbers of electrons exchanged in the reaction. For example
reduction of acetophenone may proceed by exchange of one electron leading to the dimer of or
two electrons leading to the alcohol, Fig. 6.18. As the experimental number of electrons in
aqueous solution is one, the product is the dimer (pinacol).
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Fig. 6.18. Two possible mechanisms of the reduction of acetophenone.5
6.5.2 Analysis of the general transfer coefficients

It is quite rare that more than one electron is exchanged in one step. For more complex
processes involving several steps the observed apparent transfer coefficient is different from that
of the individual reactions.332 Let us consider heterogeneous redox reaction

O +ne = R, (6.65)

This process may proceed by a series of one electron processes:
1

Ore Ry (6.66)
K
¢

Ri+e R, (6.67)
K
b

until reaction i which is the rate determining step:
i
Ri_1+e « Ri (668)
|

followed by subsequent steps until the last one:

f
Rp_1+e€x Rp (6.69)
kn
b
If the step i is the slowest one can assume that all other are in equilibrium:

it =it (6.70)
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Fk} ap exp(—aq fn)= Fk% aR, exp(pifn) (6.72)
where a1 and f1 are the cathodic and anodic transfer coefficients of reaction 1, Eq. (6.66), and
ap and aR, are the surface concentration of O and R1. From Eq. (6.71) the concentration of R1

might be calculated:
ag, =Ky ap exp| —(aq + ) f17] (6.72)
where the equilibrium constant Ky is:
Ky =k 1kt (6.73)
Similarly, other concentrations might be eliminated:
ag, =ar, Ko exp[ —(fo+a) f11]=
=Ky Ky ag exp[—(ag +ap + B+ B2) T 7]
ag., =80k Ky ... Kig exp[ (g + o +...+ i+ Bi+...+ fiq) f17] (6.75)
Because for the elementary steps o + =1, Eq. (6.75) may be rewritten as:
ag., = K1 Ky...Kjg agexp[ —(i-1) fr] (6.76)
For the rate determining step:
i = FKy Ky ... Kiki ag exp[—(i—1) f ]exp[—a; f7] =
kR (6.77)

S

R .
=F kg ag exp[—(i—1) f]exp[—a;fr]
The total cathodic current is: itc = n ic. Similarly, one can write for the anodic reaction
assuming that the slowest anodic step is j:

iy = —F agp KpKp.1-.-K; kb exp[(n- j)fn]exp[ﬂjfn} =
kO (6.78)
=F aRnkS0 exp[ (n—j) fn]exp(ﬁjfn)
For the total currents one can write Tafel relations:
it.c =loexp (—an, f7)

(6.74)

ia =igexp (B ) ©79)
Their slopes are:
on, =i-1+¢ (6.80)
png=n—j+p;
or assuming that the transfer coefficients are all equal to 0.5:
an, =i— 0.5
(6.81)

prg= (n—j) + 05
Determination of the transfer coefficient allows to decide which reaction is the rate
determining step, r.d.s.
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Exercise 6.1.

As an example let us assume a three electron reaction:
O+3e=R
The possible transfer coeffictions assuming different cathodic and anodic r.d.s.
1) O+e=R: assuming as the r.d.s. for the cathodic reaction
one = 0.5 Bng= 25 Ri-e=0r.d.s. for the anodic reaction
1.5 Rx-e=R;
0.5 R3-e=R>
b) Ri+e=R2 rds.
ane =1.5 Bng= 25  Ri-e=0r.d.s. for the anodic reaction
1.5 R.-e=Ry
0.5 R:-e=R>
c) R2=e=R rds.
oNg = 2.5 Bng= 2.5 Ri-e=0r.d.s. for the anodic reaction
1.5 R2-e=R;
0.5 R3-e=R>

When the same step is rate determining in both directions an« + fhp = n.

Another important parameter is the stoichiometric number, v, which indicate number of times
the rate determining reaction must proceed to obtain the product. Under such conditions Eq.
(6.80) must be modified. Assuming additionally that r electrons are exchanged in the r.d.s. the
following equations are obtained:

ang = :L + g
Voo (6.82)
n-J
ﬂnB = T + rﬁj
Exercise 6.2.

Calculate the transfer coefficients for the hydrogen evolution reaction in acid media.
2H" +2e=H, (6.83)

This is a two electron reaction and it can proceed by Volmer-Heyrovsky or VVolmer-Tafel
mechanism. For the VVolmer-Heyrovsky mechanism:

H"+M+e=MH
MH+H" +e=H,+M

where M is the electrocatalytic metal. In this case n = 2 and v = 1. If the first electron transfer is
the r.d.s.:

(6.84)

an, = l%1+o.5= 05 (6.85)

and for the Heyrovsky r.d.s.:
ang, = ZT_1+0.5 =15 (6.86)

For the VVolmer-Tafel mechanism:
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(H++|v|+e=|v|H)><2

(6.87)
2MH =2M +H,
n=2andv = 2. When the Volmer step is the r.d.s.:
ang, :1%1+0.5:0.5 (6.88)

but when the Tafel reaction is the r.d.s. and using notation in Eq. (6.72) one gets:
ag, =Ky ag exp[ —(a + A1) fr7 ] = Kia, .+ exp(=f7) (6.89)
and the r.d.s. is chemical:
i =2Fady = 2FK1ai|2 exp(-27) (6.90)
and the apparent transfer coefficient is 2.

6.5.3 Reaction orders

In the determination of the mechanism of electrode reactions it is important to know reaction
orders.32 They are derivatives of the logarithm of current versus log of concentration of species
in solution at a constant electrode potential:

[alog I ~ 25 (6.91)
dlog c; G E
[8 log iy - 20, (6.92)
o log cj Gy E

where ic and i, are the cathodic and anodic currents and zrj and zo; are the cathodic and anodic
reaction orders. These derivatives may be obtained in the Tafel zone where reactions are totally
irreversible. They allow writing the dependence of current on concentrations.

In the case of faster reactions one cannot neglect the backward reaction and the dependence of
the exchange current on concentrations must be used but the exchange current is determined at a
constant overpotential (equal to zero)

i0 OE
dlogi =z —anf | —% (6.93)
dlog c; ’ dlnc;
Cj iCj Cj iCj
i0 OE
ologi — 20+ it ——€q (6.94)
dlog c; ' dlnc;
Cj iCj Cj ¢Cj
Assuming that the dependence of the equilibrium potential on concentration is:
dEeq 1
=—R (6.95)
dincj nf

(see Exercise 6.5. below) relations (6.93) and (6.94) become:
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0
ologi ~ 2 - P (6.96)
olog Cj it
olog i0
— =12pj+ PPj (6.97)
olog Cj —

To better understand these concepts few examples will be shown.

Exercise 6.3.

Reaction Ni(I11)/Ni(Hg) was studied in the presence of 0.05 to 4.0 M azides N3.32°% It was
found that in the whole concentration range the anodic reaction order was:

ologi,
=—_—Ja _1 6.98
ON3  odlogc. _ (6.98)
N3
and the cathodic reaction order for cN_ <05M
3
ologi
=_279C _ 6.99
RN3  ologc, (6.99)
N3
butforc _>2M
N3
-3 (6.100)

‘RN
while order versus concentration of Ni(ll) zg njary =1.

From the complexation equilibrium constant it is known that at Cnz > 2 M the predominant
3

complex is Ni(Ng)ﬁ_ and in more diluted solutions when Crz <0.5M the predominant
3

complex is NiNér . This means that at lower concentrations of azides the electrode reaction is:
NiN3 +2e — Ni(Hg) + N3 (6.101)
and at higher concentrations:
Ni(N3)7~ 2 NiN3 +3N3

(6.102)
NiN3 +2e — Ni(Hg) + N3
while the anodic process proceeds as:
Ni(Hg) —2e + N3 — NiN3 (6.103)

This indicates that the electroactive species is NiNér . The cathodic current is described as:

k-1 -3 _
NN exp(—an, fE) = Keg CNi(N§)3_CN§ exp(—an,, fE) (6.104)

where Keq is the equilibrium constant od the complexation reaction and anodic current
Iq ~ cNi(,_|g)cNg exp(ps ng fE) (6.105)

ic ~C
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Exercise 6.4.

For the oxidation of the cadmium amalgam in cyanides:*?

Cd(CN)z +2e =2 Cd(Hg) +4CN™ (6.106)
the following reactions orders were obtained:
20,Cd(Hg) =1
zR’CN_ ~ 2 for Con- < 0.05M (6.107)

zR,CN_ ~ 3 for CCN_ >0.05M

This indicates that at lower concentration of cyanides the electroactive species is Cd(CN),
that is current is proportional to the concentration of this species:
Cd(CN)]~ = Cd(CN), +2 CN~

(6.108)
Cd(CN), + 2e = Cd(Hg)+2 CN~
and at higher concentrations it is Cd(CN)3
Cd(CN)Z~ & Cd(CN)3 +CN™~
(CN)z~ =2 Cd(CN)3 (6.100)
Cd(CN)3 +2e = Cd(Hg) + 3CN~
Exercise 6.5.
For the reaction of reduction of zinc in alkaline solution:32>4
Zn(OH)3™ +2e =2Zn(Hg) + 4 OH™ (6.110)
the following derivatives were obtained:
o dloglp 5 ma'&z% af'&:o (6.111)
ogc, (OH)?- 09 Czn(Hg) 0gc,, -
and = 0.5.

In order to use Eq. (6.96)-(6.97) parameters P; must be obtained from the Nernst equation for
reaction (6.110):

Zn(OH)Z™ +2e =2 Zn(Hg) + 4 OH~

E. —E”+ 1| ! | (6.112)
«a =B o Mznomg Tor o2t "1 M on-
from which PZn(OH)E‘ =1, Pzn(Hg) =1, and POH_ =—4. Then the re action orders are:
dlogig
Z _ = aP ~=05+05%x1=1.0 A1
RZn(OH);™ ~ dlog (O Zn(OH)3 (6.113)
4
6log io
z _=————+aP_  _ =0+05(-4)=-2 6.114
R,OH a|og COH_ a OH ( ) ( )
ologi
20,Zn(Hg) = 20 —aPzp(Hg) =0.5-0.5(-1) =1 (6.115)

dlog czn(Hg)
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This suggests a mechanism in which the electroactive species is Zn(OH).:

ic ~ Czn(OH), eXP(-0.5TE) = Ke_qlCZn(OH)z—C;ﬁf exp(—0.5fE) (6.116)

where Keq is the equilibrium constant of dissociation of reaction (6.117). The following
mechanism is proposed:

Zn(OH)Z~ = Zn(OH), + 2 OH~ (6.117)

Zn(OH), +2e = Zn(Hg) + 20H" (6.118)
Exercise 6.6.

The final and the most surprising reaction is reduction of zinc cyanide complex:!

Zn(CN)3~ +2e = Zn(Hg) + 4CN~ (6.119)
for which the following reaction orders were obtained:
ZR,Zn(CN)i_ =+1 zR,CN_ =-4 zR’OH_ =+2 (6.120)

which suggests participation of OH" ions in the reaction mechanism. These results can be
explained assuming the following mechanism:

Zn(CN)7~ +20H™ = Zn(OH), +4 CN~
Zn(OH), +2e = Zn(Hg) + 2 OH™

i ~[Zn(OH),] ~ [Zn(CN)Z T[OH J°[CN T
[Zn(OH),] = Keg [Zn(CN)3 1[OH™J2[CN T

which shows that the electroactive species in this case is also Zn(OH)a.
Analysis presented above indicates analysis of the transfer coefficients and reaction orders
helps with the determination of the mechanism of redox reactions.

(6.121)

The stationary methods presented in this chapter can be applied to slower electrochemical
reactions where Tafel ranges or exchange current densities can be found. In the further chapter
individual techniques will be described.



147

7 Effect of the solution resistance and surface roughness
7.1 Uncompensated solution resistance

Current flowing through the solution causes additional potential drop, IR, which affects the
results because of difference between the applied and the real electrode potential. It must be
eliminated, minimized or taken into account. These effects might be very large. For example,
when current of 0.5 A is flowing through the solution having resistance of 0.3 Q, the potential
drop is: AE =0.5 A x 0.3 Q =0.15 V. This means that the real potential of the working electrode
is different by 150 mV! To decrease these effects potentiostats are used. They are able to
compensate partially the solution resistance leaving the uncompensated resistance between the
reference and the working electrode. That is why the reference electrode is usually connected by

the Luggin capillary, whose tip is located very close to the electrode surface, Fig. 7.1.
S { R.E.

Porous
plug

‘Luggin
capillary

Fig. 5C Schematic fepresentqtion of a Luggin capillary.' W.E
electrode, R.E. — reference electrode.
Fig. 7.1. Schematic representation of a Luggin capillary; WE working electrode, RE reference
electrode.®

Let us consider few cases of different geometry.
1) Planar electrodes
If two parallel planar electrodes are in the solution the uncompensated resistance between the
electrodes is:
Ry ™ (7.1)
where x is the distance between them, A is the surface area, and x is the solution specific
conductance, see Fig. 7.2.
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Fig. 7.2. Solution resistance between two parallel electrodes; iRs is the uncompensated resistance
between the Luggin capillary and the working electrode, iRcen is the total resistance between the
working and counter electrodes. The part iRce - iRs is compensated by the potentiostat.>®

2) Spherical electrode
Uncompensated resistance around the spherical electrode depends strongly on the distance
from the electrode surface:

1 X
Ry = (7.2)
Arrgk X+ 1
X—>o R,— L
47zr01c
x>0 R;,—0 (7.3)
R
X =1 Ry = —Z
0 u 2

When distance of the Luggin capillary from the electrode goes to infinity the resistance goes to
a constant. At the distance equal to the electrode radius it is already 50% of the maximal
resistance, Fig. 7.3.
3) Disk electrode
For disk electrode, at larger distances, x—oo, the solution resistance is:
1

R,=— 7.4
u 4KI’0 ( )
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Ru/Rinf
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0.2 -
0.1 -

x/ro

Fig. 7.3. Dependence of the relative uncompensated resistance Ru/Rint vS. dimensionless distance
x/ro at a spherical electrode.>®

4) Cylindrical electrode
For cylindrical electrode the solution resistance follows the equation:

R, :r—oln[1+ijzr—0|n(iJ (7.5)

K o K o

and never reaches the constant value.

Comparison of the resistance at different geometries is shown in Fig. 7.4. Comparison of the
surface area normalized and total solution resistances for the spherical electrode is displayed in
Fig. 7.5. With the decrease in electrode dimensions the total solution resistance increases but the
relative per surface area decreases.

Compensation or minimization of Ry is carried out by:

1) Use of the Luggin capillary located close to the electrode surface

2) Electronic compensation of the solution resistance by application of the positive feedback.
This operation is possible in certain potentiostats but only 70-80% of the total
uncompensated resistance might be eliminated. At higher compensations the potentiostat
becomes unstable and starts to oscillate.

3) Use of the ultramicroelectrodes. The potential drop around the ultramicroelectrode
(spherical, disk) depends in the electrode dimension. For such electrodes the
uncompensated resistance depends on 1/ro and the current is proportional to the surface
area 4 m ro? and the potential drop is proportional to:

iR, ~ drf —— =10 (7.6)
Arpx K
and the uncompensated resistance decreases with the dimensions of the electrode. The
cell time constant RyCq decreases with the decrease of the electrode radius:
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0
1 2.0\ IC
r=RyCq = (47[]«0 j(mo cq)="22 7.7)

where Cg is the specific electrode capacitance (per cm?).

Normalized distance d/r,

4 8 12 16

8 T T T T >

c £

5 a0t 412

2 D~

73 planar [0

oo L 4 TE

= a v

c E o N\

3K 5 ¢

P 20+ 18 © E

R 5%

o N | eylindrical =0

12 (24 {2 T

o & o -
2

N 10 a8

& ro=0.05¢m 1+ 2=

U R %) St

£ N / spherical E

S

s £

4 o

1 1 1 i
0 0.2 04 0.6 0.8 1.0

Distance from the surface d/cm

Fig. 7.4. Uncompensated solution resistance in Q cm? and the corresponding potential drop at the
current density of 0.4 mAcm? as a function of the distance from the electrode surface,
calculated assuming x = 0.01 Q! cm™ and the electrode radius 0.05 cm.>®
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Fig. 7.5. Total solution resistance at the spherical electrode for different radii indicated.>®

The uncompensated solution resistance should be determined in order to estimate its influence
on the total potential difference. It can be determined using:

1) Electrochemical impedance spectroscopy. The resistance found at high frequencies
corresponds to the uncompensated solution resistance.>®

2) Current interruption. When current is interrupted very fast the iR, drop becomes
immediately zero and the obtained potential is that without iRy. Then the potential relaxes
kinetically to the equilibrium value. This is illustrated in Fig. 7.6. This methos is very good
for high currents.
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0.9

0.7 .
0.0 2.0x10°

t/s

Fig. 7.6. Current interruption technigue for the determination of the solution resistance.

3) Application of the square wave potential. Square-wave is applied in the double layer zone
and the charging current relaxation curves are registered. Charging current decreases
exponentially with time and the time constant depends on the uncompensated solution
resistance. The positive feedback in the potentiostat might be applied to decrease the
relaxation time without losing the stability of the system (before the oscillations appear),

Fig. 7.7.

Fig. 7.7. Current relaxation due to the square-wave potential step program in the double layer
zone; continuous line — slow relaxation, dashed line --- after partial compensation of the solution

resistance.
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7.2 Electrode surface area

The macroscopic i.e. geometric electrode dimensions are different from the real surface area
because of some micro roughness. Very well polished electrodes might have surface roughness
of 1.3-1.7, as the real surface area is larger than the geometric one. Of course there are porous
electrodes which might have much larger surface roughness. The real surface area might be
estimated by determination of the electrode capacitance using e.g. electrochemical impedance

spectroscopy or cyclic voltammetry. Division of the experimental electrode capacitance, Cy (in

F), by the specific capacitance of a given electrode material, Cg (in Fcm@), gives the surface

roughness parameter. The question is: what surface area should be used in the electrochemical
techniques in which the limiting or peak current are measured, Fig. 7.8.

Geometric area

Projected enclosure

Rough electrode surface

Fig. 7.8. Electrode surface and the enclosure formed by projecting the boundary outward in
parallel with surface normal. The cross-section is the geometric surface area.®

At long times the diffusion layer thickness, &, is much larger that the surface roughness and the
diffusing species do not “feel” any effects of the surface roughness, Fig. 7.9, and the geometric
surface area should be used. However, at very short times the diffusion layer thickness might be
comparable with the surface roughness and the real surface area should be used. For
electrocatalytic proceses the real surface area should also be used.

Solution

P i e Tt il Py oD -~ ~. Py
P P P
- aiN - ~ - S
~ ~ - - ~
- - -~ - - - -~ ~— - ~e ~
= Pty Pt Py e =}~ - Pt - ~. ~ TS ~
- S ~— =~ S ~— - - ~ - ~. - ~.
- ~ ~. - ~
P S~ Salo” ~
- - -
Sa TN NN
~ ~

Electrode Electrode
{a) (&)
Fig. 7.9. Diffusion fields at (a) long and (b) short times. Dotted lined show surfaces of equal
concentration in the diffusion layer. Vectors show concentration gradients driving the flux
toward the electrode surface.®
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8 Transfer processes

There are several processes where matter, electric charge or heat is transferred.”>"8
8.1 Diffusion

The driving force of the diffusion is the gradient of the chemical potential. Diffusion wants to
eliminate such gradients. It is an irreversible process in which entropy is increasing. This driving
force of the species i in the direction x is defined as:

d/,li N
I:i,x ==

- — (8.1)

dx mol
and the sign of force and gradient are different because the mass transfer takes place in the
direction opposite to the gradient, Fig. 8.1.

1.0
0.8+ mass transfer
x 0.6
kS
x
© 0.4
0.2
gradient > 0
0.0 T
0 1

x/s
Fig. 8.1. Directions of the gradient and mass transfer.

As the chemical potential is defined as:

0
#i = i +RT Inyj ¢
the rate of the mass transfer (in m s or cm s?) is:

(8.2)

dx

du;
Vix = UiFx =Y (8.3)
where uij is the rate of mass transfer under the unit force (in mol m s*Nt = m? mol s J1). The
flux of the substance i in the direction x is:

mol
Jix = Ci Vix { 5 } (8.4)
cm* s
The flux is defined as the number of moles crossing 1 cm? in one second:
1 dN
=1 8.5
YCTA dt (8.5)
where A is the surface area and N is the number of moles. Substitution leads to:
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. d(vc:
‘]i,X =GjVix =—GiU; % = U;Gj %—(;/;( I) =
7iGi
X vioo dx
= —u; RT %_ui@dﬂﬁ: (8.6)
X 7i dCi dx
__y RT[ 1 8071|0696
diIng ) dx dx
Dj

and shows that the mass transfer flux is directly proportional to the concentration gradient. The
diffusion coefficient expressed in cm? s and characterizes the rate of diffusion. In the diluted
solutions when d Iny / d In ci ~ O it becomes:

Di =~ Uj RT (87)
In aqueous solutions typical value of the diffusion coefficient is D; ~102cm%s L. Finally the
flux may be written as:
1 dN dc;
Jio=——"" —_D.— 8.8
1,X A dt | dX ( )
which is a form of the first Fick’s law:
dNi __p A% (8.9)
dt dx

The second Fick’s law describes changes of concentration in time. Let us consider a box in
solution of the thickness dx and the surface area A, the flux which enters is J; and that which
leaves is Jz, Fig. 8.2.

X X+dx

Fig. 8.2. Definition of the box in the solution for developing of the second Fick’s law.

The flux entering the box is:
dc
Ji=-D— 8.10
1 . (8.10)



156

and that leaving the box, assuming that the concentration gradient can be linearized at the small
distance dx:

2
J2:—Di(c+d—cde:—D$—Dd—Cdx (8.11)
dx dx dx  dx?
Then the difference of fluxes is:
d’C
Ji—Jy=-dJ :D—de (8.12)
dx
or
2
a_ p2t (8.13)
OX ox2
Changes of the number of moles in the box of the volume V = A dx is:
dN dJ dJ
—=(J1-J)A=-A-dJ=——Adx=——dV 8.14
a -2 dx dx (8.14)
or
N _ —de (8.15)
ot OX
g(@j = _Q (8.16)
ot\ oV X
C
which gives the Fick’s second law:
oc aJ
—=—— (8.17)
ot OX
or after substitution Eqg. (8.10)
2
oc(x,t) D o°c(x,t) (8.18)
ot ox2

This equation allows to determine c(x,t) if the initial and boundary conditions are known.
8.2 lonic current

To consider an additional influence of the electric field on the movement of ions the
electrochemical potential should be used:

I = 12+ RT Inay +z;F ¢ (8.19)
The flux may be calculated as above:
Jix = CiVix
Vi x =—ui%=—ui ziF%+ RT olna (8.20)
' OX OX OX
o) oC
Jix =CiVj x = —CjUjziF —-D; —
1,X 171,X 1141 OX | OX

The flux is composed of two terms, one due to the potential gradient, so called migration, and
one due to the concentration gradient. The migration term is:
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o0p
Jiy =—UiGz;iF — 8.21
1,X 1~ 6X ( )

During the passage of the electric current through the solution ions are moved by diffusion and
by migration. In the electroanalytical techniques we try to eliminate completely the migration
current by addition of the supporting electrolyte. In this case the transference number of our
studied ion decreases after addition of large excess of the supporting electrolyte. This effect is
illustrated below where the polarographic limiting current of 9.5x10* M Pb?* (as Pb(NOs).) was
studied in the presence of different concentrations of the supporting electrolyte KNO:s.

Table 8.1. Polarographic limiting currents of 9.5x10* M Pb?* in the presence of different
concentrations of KNO:s.

[KNOs] /M i1/ pA

0 17.6
10 16.2
10 12.0
5103 9.8
0.1 8.45
1.0 8.45

When ckno, >>C +>>t and effect of migration is eliminated. In practice the

P2+ i Pb%*
excess of the supporting electrolyte should be at least 50 times.

8.3 Convection

Convection is the mass transfer under the influence of the external force, e.g. mixing of
solution, using rotating disk or wall-jet electrode, bubbling with gas, density gradient, etc. The
flux is proportional to the velocity of solution:

‘Ji,X = Ci\7 (8.22)
and
oJ; .
ix _ g% (8.23)
15)4 OX
but
% __Dix (8.24)
ot OX '

then one obtains the Fick’s equation in the presence of diffusion and convection in one direction:

2
d_yo%c e

= 8.25
ot ox2 ox (8.25)
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8.4 Heat transfer

Another example of transfer processes is heat transfer. The heat flux is defined as:
oT
Jiy=4A— 8.26
i o (8.26)
where T is the temperature and A is the coefficient characteristic for the conducting medium.
Fick equations in different geometric conditions were first solved for heat transfer and later
adopted for electrochemical systems. Solution of the second Fick law is usually carried out using

Laplace transform. This technique will be presented in the next chapter.
8.5 Laplace transform and its applications to the solution of the differential equations

8.5.1 Definition and simple applications

Laplace transform is the integral transform of the function of parameter t (for example time)
into the function of a new parameter s (called frequency).

f(t)= F(s), F(s), L{f (D)} (8.27)

This transform may be used to change differential equations into simple algebraic equation in
the Laplace space, solving them, and then transforming them again into the equations of the
parameter t.

Differential egn. (t) L Algebraic eqn. (s)
\
solution (t) T solution (s) } Laplace space

The Laplace transform is defined as:

f(s)=[ f (e 'dt (8.28)
0
Not all functions might be transformed. Such a function must fulfill certain restrictions:

1) ft)=0 t<0

2) f(t) must have a finite number if discontinuities

3) f(t) must be of the exponential order i.e. there must exist two positive constants A > 0 and
M > 0 for which [f(t)] < M e for all values of t. For example, exp(x?) is not of the exponential
order but exp(x) is.

The Laplace transform is linear:
L {afy (t) + bfy (t)} = afy (s) + bf(s) (8.29)
Few examples below will help better understand this technique.

Exercise 8.1.

Find Laplace transform of a simple step function, Eqg. (8.30) and Fig. 8.3:
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0 t<0
f(t)=n(t) = 8.30
(t) =n(t) {1 (50 (8.30)
&)
1
X
Fig. 8.3. Heaviside step function.
Application of the definition of the Laplace transform gives:
o —st|”
L[n(t)]= [1e~*dt = T (8.31)
0 S|y, S

The obtained function depends only on the parameter s because the integration over t is carried
out between zero and infinity.

Exercise 8.2.

Find Laplace transform of the exponential function.

00 00 (a-s)t
L(eat) = je""te_St dt = J'e(""_s)t dt=1 g (8.32)
0 0 a-s |0 s-a
The form of the function in the Laplace space is simpler than in the time space.
Exercise 8.3.
Find Laplace transform of the first derivative. Intrgtation by parts gives
L{F()}= [e S F(ydt=e ) ‘Og -[ (e_St) f (t)dt =
0 0 (8.33)
w —
= —f(o+)+sje—St f (t)dt = sf(s) - f(0")
0
where integration by parts is defined as:
Iuv’dx =uv— j u'vdx (8.34)

It is obvious that the derivative in time space is equivalent to the multiplication of the function
by s in the Laplace space.
Similarly formula for the second derivative:

L[ f"(t)]=s*F(s)-sf (07) - (O") (8.35)
and for the integration might be found:
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t f (s)
L j f(r)dr b= {f 0} = (8.36)
0

Integration in time space is replaced by division by s in the Laplace space.

8.5.2 Convolution integral

After finding solution in the Laplace space an inverse transformation is carried out. Usually,
one uses tables included in books.>*%° Few examples are shown in the Appendix. However, in
certain cases the inverse function cannot be found. Usually, it is possible to represent function in
the Laplace space as a product of two simpler functions for which the inverse Laplace transforms
are known. In such cases the product of two functions in the Laplace space is equal to the
transform of the convolution of these functions:

f1(5)- fo(s) = L[ f1(0) * fo (V)] (8.37)
and the inverse function equals convolution of these functions
L f(s) Fo(9) |[= L Fi(9) ]« LM Fa(9) | = ) £ (1) (8.38)
where symbol “*”” denotes the convolution integral:
t t
f(t)* o (t) = j f1(z) fp(t—7)d7 = j fo () fy(t—7)d7 (8.39)
0 0

This theorem will be used in voltammetry.
8.5.3 Solution of the partial differential equations (p.d.e.)

Laplace transform may be used to change partial differential equations into ordinary
differential equations:

Partial differential L Ordinary
equation (t) differential eqn. (s) Laplace space
< L
solution (t) solution (s)

This method will be used in solving second Fick equation for different electrochemical
methods. Few more examples of application of the Laplace transform is shown below.

Exercise 8.4.

Solve differential equation of the first order chemical kinetics:

%_ —ky with y(0) =y (8.40)

Application of the Laplace transform to this equation gives:
sy — y(0) =—ky (8.41)
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The solution in the Laplace space is:

= 1

y=y(0)—
s+k
and using the inverse transform gives:

—kt
Y=Y

Exercise 8.5.

Solve then second order ordinary differential equation:

2
d—y—a2y+b=0

dx?

Application of the Laplace transform leads to the algebraic equation:
= , _ b
527 -5y(0) - y(0)-a’y + =0

To solve it for Y the result should be represented as simple fractions:

b !
2+ (0) + sy(0) _ +52y(0) +sy'(0) b _

= s2_32 s(s—a)(s+a)
A N B +g_A(sz—as)+B(sz+as)+C(52—a2)_
s+a s—-a s s(sz—az)
_32(A+B+C)+s(—aA+aB)—Ca2
s(sz—az)
with
A+B+C=y(0)
—aA+aB =y'(0)
—Ca%=-b
or
-t
a

A YO _y(© b

2 2a 232

g_YO _ y(© b
2 2a 232
The final solution in the Laplace space is:

or in the time space:

Exercise 8.6.

(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

(8.50)



162

Solve the following equation:
y(®)"+ ky(t)=0 (8.51)
with the following conditions: y(0)=a; y'(0)=bh.
Application of the Laplace transform gives:

s%y(s) - sy(0) - y'(0) + ky(s) = 0

s?y(s)—as—b+ky(0) =0 (8.52)
as+b S 1
y(s)= =a +b
s? +k s>+k  s?+k
Knowing that:
. a S
L[sin(at)] = " L[cos(at)] = > (8.53)
s°+a s“+a
solution in time space is:
b .
y(t) :acos(JEt)+Wsun(JEt) (8.54)
Exercise 8.7.
Solve differential equation:
y" —ky =0 with y(0) =a, y'(0) =b (8.55)
The solution is obtained in a similar way:
y_as+b_ s b
s? —k s?—k s2-k
y = acosh (\/Ft) + Lsinh(\/Et) (8.56)
Jk
a b a b
=| —+— |exp(vkt) +| = ——= |exp(—vkt
y (2 2\/Ej p(vkt) (2 2\/?] p(-kt)

This technique will be applied to the solution of p.d.e. for different electrochemical techniques.
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9 Chronoamperometry and chronocoulometry
9.1 Chronoamperometry in linear semi-infinite diffusion conditions

Chronoamperometry is the simplest electroanalytical technique in which potential is stepped
from one value to another.”®%! Let us assume the simplest heterogeneous redox reaction at the
electrode surface:

O+ne=R (9.1)

Let us also assume that only ox species are initially in the solution. Usually, the initial
potential is in the range where no current is observed. Few cases will be considered below.

9.1.1 Conditions of the diffusion limited current

In this case the potential is stepped from the zone where there is no reaction and ¢ (0) = 06 to

more negative potentials where Co(0) =0 that is in the conditions of the limiting current, see
Fig. 9.1-9.2.

A 1
i\ +
E, 0.6\
04 -
E;
0.2 - l
03 0.2 0.1 0 0.1 0.2 0.3
E-El[2

Fig. 9.1. Potential step from E1 to Ez indicated on the steady-state polarization curve.

-

3>t >t;>0

0 t 0 x 0 r
(a) () (c)
Fig. 9.2. Potential step (a), concentration profile (b), and current (c) in chronoamperometry.®

The potential E> applied must be more negative than the half-wave potential to assure that
c(0)~0. When E> - E1» = AE = -0.15 V the ratio of the ox and red at the electrode surface is:
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[O)/[R] = 3x107 and when AE = -0.20 V [O]/[R] = 4x10* that is only 0.04% of the form ox is
left. Because according to the Nernst equation surface concentration is never zero one should
assure that co(x=0)<<co*.

To obtain concentration profile and current it is necessary to solve the second Fick equation
for ox only:

aCO -D aZCO

9.2
ot O 8X2 (9.2)
with the following initial and boundary conditions:
t=0 c(x,0) = CS
t>0 x=0 co(0,t)=0 (9.3)
X — o Co(oo,t)=cg

Usually, the parameters in Eg. (9.2) are transformed into the dimensionless form by
substitution:

a=f oy X T=1 9.4)
c* JDof T

where 7 is the characteristic time, e.g. time of the application of E> (it does not matter what value
is used, it will disappear in the solution). Then, Eq. (9.2) is rearranged into:

da_p o tay 1 o
at 92 ox oy ox Dot oy
6%a 1 0%

_ 9.5
ox? Dot oy? (53)
da_10%
ot 7 ayz

and, finally:

2
oT  oy?
with the conditions:

T=0 a(y,0)=1
T>0y=0 a(0T)=0 9.7

y—>o a(noT)=1

Let us apply Laplace transform to the p.d.e. and to the conditions:
La(y,T)]=a(y.s) (9.8)
- d%a S
sy 9)-a(y.0)= == 22 ©9)
y

with a(y,0) = 1. The transformed equation in the Laplace space is:
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2
d—z—s§+1=0 (9.10)
dy

T=0 a(y,0)=1 a(y,0)=0
T>0y=0 a(0T)=0 a(0s)=0 (9.12)

Yoo a(T)=1 a(os)=-

S

Solution of Eqg. (9.10), according to Exercise 8.5 is:

a(y,s) = peVsY 4 gevsy 4 1 (9.12)

S
1 :
but as for y—o0, a(wo,s) == the value of B must be equal to zero (B=0) because concentration
s

cannot increase to infinity, and a simpler equation is obtained:

a(y,s) = peVsy 1 (9.13)
S
Using conditions at the surface parameter A may be obtained:
E(O,S):A+£:O A:—l (9.14)
S S
and the solution is:
a(y,s)==-2e Vo (9.15)
S s
Using Table in Appendix allows the inverse transformation of the dimensionless
concentration:
y
a(y,T)=1-erfc| —F= 9.16
(y.T) ( 5 ﬁj (9.16)
where erfc is the complementary error function defined as:
erfc(x) =1 — erf(x) (9.17)

and the error function erf is the normalized integral of the exponential x? function:
X
2 2
erf(x) =—= | exp(—u“ |du 9.18
()= g p(-v?) (9.18)

Comparison of the exponential exp(-x?) and its integral erf(x) functions is displayed in Fig. 9.3.
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0.9 \\\ /
0.8  /

o N
0.7 !
0.6 7 —erf(x)
0.5 n
0.4 / v ---- exp(-x"2)
O 3 / \\

. / \\
0.2 :

. / <
0.1 /

erf(x), exp(-x"2)

Fig. 9.3. Plot of exp(-x?) and erf(x) functions.

Erf function is normalized and quickly reaches value of one:
erf(0) =0
erf(1) =0.843
erf(2) = 0.995
erf(2.5) = 0.9996
erf(3) = 0.99998
and for larger arguments it is practically equal to zero.
Eqn. (9.16) becomes:

—1—erfe| Y |=1- Y e[
a(y,T)=1 erfc(zﬁj 1 1+erf(2\/_?} erf(zﬁj (9.19)

and return to the initial parameters gives:

* X
co(x,t)=cq erf{z\/D_ot] (9.20)

To find the current it is easier to differentiate the dimensionless concentration in the Laplace
domain, Eq. (9.15):

oa(0,s) 1 1
=——(=Ss)=— 9.21
St E) - (9.21)
and after the inverse transformation:

aa(O,T)= 1 (9.22)

oy 7T

or:

oCo(0t)  Co (0.23)

ox  |JzDot
and keeping in mind that the flux is: i/nFA the current is :
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6co (O, t)

ij(t) =nFADg ™ (9.24)
the Cottrell equation is obtained for the limiting current in chronoamperometry:
12 .*
ij (t) = nFADg"co (9.25)
Jat

This current is never constant and is slowly decreasing with time.
The concentration profiles for ox and red species are shown in Fig. 9.4.

Cox (-) etCred (--)

™
N
\

LY

iy

AN

08 H r

- it N

| S

]

'

]

0.6

c/c*

0.4

IR ~ | |- t=0.01s
A N t=0.1s
0.2 //

T 0.005 0.01
0.2

x/ecm

Fig. 9.4. Concentration profiles for chronoamperometry in semi-infinite linear diffusion
condition at different times assuming Do = 10° cm? s,

Dependence of current vs. time, current vs. 1/\/t_ and i+/t vs. time is shown in Fig. 9.5.
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Fig. 9.5. Dependence of chronoamperometric limiting current, ij, vs. time, vs. t%/2, and i \/’E

In the theory of the diffusion Nernst layer it is assumed that the concentration gradient is linear
and it can be expressed as:

oco(0t) ¢ —c(0) ¢

(9.26)
OX o 1)
which allows for the determination of the diffusion layer thickness for chromoamperometry:
0 = 7Dpt (9.27)

Its thickness is increasing with time as the diffusion progresses towards solution. One can
estimate that the maximal distance to which diffusion arrives is when erf(u) becomes 1. This
might be, in practice, for erf(3):

X
erf ( J =1 erf(3) »1
2,/Dot
© (9.28)
Kmax_ _ X :6JD t
2\/D_ot max O

Table 9.1 shows the Nernst diffusion layer and the maximal distance at which the
concentration is perturbed by diffusion in chronoamperometry. It shows that after 10 s the Nernst
layer thickness reaches 0.18 mm.
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Table 9.1. Dependence of the thickness of the Nernst diffusion layer and the maximal distance at
which the concentration is perturbed by diffusion in chronoamperometry for Do = 10° cm? s,

t/s d/cm Xmax/CM
0.1 1.810° 6103
1 5.6 10°° 1.9 102
10 1.8 102 6107

Linear semi-infinite assumes that the diffusion proceeds in one direction only. However, at the
electrode edges diffusion might arrive from other directions as well, Fig. 9.6.

,mmmmmrm\‘\
Fig. 9.6. Diffusion to the planar electrode displaying nonlinear diffusion at the edges.®

These edge effects might be negligible when the thickness of the diffusion layer is much
smaller than the dimensions of the electrode, that is for a disk electrode &<< ro. The ideal one
directional diffusion might be observed for the diffusion to the electrode in a tube, Fig. 9.7.

ﬁ <—— Solution

Electrode

Fig. 9.7. Linear diffusion to the electrode in a tube.
9.1.2 Chronoamperometry with reversible redox process

Let us suppose that then redox reaction is reversible:
O +ne 2R reversible (9.29)

that is the surface concentrations follow the Nernst law. The potential is stepped from the range
where there is no reaction to the range below the limiting current, Fig. 9.8.

1E,
0.6
~ 0.4 - £,
S~
— 0.2 4 \L
0.3 0.2 0.1 0 0.1 0.2 0.3
E - E]_/Z

Fig. 9.8. Potential step from E; to E> in chronoamperometry.
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In this case the Fick diffusion equation must be solved for both ox and red forms:

2
ox (9.30)
8CR aZCR
—2 =D —=*
ot axz
with the following initial and boundary conditions:
t=0 Co= cg cr =0
t>0 X—>oo co—>c(*3 cr >0
x=0 €0 =exp [E( E-g” )} Nernst law (reversible process) (9.31)
Cr (O,t) RT
Do acoa(o,t) +DRr aCRa(O’t) =0 continuity of fluxes
X X

There are two boundary (surface) conditions, first is the Nernst law and the second the
continuity of fluxes which indicates that ox is changed into red at the electrode surface. Using
standard substitutions the p.d.e. are changed into dimensionless form:

a= 0—9 b= C—B
C C
° ° (9.32)
y= X T = l § = E
JDoT T DR
s _o%a
oT 8y2
b _ 1%
T=0 a(y,0)=1 b(y,0)=0 (9.33)
T>0 y — a(o,T)=1 b(,T)=0
0!
y=0 a(O’T):v:exp nF(E-E-)
b(0,T) RT
0a(0,T) +izab(o,t) 0
oy 80y
This problem is easily solved by applying the Laplace transform:
2= 2
sa-a(y,0) =22 b ~b(y,0) = — 2 (9.34)
dy go dy
or
2= 2
d—z—sa+1=0 %—sgzﬁzo (9.35)
dy dy
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which has solution (after using conditions at y — o0):

To obtain parameters A and B the surface conditions must be used; the Nernst equation:

and the continuity of fluxes:

and

a(y,s)= peVy 1
s

b(y,s) = BeVS&Y

a(0,s)=vb(0,s)
A+1:VB
S
caos), 1 ab(0,s) i
oy g2 oy

~5A- 5B =0
E

a=-2
4

_ 1t g 1l
sl+vé s1+vé

The solutions in the Laplace domain are:

and in the time domain:

or

When Do = Dr, £=1, and

S

g(y’s) - _E(Lje_‘/;y _{_1

co(x,t) =cg {1— 1+1v§ erfc(zJéot H
oS X
CR(X’t)_Col+v§erfc[zJD0t]

a(y,T) +b(y,T) =1

Co(x,t) +cr(x,t) = cg

(9.36)

(9.37)

(9.38)

(9.39)

(9.40)

(9.41)

(9.42)

(9.43)
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In general, when Do # Dr, £# 1, and

1 . e E(1+v)

a0 O = e e T e

(9.44)

but
. a(0,T)
b(0,T)

(9.45)

which gives

+a(O,T)]

d
a(0,T)+b(0,T)=%

1+ &
b(0,T)
£la(0T) —1] +b(0,T) =0 (9.46)

JDo ¢o(0.1)+ /DR cr(0.t)=/Dg co

which is an equivalent of Eqg. (9.43) for unequal diffusion coefficients. Let us calculate the
current:

i —nFADg 20D
OX
ao(0.1) _ co a(.T) (©.47)
OX ,\/Do‘[ ﬁy
. NFAcoDE? 2a(0,T)
Jr oy
but
ca0s) 1 1
oy sl+vé
oa(0,T) 1 1
oy NAT 1+VE
Co(x t)—c* 1- ! erfc X 049
OO ey | 2Dt
* {: X
cr(x,t)=c erfc
RO Olvev | 2 Dot
and the current is:
. nFADE%cq 1
i(t)= 9.49
(t) Tt Live (9.49)
When v =0, that is at very negative potentials, Eq.(9.49) becomes:
. nFADY%co
i(t)=—=—"2 9.50

which is the Cottrell equation for the limiting current. Eq. (9.49) might be rearranged to:



173

i i —i
1+4VE i =ve

o1 D
VE = exp{nf [E g0 —Eln /D—SH =exp| nf (E—Eyyp)] (9.51)

and the final forms are:

-0+ Ry %+Eln—l'(t?_l(t)

nF Do nF i(t)

Ex/2 (9.52)
ity 1

ij(t) 1+ exp[ nf (E—Eyp)]
where Ey is the half-wave potential. Other useful formulas might be found using Eq. (9.51)

Y TR S S PR ()
0 _Co(l 1+v§j Co(l il(t)j

i(t)
cr(O)=Co & —% 0 o5
[ o) ). nFADG 2 '
I(t)_{l Cg Jll(t)_ m |:O co (0, t)}
12
i(t)—% 0,1)

Equations developed above resemble those developed for the reversible process in the
stationary technique with exception that the currents are time dependent and the above equations
are valid for a fixed time.

9.2 Semi-infinite spherical diffusion

9.2.1 Diffusion equation

The Fick equation for spherical diffusion is different from that for the linear diffusion. To
develop it let us look at Fig. 9.9 where the electrode radius is ro and consider the fluxes at the
distance r and r+dr. The flux at r is

dN, = 4712 D(acj dt (9.54)
or ),

and at r+dr

oc

dNr+dr—47r(r+dr) (arj ; dt (9.55)
r+ar

The concentrations at very short distances may be linearized:
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(), 35
or), or\or

&
O Jrsdr

Fig. 9.9. Spherical diffusion.

ac o%c
dN =47 (r+dr)” Ddt dr |=
r+dr 7T( + ) [(Gr]r [ar J }

that is:

(9.57)
2 2 2
=4zDdt|r (80] Zr(@]dr OC lgr | L1 2r 2 (dr)2 e (dr)
or or or? o " o2 or?
Terms with (dr)? and (dr)® are much smaller than those with (dr):
oc oc 2 a%c
dN =4z Ddt|r +2r dr+r°| —|dr 9.58
r+dr T { (ﬁrj (ﬁrj [8r2] ] ( )
Changes of the concentration in the thin layer dr are:
dc = w (9.59)
Azredr
or
@: dNr+dr _dNr (960)
ot 4zr?drdt
and after substitution
2
& _ploc 20 (9.61)
ot oré ror

This is an equivalent of the simple diffusion equation in the spherical conditions. It is obvious
that there is an additional term (2/r)(cc/or). This is so called radial diffusion term.

9.2.2 Chronoamperometry in spherical diffusion conditions

Let us assume that the potential E> is in the range of the limiting current. First, let us use the
standard substitutions to obtain dimensionless parameters:
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a=f0 p-_' -1
o Dor T
which leads to:
da d%a 2 da
_=—  —
dT oR?2 RER
with the following conditions:
T= a(R,0)=1
T

0
>0 R=Ro a(Ro,T) =0
R—o>w afoT)=1

Eq. (9.63) might be rearranged into a simpler form (9.6) by the substitution:

u=aR
This leads to the following equations:
u_poa oa_lou
oT oT oT RoT
au +R da da _ (au
R OR R RI4R

—=—+ +
oR2 R R? oR R oR?
o’a 1% 2ada

R?2 RoR2 RR
1au 1% 2aa 2 oa

+
ROT RaRZ RAR ROR
from which a simpler for is obtained with the following conditions:

ou o2u

or 8R2

T=0 u(R,0)=a(R,0)R =R

T>0 R=R, u(RyT)=0
R—>o u(oT)=R

Application of the Laplace transform gives:

2
sU—u(R,O):d—‘;
dR
2_
OI—l;—su +R=0
dR

with the solution:

R + VR + Be\’lgR

3

2 2 2
o°u oa r@a aa zaa Ra_a

(9.62)

(9.63)

(9.64)

(9.65)

(9.66)

(9.67)

(9.68)
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Parameter B must be zero form the initial conditions. Parameter A may be obtained from the
boundary condition:

~sR
T(Rys)="0 4 pe 0 =0
fR (9.69)
S
Az—&e 0
S
The solution for u is:
~Vs(R-Ro)
U(R,s):§—%e (9.70)

To calculate the current it is first necessary to calculate the derivative versus distance at the
surface:

ar 1 R
a0 (9.71)
R s s
or in the time domain
ou RO
—=1l-— 9.72
OR NaT ( )
or
oa RO
Ry—=1-—=
05R JrT
oa 1 1
e 9.73
8R RO \/ﬂT ( )
fa_1__1
or 1y zDt
which allows calculation of current
. S 1 1) . nFADC
i(t)=nFADC | ——+— |=I t) + 9.74
®) [m ro] plan() o ( )

The current at the spherical electrode consists of two parts, one which is identical with the
current at the planar electrode of the same surface area and the other one which is time
independent and corresponds to the radial diffusion. To linearize Eq. (9.74) one can plot:

12~* *
nFAD™“C JrnFADC Ji=AsBE

Iz o

which represents a straight line from which parameters A and B might be determined. The
corresponding plots are displayed in Fig. 9.10.

it(t)/2 = (9.75)
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Fig. 9.10. Plots of i vs. time and linearized plot it*? vs. t*2.

Spherical electrode can be considered as planar when the linear diffusion term is much larger
than the spherical term:

! 1L .2 (9.76)
JzDt g J7Dt 1 '

For example for D = 10 cm? s and ro = 0.05 cm = 0.5 mm below one percent error a =100
(1%) may be observed at short times t < 8 ms, but 5% error for a = 20 (5%) is observed for times
uptot<0.2s.

9.3 Semi-infinite cylindrical diffusion in the conditions of limiting current

Cylindrical diffusion is observed in diffusion towards a wire, carbon fiber, etc. of the radius ro
and the length h.%3

Fig. 9.11. Cylindrical diffusion.

To develop the diffusion equation one should consider fluxes at r and r+dr, similarly as in the
case of spherical diffusion:

dN,=27rhD oc dt
or ),
(9.77)
oc
dNy gy =27 h(r+dr)D| = dt
o Jr+dr

together with Eqg. (9.56). Substitution gives:
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2 2
dNpsgr =27 h Dt 1+ Lar 4 r T ar + 98 (ar)? (9.78)

or or ar2 or
dc = ANpigr —dNy 0¢ _ dNpigr —dN; (9.79)

2z rhdr ot 2z rhdrdt
gives the final equation for diffusion in cylindrical geometry:
2
&L _p|oe,le (9.80)
ot or r or

It is similar to that for the spherical diffusion, Eq. (9.61), except the factor of 2 in the second
term. However, this factor has greater consequences as Eq. (9.80) cannot be changed into simple
Fick equation by substitution. To solve it let us use the following substitutions:

c Dt r
C rO ro
which leads to the dimensionless equation:
ca_0o%a loa
oT aRZ R 6R
T=0 a=1 (9.82)
T>0 R>w a—>1
R=1 a=0
To solve it let us apply the Laplace transform:
_ . d4a ,lda
sa—-1= — ROR
dR (9.83)
d’a 1da
+——-sa+1=0
drR2 RdR
Let us introduce the substitution:
u=a- 1 (9.84)
S
which gives:
2_ _
T 1dv g o (9.85)
dr? RdR

This is a Bessel equation and its solution is given in terms of the modified Bessel functions of
the first and second kind and zero order: lp and Ko:

0 = Alg(+/sR)+BKg (VsR) (9.86)

[XZJk
© | 4
lo(x) = >

where;

Ko(X) = Icos(xt)dt (9.87)

k=0 (k!)2 241
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Bessel functions are included in Excel, their plots are shown in Fig. 9.12:
When R — oo, IO(\/ER) — o and A =0:;

0 = BKo(V5R)
(9.88)
a= % +BKp (VsR)
Constant B may be obtained from the surface condition
10
g 4
8 4
7 u
[en] 6 i
= 5
-2 al
3 i
2 4
1
0
Fig. 9.12. Bessel functions lg and Ko.
_ 1
a="+ BKO(\/§)=0
o 1 (9.89)
o[ 5]
and the solution in the Laplace domain is:
-1 1KoIVsRI (9.90)
s s Ko[vs]
To calculate the current the concentration gradient must be first found:
da 1 K4(+s) Ke(Vs)  dKg(ax)
= __= Js=— , =akKy(x) (9.91)
Rlg—y s Ko(V5) VsKo(+s) dx

where K1 is the modified Bessel function of the second kind and first order, Fig. 9.13.
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KOl K1

25 3

Fig. 9.13. Bessel functions Ko and K.

General solution in time domain is given as:

2
da 4Te ™

R ozy u 3w +YEw)

1

du

(9.92)

where Jo and Yo are the Bessel functions of the first and second kind and zero order, Fig. 9.14

1

0

JOV YU

-3

0.5 A

-05 4

-1 4

-15 4

2

-25 4

Fig. 9.14. Bessel functions Jo and Yo.

Solution can be represented as series for small values of the parameter T (i.e. short times, large

ro)

[

or large T:

da
dR

o

1

S
T

11

2 4

2

(9.93)
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2149 0.2
®- - 27\ 2}/2 2 - ?/ 37" (9.94)
dR In(4Te_ 7) [In(4Te_ y)] [In(4Te_ 7)]
where y=0.5772. The limiting current may be shown for small T:
1/2
. * 1 1 1 1(T 1
I (t)=nFADpCo —3 77— +———| — +=T.. 9.95
|() o‘0 I {ﬂ_l/z_l_l/z 2 4(72_) 3 } ( )
or for large T:
. * 2 1 %
| t)= nFADoCO — - e (9.96)
o |IN4T =27 (InaT —2y)?

At short times it approaches simple Cottrell equation while for longer times it is decreasing
more slowly, Fig. 9.15. Current on the cylindrical electrode decreases more slowly than that on
the planar electrode.

= = cylindrical

—p\anar

5 1I0 1‘5 2I0
T
Fig. 9.15. Dependence of the current on the planar and cylindrical electrodes versus time.

9.4 Ultramicroelectrodes

Ultramicroelectrodes are electrodes of very small dimensions on which the effects of the
diffusional mass transfer might be neglected. Below, current at different geometries are
compared.

9.4.1 Spherical electrode

The current at spherical electrode, surface area A = 4xtro?, is:

1/2
i (t) = nFADY2c"| L, D77
Jrt o

. (9.97)
nFADl/ 2r020

W(t)=4r {T +nFc DrO]

that is when the linear diffusion effects might be neglected:
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i = 47NFDIC (9.98)
This is a time independent constant current when radial diffusion is much faster than the linear.
For a hemispherical electrode it is two times smaller:

iy = 27nFDIC (9.99)

9.4.2 Disk electrode

Diffusion to the disk electrode is two dimensional:
oc 8’c léc o%c
—=D| —5+=-"—+—
ot @rz ror 5‘22
where r is the radial coordinate and z is the direction perpendicular to the surface. However, the
stationary current is:

(9.100)

iy = 4nFDrc (9.101)
9.5 Chronocoulometry

Instead of measuring the current one can also measure the charge passed during the electrode
process. On planar electrode it is:

t t 12 *

Q(t):jidt:jMidt
0 0 V.

'[ 24t = 2tY2 + const. (9.102)
2nFADY2c"

n- AT
Q(t) NS
and on the spherical electrode:
12 * *
o(t) = 20FAD "c \/t_+ nFADC” (9.103)
\/; ro

Contrary to the chronoamperometry where current decreases with time the charge increases
with time.

9.6 Capacitive current in chronoamperometry and chronocoulometry

9.6.1 Chronoamperometry

In all transient techniques charging current due to the recharging of the double layer
capacitance flows in the circuit and limits all these techniques at low concentrations and short
times. Let us assume that in the double layer zone (in the absence of the redox reaction) the
electrode might be represented as the solution resistance, Rs, in series with the electrode
capacitance, C. The total potential difference is the sum of the potential drop on the solution
resistance and on the capacitance:
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t
E =Rqi+ 1 j idt (9.104)
C 0

This equation might be solved to determine current versus time using the Laplace transform
keeping in mind that:

L| [iat _1©) (9.105)
5 S
E - 1i(s)
— =R (S)+=——— 9.106
=R+ (9:106)
|(s)—E 1t _E 1 (9.107)
sp 4L R 1
S S+——
Cs R,C
Inverse Laplace transform gives current:
t
e RC
i(t)=—-¢e (9.108)

RS
It should be noticed that the capacitive current decreases exponentially while the faradaic
~t 12 that is more slowly. Comparison is displayed in Fig. 9.16. It is visible that at short times
capacitive current is larger than the faradaic while at longer times capacitive current decreases to
zero. Such decrease depends strongly on the solution resistance and for small Rs it decreases very
quickly.

— faradaic

= == capacitive

06 08 1
tls

Fig. 9.16. Dependence of the capacitive and faradaic currents in chronoamperometry.
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9.6.2 Chronocoulometry

Capacitive charge in chronocoulometry may be calculated by integration of the current, Eq.
(9.108)

t t
t 5~ — [t t

t -
RsC RsC
Qui(t) = [iy dt:EJe ’ dt:E(—RSc)e | =EC|1-e RC

. . (9.109)
o0 o0 _R
Qu(® = [i dt:ije ° dt:E(—RSc)e -EC
0 RES 0 RS 0
The capacitive charge increases with time and reaches a constant value EC, Fig. 9.17. It is
interesting to note that the dependence on the square root of time for faradaic current is linear
while for the capacitive current it is always nonlinear.
45
4 -
4.0 1 35

3 4
3.0

= diffusion — = capacitive

2.0 - = = capacitive = faradaic

1.0 4

0.0 T | T T T T ]
2 3 4 0 0.5 1 1.5 2 2.5
t/s th1/2

Fig. 9.17. Dependence of the faradaic (diffusion) and capacitive charge on time and on t'/2,

The total charge in chronocoulometry consists of three parts: charge due to the faradaic
reaction, Qr, capacitive charge due to charging of the electrode double layer, Qai, and charge due
to reduction (or oxidation) of the species already adsorbed on the electrode surface, Qads:

Q =Qf +Qqi + Qagds (9.110)

Chronocoulometry allows for the separation of these three charges. Illustration of this
procedure is displayed in Fig. 9.18. In the supporting electrolyte the observed charge is only due
to recharging of the electrode double layer (1). In the presence of the heterogeneous redox
process (2) plot of the charge versus t? gives and the intercept double layer charge and the
straight line with the slope from Eq. (9.102). Finally, the presence of adsorption (3) there is an
additional charge at the origin due to the immediate reduction of adsorbed species.

Application of this procedure to the determination of the adsorption of the neutral chromium
complex Cr[(NCS)3(H20)3] is illustrated in Fig. 9.19. Series of chronocoulometric experiments
at different concentrations of the complexes was carried out. As the complex concentration
increases the slope and the intercept of the straight lines of charge vs. t*2 increase as well. The
plot of the adsorbed charge versus concentration gives the adsorption isotherm.

Another practical example is shown in Fig. 9.20 where the double layer and mass transfer
parameters are simply determined.



Fig. 9.18. Chronocoulometric curves 1) in the supporting electrolyte only, 2) in the presence of
the redox reaction without adsorption, and 3) in the presence of redox reaction and adsorption.%

Example:
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Time

(time)Y?

Adsorption of Cr(OH,),(NCS), on mercury

ads

1

3 Adsorption Isotherm

Fig. 9.19. Determination of the adsorption isotherm of Cr[(NCS)s(H20)3] at mercury by

chronocoulometry.5

cb
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Fig. 9.20. Plot of charge vs. t2 for 0.95 mM 1,4-dicyanobenzen in benzonitrile in 0.1 M tertra-n-
butylammonium fluoroborate at Pt disk electrode; potential step from 0 to -1.63 V versus quasi
reference electrode.®

The main problem with chronoamperometry is that the current drops by orders of magnitude
with time. If larger current scale is chosen the initial current is correctly measured but after some
time it becomes very small and might be buried in the background noise. On the other hand,
when high sensitivity is chosen the initial current saturates the chosen current scale and the
further measurements might be affected.

The advantages of the chronocoulometry are:

a) the measured signal increases with time

b) integration reduces the random noise (average of the random noise is zero)

c) allows for the separation of the double layer and adsorption charges.

9.7 Double potential step chronoamperometry and chronocoulometry

9.7.1 Double potential step chronoamperometry

In this technique the potential is stepped from the double layer zone, E;, to the range when it is
diffusion limited, Ef, and then to another potential, E;, which often is the same as Ei. This
potential program is illustrated in Fig. 9.21.
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Fig. 9.21. Potential program in the double potential step chronoamperometry.

Let us assume here that initially only ox form is in the solution and that E, = E;, that is the
potential is stepped first to the cathodic limiting current (co(0) =0) zone and then to the anodic

limiting current zone (cr(0) =0). The problem is described as:
O+ne=R Ef

9.111
R-ne=0 E ( )

aCO aZCO aCR 6ZCR
—==Do— =Dgr
ot x> ot x>
t=0 Co=Cc*cr=0

(9.112)

O<t<t X—> o cg=Cc*cgr=0

x=0 c¢co=0 (9.113)
t>1 x=0 <¢cr=0
0Co

o | p_ R
OX

OX

always x=0 Dg + DR =0

As usual, the standard substitutions are used:

_%o _Cr __ X _1 _
a_c* b_c* y_\/D_OT T_T &= (9.114)
and the following problem is obtained:
oa 0%a b 1%
T a2 oT 2 52
T=0 a=1b=0
T>0 y—>wa=1b=0 (9.115)
0<T<1 y=0 a(0,T)=0
T>1 y=0 b(0,T)=0
always y=0 8_a+ia_b:0
oy 2oy

Applying Laplace transform to the Fick equations and using the condition at y—oo leads to:
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2_
d—?—s§+l=0 a(y,s)er_‘/ger1
dy S
- (9.116)
%—3525:0 b(y,s)= BeVs¢Y
dy
To obtain constants A and B surface conditions must be used:
a0s)-A+i-0  a=-1
S S
a(y.s) =%—%eﬁy
9.117)
1 1 £ (
—+—B(-s)éf=0 B==2
7z :
_ s _
by.s)=2e 7 BOs)=L b0 =
S S

For T< 1, t < 7 the solution is as for the simple chronoamperometry in the conditions of
diffusion current, Eq. (9.50), that is Cottrell equation. For T > 1, t > 7z one gets:

T>1 b(y,s)= C3e_*/Eéy
b(0,s) =Cs
To obtain b(0,s) one can use direct Laplace transform of b(0,t). Its behavior is displayed in
Fig. 9.22.

(9.118)

€10
0.8

0.6

b(0,T)

0.4 1

0.2 1

0.0 1

Fig. 9.22. Dependence of b(0,T) on dimensionless time T.
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0 1 0
b(0,5)= [b(0,T)e™*"dT = ce~STdT + [oeTar =

2 Dgrt T
The current in the second potential step is:
¢k (0,t)  nFADRC ab(0,T)
ox \/Dor oy

—ii,(t) = NFADR

dp__C
\Dgt oy
ab(0;s) g2 52

oy ff

ab(OT) 21
NG Jn —1)
. NFADRC 1
ip(t) = JDor [ { \/ﬂt
T

. nFADE%ch( 1 1
=72 O(Jt—r_f) e
The ratio of the backward to forward currents is:
ip(t) 1 1
it () _(\/t—r _ﬁj\/;
and if the currents are measured aftert = rand t = 27
_1p(20) =( 1 1 jﬁ:l—i=o.2929
ir(r) \N2r-r 2r J2

(9.119)

(9.120)

(9.121)

(9.122)

(9.123)

(9.124)

(9.125)

(9.126)

For Eq. (9.126) it is obvious that the backward current is always smaller than the forward
current, Fig. 9.23. Dependence of the concentration on time for the first step was displayed in
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Fig. 9.23. For the second potential step the concentrations are shown in Fig. 9.24. It is interesting
to note that a concentration peak of red form and a minimum on the concentration of ox appear.
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Fig. 9.23. Dependence of the limiting current on time in the double potential step
chronoamperometry.
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Fig. 9.24. Dependence of cr and co on distance at different times for the second potential step in
the double potential step chronoamperometry.

9.7.2 Double potential step chronocoulometry

Integration of the charges in double potential step chronoamperometry shows new features.
Fort < 7 the result is as in Eq. (9.102). For t > 7, EqQ. (9.124) should be integrated:
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12 *t
_Qb(t):nFADOc IE 1 —ijdt=

7[1/2 . Jt—7 x/f
2nFADY 2" 2nFADE2C * (8.127)
_ (@) _ (@]
=y (Vi e -t = =20
VA ) T

It is interesting to note that dependence of Qr on t¥2 and Q, on @ have the same slope
magnitude but with the different sign. It is illustrated in Fig. 9.25.

6 a(1)

Figure 5.8.2
Chronocoulometric
response for a double-step
experiment performed on
the system of Figure 5.8.1.
The reversal step was

1 = 250 msec
| | | | | | made to 0.0 V vs. QRE.
0 100 200 300 400 500 [Data courtesy of R. S.
f, msec Glass.]

Q(t <) vs. 112

Figure 5.8.3 Linear
chronocoulometric plots for data
172 ' from the trace shown in Figure
5.8.2. For Q(t < 7) vs. t'2,

the slope is 9.89 uC/s"? and

the intercept is 0.79 uC. For
Ot > 7) vs. 8, the slope is

9.45 uC/s'" and the intercept is
0.66 uC. [Data courtesy of R. S.
Glass.]

O, (t>1)vs. 8

4L

Fig. 9.25. Dependence of the total charge on time and cathodic and anodic charges on tY2 and 6.
Conditions as in Fig. 9.20.8

The ratio of the backward at t = 27 to forward charge at t = 7 is:
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_Qp(27) _N2r-z +r—2r
Qs (7) Jr

which is much larger than the corresponding ratio of currents (0.2929).

=2-+/2=0.5958 (9.128)

9.8 Quasi reversible reaction in chronoamperometry
9.8.1 Theory

Let us assume that there is a quasi-reversible reaction in simple chronoamperometry with the
form ox only in the bulk of solution:

ke
O+ne —>‘|<R (9.129)
b
This problem is described by the following equations:
2 2
oCo _ Do 0°Co OCR _ D, 0°CR (9.130)
ot ox2 ot ox?
with the following initial and boundary conditions:
t=0 Co=Cc* cr=0
t>0 X>o cg=Cc* cgr=0
x=0 D0l 5 XrOY_, (9.131)

194
0cH(0,t
Do % = k¢ ¢o(0,t) —kp cR (0, 1)

The surface conditions consist of the continuity of fluxes and the kinetic flux (instead of the
Nernst equation). Standard substitutions lead to:

D,
a=f0 p-® oy X 7.t . Do (9.132)
c c JDor T Dr

da 0°a b _10%

T TR (9.133)
T=0 a=1 b=0
T>0 y—>o a=1 b=0
y—o &, Ltob_
2oy (9.134)
Jz

oa T
— = ke a(0,t) —kp b(O,t
ay \/%[fa( ) b ( )]

Solution in the Laplace domain is:
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2 2
ig’s)—sﬁ+1:0 82 s£2b =0
oy oy
a(y,s) = Cle_‘/gy e
S

b(y.s) = Coe
Using the surface conditions the constants may be obtained:

—/5C; —éiz\/gfcz =0 Cp=-Cy¢

_JsC, = \/J[)io{kf (Cl+3—kb cﬁ:%{kf (c1+1

kiVr
J5 s

kf k
=C x/§+«/; 1y b
s ' ox

H
1 1
C1= K |— =
1 fDon/g-I—x/;H

T 1 1
CZ:kf\/;g s+\/;H
— _ 1 r |1 1 ~Jsy
a(y,S)—s [kf\/;js(\/§+«/;H)e
(v s)= r i1 —Js¢y
b(y,s)=|k -
v9={5; iy

— .. nFAC'DY? 4a(0,s)
i(t)= N Y

oa(0,s) T |1 1
oy ‘(kf&%(@@)

oy Do

= [kf \/%JGXD(H 2t)erf (Ht1/2)

i(t) =nFAC k¢ exp (H2t) erfc (HtY?)

Sj-i— kb §C1:|

M=[kf LJexp(Her)erf (H11/2T1/2) =

(9.135)

(9.136)

(9.137)

(9.138)

(9.139)

(9.140)

(9.141)

(9.142)

It is interesting to note that the current does not depend directly on the diffusion coefficient.

The function exp(x?) erfc(x) is slowly decreasing, Fig. 9.26.
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Fig. 9.26. Dependence of exp(x?) erfc(x) vs. .

Few values of this function are displayed below

X exp(x?) erfc(x)
0.5 0.616
1 0.428
15 0.322
2 0.255
3 0.179

Eq. (9.142) might be further rearranged to make the analysis simpler. Let us introduce a new
parameter 1 = Ht'2,

_ kf kb _ k —anf(E—EO') D_ (l—a)nf(E—EO')
H\/Do+\/DR\/SO[e +\/¥e
H Z%{H \/%exp[nf (E - Eo')]}

(9.143)

but
oo RT Do . [Dg { 0’ }
Eiyyp=E°" —In |[— ; |—=e nf(E” —E 9.144
1/2 = Q/DR ’/DR Xp ( 1/2) (9.144)
and
k
H :—S {1+exp[nf (E- El/z)]} (9.145)
v Do
i(t) = nFAc*kf exp (12) erfc (1) (9.146)

Dividing by the limiting current:
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nFADY%c”

i| (t) = *\/E

it ) ke 1+exp[nf(E—Eyp)]
i(t) Vat exp(/l ) erfe (2) JDo 1+exp[nf (E-Eyp)]|
i:(Ttt)){lJr exp| nf (E - Ellz)]} ] exp(/lz)erfc(ﬂ,)
The reversible current is:

iy (t)

Irey (1) = 1+exp| nf (E—Eyp) ]

then

it) _ _ 2 2
m_FM)_” ﬂexp(/l )erfc(/l)

Plot of F(A) versus potential is illustrated in Fig. 9.27.
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Fig. 9.27. Plot of function F(1), Eq. (9.149) vs. 1.2

(9.147)

(9.148)

(9.149)

Plots of the dimensionless current vs. potential in chronoamperometry for different values of

the kinetic parameter ks are shown in Fig. 9.28.
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Fig. 9.28. Plot od i(t)/il(t) = F(A) versus potential assuming « = 0.5, r=1s, Do = Dr = 10°
cm? s and the standard rate constants ks: 10 (reversible), 103, 10, and 107 (totally irreversible)
cmst®

Comparing the reversible case (in this case for ks = 10 cm s) with quasi-reversible and totally
reversible cases indicates that irreversibility causes shift of the experimental half-wave potential
towards more negative values. The process becomes totally irreversible when the reversible
current at the potential if the chronoamperometric wave is equal to the limiting current.

9.8.2 Determination of the kinetic parameters

The totally irreversible process is the process for which the backward reaction kinetics might
be completely neglected, ks >> kp and the reversible process at this potentials is in the limiting
current conditions. Under these conditions functions H and A are simplified:

\/t—kf

A=—F ko =0 9.150
Do b (9.150)
and Eq. (9.149) reduces to:
i) _ e 2
— = A A fc(A 9.151
(0 P s exp( )er c(4) ( )

From the ratio of the observed current to the limiting current (determined at the same time)
parameter A is obtained, from which the forward rate constant is calculated, Eq. (9.150).
In the case of quasi-reversible or totally irreversible process the following steps should be
followed:
1) Determination of the chronoamperometric curves i(t) at different potentials and
determination of i(t)-E curves at different times
2) Determination of the reversible half-wave potentials from the potentiometric
measurements or chronoamperometric curves at longer times where the equilibrium at the
surface might be reached
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3) Determination of the diffusion coefficient from the limiting current
4) Calculation of the function F(1), Eq. (9.149)
5) Determination of the parameter A, graphically from Fig. 9.27, or solving the nonlinear

equation
6) Plot of In{i{l-i- exp[ nf (E - EUZ)]}_l} —In—N_ versus E
Jt VDo
7) Determination of kf(E), the transfer coefficient as: 0 g]Ekf =—anf , and the standard rate

constant at E = E”",
An example of the application of the chronoamperometric analysis is shown in Fig. 9.29 for
the oxidation of Cd amalgamate. From the straight line the standard rate constant and the transfer
coefficient were determined.
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Fig. 9.29. Dependence of the rate constant of oxidation of cadmium amalgamate, Cd(Hg), on
potential in 1 M tetraethylammonium perchlorate in DMSO obtained from chronoamperometric
experiment at t = 8 ms.%®

9.9 Rates of the electrochemical processes

To determine the reaction reversibility one should compare the rate of the charge transfer and
the mass transfer. The system is reversible if the slowest step is the mass transfer and the system
is irreversible when the slowest step is electron transfer. When the rates of these two processes
are comparable the system is quasi-reversible, Fig. 9.30.
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Vint quasireversible Vint
< >
irreversible vV, reversible v

Fig. 9.30. Comparison of the rate of the electron transfer, Ve, and the mass transfer, V.

The rate of the mass transfer, Vi, in cm s, is determined from the limiting current:

ij = nFAC Vi
_ i D (9.152)
th = * o
nFAc &
and from the Cottrell equation the rate of mass transfer in chronoamperometry is:
— D
Vint =4[— (9.153)
7t

Using this equation one can consider the system reversibility:

reversible K 519
Vint
irreversible E—f <0.1
Vit
quasi-reversible 0.1< l(—f <10
mt

Assuming that D = 10° cm? 5! the mass transfer rate is:
- D 1.8x10~3cm

Vimt = = T s (9.154)
The process is irreversible when ks < 10 Vi, or for different times:
r=1s ki < 1.8x10* cm s
r=0.1s ki < 5.7x10* cm s?
r=0.01s ki < 1.8x10° cm st

Chronoamperometric technique allows determination of the electrode kinetics in these rate
constant ranges depending on the experiment time.

Chronoamperometry and chronocoulometry might be used to determine the diffusion
coefficient; in the case of reversible processes number of electrons might be determined while
for quasi-reversible and irreversible processes rate constants and transfer coefficients may be
determined. Double potential step chronoamperometry and chronocoulometry are often used to
determine the kinetics of chemical reactions proceeding after the electrode process and
consuming the form red.®®%® Example of such reaction might be benzidine rearrangement
reaction appearing after reduction of azobenzene to hydrazobenzene.56:68:69



200

9.10 Chronoamperometry with convolution

Method of analysis of the experimental data may be improved (and simplified) by the
transformation of the experimental data. Eq. (9.142) may be written as:

i(t) =nFA c Kf exp(H 2t) erfc(H Jf)
(9.155)
i(t) = i, exp (Hzt) erfc (Ht)

where iy =nFAC kf is a constant. One can apply semi-integration’®" that is the following
operation:

dav2 1 Lo
—= i) =1(t) = 9.156
vz 010 F(1/2)£(t—u)1/2 6159
which gives a simple linear equation:
i(t) =ig— H-1(t) (9.157)

The kinetic parameters might be obtained from the intercept and the slope of this equation.
Semi-integration is simply carried out numerically.”? The example of application to the
determination of the kinetic parameters is shown in Fig. 9.31.
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Fig. 9.31. Dependence of the chronoamperometric current on the convoluted current for the
reduction of Cd?* in 0.5 M TBAP in DMSO at a constant potential.”
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9.11 Diffusion in the finite space

In the above examples we have considered semi-infinite diffusion. However, sometimes finite
length diffusion should be considered. Let us assume, for example, a Pd foil. On one side
negative potential is applied and hydrogen is reduced and enters the foil while on the other side
positive potential is applied to assure that hydrogen is immediately oxidized. This leads to the
transfer of hydrogen from one side to the other. Initially, a transient current is observed and at
sufficiently long times a linear concentration gradient inside foil is obtained leading to a steady-
state current. Another example is hydrogen diffusion in Pd layer deposited on non-absorbing
metal (Au, Pd). In this case current decreases to zero as the layer is saturated with hydrogen.

These problems are more complex as only numerical solutions exit.”* They have been treated
in the heat transfer.

Let us assume that a is the dimensionless concentration and the foil thickness is I. Let us also
assume that the species enter the layer deposited on non-permeating metal. This problem is
formulated below:

X Dt
= — T = —_—
y I 2
9.158
a_da 50
or ayz
with the following conditions:
T<0 a=0
T>0 y=0 a=a (9.159)
oy

Solution of Eq. (9.158) is always in the form:
3 =Ce VsV 1cesy (9.160)
and conditions allow for the determination of the constants:
y=0 a=20-¢;+C,
S

y =1 d—a = —\/;C]_e_ﬁ + \/ECZG\E =0

dy
(9.161)
C,=Ce Vs ¢ = a—;’—cz - %—cle‘”g
c - e*/g c, -2 e_*/g
(Y o A N
s oVs L oVs s Vs | gV5

and the solution in the Laplace domain is:
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7-2% e«/g(l—y) +e—«/§(1—y) _ a_ocosh [\/E(l_ y)]
> e‘E +e_£ S cosh( \/g)

:—a_ D ———
y=0 ’ Js

(9.162)

Although the solution in the Laplace domain was easily obtained it is not possible to simply
make an inverse transformation. Another method which uses properties of the Laplace transform
is used. When the solution in the Laplace domain is expressed as division of two functions:

f (s)
a(s)
the solution in the time domain is in the form of a series:

" £ (s).st
t) = i
0=2 56

a=

where s; are the zeros of the denominator g(s). Eg. (9.162) for a might be written as:

g(s) = scosh(\/g)
g'(s) = cosh (\/g) + %sinh (\/5)

Zeros of g(s) = scosh(\lg) are:
s1=0
cosh(x/s) =0

As cosh(z) = cos(iz) the zeros are:

foenenai o (2ne1)a?

2 4
For g’(s):

cosh(\/g) =0
sinh(z) = —isin(iz)
sinh (/s ) = i sin{—@} - isin{@} —i(-1)"
and g’(si) are:
1 (2n +1)7zi

9'(si) :ETi(—l) =

Finally the solution in time domain is given as an infinite series:

(2n+1)? 22

3 4a, i;;l)n Os{(Zn +1)7z(1_ y)}e_‘l-l—z

a(y’T):ao T +1C 2

(9.163)

(9.164)

(9.165)

(9.166)

(9.167)

(9.168)

(9.169)

(9.170)
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To obtain the derivative with respect to distance necessary to calculate the current one can
express it as a semi-infinite series:

da ag ag 1—e_2J§
dal 20 n(5)=—f0olze
dy y=0 Vs ( ) \/§1+ 6_2\/g
1oX ) oxrax®2xd. =14 (-1) 2% (9.171)
1+x
da a9 & n —2n\/§]
—|  =——|1+2) (-1)e
dy y=0 ‘/g{ n=1
The inverse Laplace transform is:
K2
ol il I e 4T k=2n 9.172)
\/g NaT '
n2
da(y.T) __ 3 |y zi( )% T (9.173)
=— + -1)'e :
dy NZT nol

Such calculations are usually carried out using digital simulations.

9.12 Chemical reactions in chronoamperometry

Kinetics of chemical reactions preceding or following the electron transfer step can be studied
using electrochemical methods. Below, determination of the kinetics of some reactions will be
presented.

9.12.1 Preceding chemical reaction, CE
Few examples of the preceding chemical reactions are presented below:

CA(CN)Z” —= 5 CA(CN), + 2CN”

5,00 —X s 250, -

+H3N©NH3+ ks H2N©NH3+ + HY

Fig. 9.32. Few examples of the chemical reaction preceding the electron transfer step.

This problem is in general defined as:
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Y=0 O+ne=R (9.174)

where Y is electro-inactive form. When the equilibrium of chemical reaction is shifted towards
Y, K<< 1, O form must be produced by the chemical reaction. If the rate constant ks — 0 only ox
which is already in the solution is reduced. When ki — oo all form Y is transformed rapidly to O
and the observed current corresponds to the total concentration of A + O, iq.

The above problem might be described by the following differential equations after
introduction of the non-dimensional concentrations:

Co Cvy X . * * kf a
o pord oY o+Cy ko 2 (9.175)
2
Q:E—kfz+kba
ot ay?
(9.176)
sa 0%
B_C2 kz-kpa
ot ayz

Using new substitutions:
u=z+a b=a-Kz A=ki+kp=ky(1+K) (9.177)
new equations are obtained:

u_o%
ot Ay2
@2/ (9.178)
b P
ot ﬁyz
with the following initial and boundary conditions:
t=0 y=20 | u=a+z=1
t>0 y—>w|b=a-Kz=0
t>0 y=0 b=a(K+1)—-Ku=-Ku a(0)=0 b(0)=0 (9.179)
du_db bz
dy dy dy
Applying the Laplace transform the following equations are obtained:
o
U=1+cle‘4§y sB-O:%—;tB
S dy (9.180)
b =Cpe VsHAY
The constants are obtained using the boundary conditions:
3—“:‘;—b —JsCy =5+ 4C,
y o (9.181)

a(0) = %+ C, b(0)=C,=-Ku(0)
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Cl:_ﬁ— Vs +4 sz_EL (9.182)
S \s+Kys+4 S s+ Kis+4

du K \/S+l i 1

1 _ 12 Vs KVs+a | (0.189)
Js+KVs+a 1-K K2 AK?
S- 2| S~ 2
1-K 1-K
| ——
A
1
——+VAexp(At)erf VAt
o= p(At)erf /At
L= 2] Kexp(-4t)
1-K%)| _REPDEAY _  JAT Zexp(At)erf (A+ )t
Jrt
taking into account that
L_l[ ] 1t+ Aexp(At)erfJ_
7Z'
) (9.184)
_ exp(—At
Lt = +JA+ Lexp(At)erf J(A+ )t
= p(A)ert (A7)
then
1 Kexp(=4t)
—+ Aexp(At)erf\/H——
3_“:%__1 oVt Jrt (9.185)
Yo 1=K kA Zexp(atyert J(A+ 2)0
This equation is valid for A>0, 2 >0, K<1 When 4 — 0, A — 0, and
du K a*
= 9.186
dy K+1J_t K +1 (9.186)

and only the concentration of electroactive species existing in solution is reduced without
influence of the chemical reaction. On the other hand when K<<1,
A=Ky =ki I K, A+ A= 1=Ky, AxkiK and assuming that erf,/(A+2)t~1 the following
expression is obtained at the electrode surface:
3—“ = g_a = JAexp(At)erfc /At (9.187)
y dy

and the ratio of kinetically limited to mass transfer limited current (when the reaction is infinitely
fast) is:
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%:ﬁl’z Kket exp (Kket)erfe ([Kket (9.188)
ld

This equation allows for determination of the kinetics of the preceding chemical reaction. It is
formally identical to Eq. (9.149) for slow electrode kinetics.

9.12.2 Following chemical reaction, EC

First order reaction occurring after the electron transfer decreases concentration of red form:
O+ne=R

K (9.189)
R—>Y
and might be studied by the double potential step method. This reaction decreases the oxidation

current. An example of such process is reduction of Co(lll) complex with ethylendiamine, where
the complex of Co(ll) is unstable:

Co(en)3" +e= Co(en)3"

H50" (9.190)
Co(en)3™ = Co(en),(H,0)5" + enH™
K
or reduction of azobenzene with subsequent benzidine rearrangement:

@N:NQ + 2HY + 2~ -
OO
O
NH,
NHQ + Hgsz2

Fig. 9.33. Benzidine rearrangement.

Reaction system, Eq. (9.189), is described by the following equations:

2 2
5_6‘:5_2 and L-9P (9.191)
o gy o oy
where

with
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t=0y>0 }azl

(9.193)

(9.194)

t>0 y>w|b=0
t>0 y=0 O<t<rz a=0
t>7r b=0
a_a +6_b =0
oy oy
90Applying the Laplace transform the following equations are obtained in the Laplace space:
d%a d%b _
—2—S§+1:0 —2—(S+ﬂy)b:0
dy dy

with the solution:
a(y,s)=1+C1e_*/§y b(y,s) =Cge VSHKY
S

Using the boundary conditions the constants are:

-

Ca 1
S 3 \/g Js+k
from which the surface concentration of red at times t < z is:"®
kt

b(0,t) =K |y (%1 kt] —e 21, (%)

(9.195)

(9.196)

(9.197)

where 1Fi(a,b,x) is the confluent hypergeometric function and lg(x) is the modified Bessel
function. In the original paper, ref. 75 the authors used the confluent hypergeometric function.
To obtain the Laplace transform of the surface concentration of red-form after the second

potential step it must be integrated:
0 T
b(0,5) = [e*'b(0,t)dt = [ g (k+s)t 156,1, ktjdt
0 0

and

_ T
db(0,s) N I(J’e—(k+s)t = (1,1, ktJdt
dy 0 2

Inverse transformation gives:

db(0,t) 1 ((/ﬁ(k,t,r)_ij

dy _\/7[ Jt-7 \/t_
where
o —kt n
kt o (1 e " [(t—2)k] ( 1 ) 1
=g Fl| =1k Fln+=n+l1ks |—-——

(9.198)

(9.199)

(9.200)

(9.201)

Eqg. (9.200) is similar to Eq. (9.124) but in the absence of the following reaction function ¢ = 1.
The plot of anodic and cathodic currents in the absence and presence of the following reaction is

displayed in Fig. 9.34.



208

-1 Hﬂ.'

0.815 sec.

= {t,=T)—

Fig. 9.34. Typical cathodic-anodic current-time curve for the system without (dashed line) and
with (continuous line) following reaction in double potential step chronoamperometry.”™

Finally, the ratio of the backward to forward current is:
'.—b=¢(kr,t_—f)— tr (9.202)
If T t
These curves determined at different (t—7) /7 are shown below, Fig. 9.35. It can be noticed that
if t = 2z this correspond to (t-z)/z = 1.
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.o

o.01

0.04

e

0.2
53

0 1 L L Lola*' 1 N §j
0.4 0.8 1.2 or 1.6 2.0 2.4

Fig. 9.35. Theoretical working curves for the determination of the kinetics in double potential
step chronoamperometry with the following reaction.”

Reilley and coworkers have also presented such a theory for the double potential step
chronocoulometry.”® " They obtained the following equation for the ratio of the backward charge
at t = 2z and the forward charge at = =

Qv
f

=1+E(ky,27,7) -2 (9.203)

where

- =) 14502k 1R L+ ot
- _ kgt 2 2
L(kl,t,T) =€ Z - -
i20 1M2j+1)

When k; = 0, E = 1 and the charge ratio becomes as in Eq. (9.128). The authors also developed
equation for the following reaction in the presence of adsorption of the reactants.

Holub and Weber®"® modified this method and obtained simplified solution. Ohsaka et al.2°
extended theory to the reversible follow-up reaction.

(9.204)
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In the case of the second order dimerization reaction only numerical solution exists. Olmstead
and Nicholson®® presented tables permitting determination of the kinetics of subsequent
dimerization reactions.

9.12.3 ECE mechanism

ECE process is the system in which the product of the first electrochemical step (E) is
followed by the chemical reaction (C) which produces a new ox form which can be immediately
further reduced (E), i.e. standard potential of the second step is more positive than that of the first
one:

O+ne=R E
k

R—— .kf_O' C (9.205)
b

O'+nye=R" E

There are other possibilities where O’ can be oxidized at different potentials or when the redox
potential of the couple O’/R’ is more negative than that of O/R. However, here we will consider
only the first possibility.

A practical example of such process is the reduction of o-nitrophenol®

o-nitrophenol + 4 H™ +4e = o-hydroxy-phenylhydroxylamine (B)

B - H,0 LN o-quinoneimine (C) (9.206)
C + 2 H+ + 2e = o-hydroxy-aniline

or p-nitrosophenol
<& Q-H,oib ZHQ

N=0 HNOH (9.207)

In such cases the product of electrode reaction creates new ox form which is immediately
reduced leading to the increase of the reduction current. Assuming that the chemical reaction is
irreversible and using the substitutions:%

C C C
a="2 p="R =0 (9.208)
Co Co Co

This electrode process is described by the following equations:
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2 2 2
da_0 a, a_b 0 b—kb, @=ﬁ+kb
a2 a g A oy
t=0 y=>0
a=1b=c=0
t>0 y—)oo} (9.209)
t>0 y=0 a=0, c=0
d_a + @ =0
dy dy
These equations might be simplified using substitution:
u=b+c (9.210)
Then the new equations are:
a_da w_Fo P
o oy’ ot ay? Lot py?
y=o, Qu_db, do__da de (9.211)
dy dy dy  dy dy
Up = by
The solution in the Laplace domain is:
g1 1.y
s s
b =Ce VStkY (9.212)
u= Cze_\/gy
Constants are determined form the surface conditions:
da_1
—=-Cy/s+Kk
dy f a 2
p_ L —Js+ky
Cr=—F¢ , b=—4 e
2= \/g \/s +k \/g
Ug=by=Cy (9.213)
1 1 11 sy
Ci=—f¢F , U=—fF—=¢
1 Js Js+k Js Js+k
di___ 1 db de
dy Js+k dy dy
dc 1 1
e S 9.214
Js+k \/g ( )
and the current in the presence of reaction is proportional to the sum of gradients of a and c:
da dc 1 1
(9.215)

|~n—+n _n +N
k 1dy 2 1\/— 2\/— \/—

and after inversion
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—kt
. np+ny nNoe
I, ~ - 9.216
K rt Nt ( )

The observed current changes between that corresponding to n; electrons for slow Kinetics to
ni+n; electrons for fast kinetics. Division of the kinetic current by that obtained for the diffusion
limited current in the case without chemical reaction gives:

i n+n, No _
ke _Mthy T2 -kt (9.217)
I m m

when n1 = ny,

I _p_gH (9.218)
Id
Alberts and Shain® have also considered a case of reversible chemical reaction and applied
their theory to the determination of the kinetics of reduction of p-nitrosophenol.

9.12.4 Disproportionation

Disproportionation is the reaction in which substrate of a redox reaction is regenerated. It leads
to the increase of observed current. In general, one can distinguish the first order, DISP1, and the
second order, DISP2, mechanisms. In fact, when the potential of the second step, O’/R’, is much
more positive than that of the first step, O/R, is the ECE mechanism. The following reaction
mechanism might be written:

A+e =B =] (9.219)
BN ,c ¢ (9.220)
C+e=D E, (9.221)
B+C—2 ,A+D G, (9.222)
Adding reactions (9.220) and (9.222) gives:
2B > A+D (9.223)

in which the form A (ox) is regenerated. ECE mechanism is E1C1E>, the first order DISP1
mechanism is E:C:C> with C; as the rate determining step, and the second order DISP2
mechanism is E1C1C, with C: as the rate determining step.

If the slowest step is reaction (9.220) and (9.222) is fast the Kinetics is of the first order,
DISP1, and when reaction (9.220) is fast and (9.222) is slow the Kinetics is of the second order,
DISP2.

Let us consider the mechanism DISP1. Its solution is shown in Exercise 21. The obtained
equation is:

i Akgt -1+t
id 2k1t

This equation is different from that for the ECE mechanism and both mechanisms might be

distinguished at larger values of the kinetics parameter kt, see Fig. 9.36.

(9.224)
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ik/id

19
18
17
16
15
14
13
12

11

log(kt)

ECE DISP1

Fig. 9.36. Dependence of the ratio of the kinetic to diffusion limited currents, i/ia versus
logarithm, of the kinetic parameter kt for the ECE (continuous line), Eqg. (9.218), and DISP1
(dashed line), Eq. (9.224).

In the case of DISP2 mechanism the Kinetics is of the second order and depends on the
concentration. In this case only numerical solution exists.®*

9.12.5 Catalytic process

In the catalytic process the red-ox reaction product is regenerated in reaction with other
product in solution, Z, (which is electro-inactive at this potential):

A+ne=B
K (9.225)
B+Z->A+X
Solution of this problem is shown in Exercise 22, for ¢z >>Cg:
T gkt [kt erf vkt (9.226)

ld
where parameter k includes the concentration of the catalyst Z.
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10 Chronopotentiometry
10.1 Reversible redox reaction

Chronopotentiometry is the technique where current step is applied and the electrode potential
followed as a function of time, Fig. 10.1.

Excitation Response

-

0 t 0 t
Fig. 10.1. Current pulse and potential response in chronopotentiometry.®
To solve this problem one should consider two Fick diffusion equations with the following
conditions:
2
aCO -D 0 Co

ot O a2
aCR aZCR
—R =DRg :
ot OX
t=0 x=0 co:c*
t>0 X—>ow cr =0 (10.1)
t>0 x=0 Do %0 4 pr &R _g
OX OX
Do %o _ = const.
ox  nFADg
C—O:v:exp[nf(E—Eo)}
CRr

Using standard substitutions:
a=co(y,t)/co, b=cr(¥.t)/co,
X

Y=o £=\Do/Dr, T=tiz

the following problem is obtained:

(10.2)
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o _o% b _10%
oT  oy? oT €2 py?
t=0 y=>0 a=1

t>0 y—->owo a=1

oa 1 db
_+_2_:
oy g°oy
da__ Ve

&y nFAJDgC"

t>0 y=0 0

Laplace transform gives:

2
d—";l—sa_Jra(y,O) =0
dy

2_

% —&%sh =0
dy
and the solution in the Laplace space is:
a=pe Yoyl
S
The current is proportional to the concentration gradient:
a  _ —JsA &b
B=-A¢
The transform of the gradient:

y=0

therefore:

85__ _l
oy = VsA=S

A=—1/s%? B=¢l/s%?
and the solution in the Laplace space is:

b= ol g~y
b_S3Te

The surface concentrations are:

- 5B

(10.3)

(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)
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3/2
Ss (10.10)
B(0,5) =~
AEETP)
The inverse transform gives:
T
a(o,t)y=1-21,|—
o121
21/2
* 2it
co(0t)=C —————> 10.11
oY nFADg Y2 (10.4)
:1/2
2it
CR(Ot)=———7=
(01 nFADY 272

During the application of the constant current the concentration gradient at the surface stays
constant but the surface concentration decreases and at one point in time it reaches zero. At this
moment potential must abruptly change to the next possible process as the constant current must
circulate. This time is called transition time, z:

co(0,t)=0 t=r (10.12)
and the general equation obtained from Eq. (10.11) is called Sand equation:
2 _ nFADE 2 7Y%¢”
- 2

It is evident that the relation between time and concentration is not linear. For the reversible
process the Nernst equation might be used:

(10.13)

- Co (Ot
£-E” + R S0
nF  cr(0,1)
L 1/2 12
* 2it * 1 *
co(0t)=c —— ¢ -~ ¢ (10.14)
( ) nFAD(l)/Zﬂ_l/Z z_1/2
2

CR (O,t) :TJ.TC

and the potential-time relation is:

E=E0'+Eln %+ﬂln \/E—l =E1,2+Eln \ﬁ—l (10.15)
nk Do nF t nk t

The half-wave potential is obtained when:
E=Ey» Jrlt-1=1 t=z/4 (10.16)
that is at ¥ of the transition time. A typical chronopotentiogram is shown in Fig. 10.2.
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tit

E- EIM

Fig. 10.2. Theoretical chronopotentiogram for the reversible redox process.®

General solution for the concentration from Eq. (10.9) is:

co(x,t) c ! 2 exp X X _erfc X (10.17)
o(xt)=¢c - - - :
nFADZ? | 7Y/ 4Dot | DY? 2,/Dot

1/2 2
%0 (:(t) =1—[£j exp X g2 X | X
Co 7 4Dpt 2,/Dot 2,/Dot

or

(10.18)
1/2 2
CR(i(,t):ég(ij exp| - | 2V2 X orge| X
Co T 4DRt 2 DRt 2 DRt
The surface concentrations are:
1/2 1/2
CO T CO T

Dependence of the concentrations on distance for different times is displayed in Fig. 10.3. It
can be noticed that the concentration gradients at the surface stay constant as the applied current
IS constant.
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1.0

[
Ca
=
n
I

|
0.5

1.0

!
xf2 DY
1.0

= | B
= LwiL

5l 0s

|

1.0

1.0
A2 DRFE

1.5
Fig. 10.3. Concentration profiles in chronopotentiometry at various t/z indicated on the curves.®

10.2 Two species O1 and Oz in the solution

Let us supposed that two different ox species Oy and O are in solution and their half-wave
potentials are sufficiently different that no overlap is observed:

O;+me=R
1T (10.20)
02 +Np = R2
The Sand equation in this case is:
1/2
(”1D11/201 +y D%/Zcz) e
identical

—i(ry+7p)"2
and if concentrations, diffusion coefficients and number of electrons for these two species are

(10.21)
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nlijzof = nZD%/ ZCZ 79 =311 (10.22)
the second transition time is three times longer than the first one. This is connected with the

nonlinearity of the Sand equation. Example of the chronopotentiogram of two species is shown
in Fig. 10.4.

100 —

7.7 X 10 M ca?*
1.54 X 10° M pp2*

Time (seconds)
[8;]
o
I

-0.2 -0.3 —0.4 0.5 0.6 -0.7 —0.8
E, V vs. Ag/AgCI

Fig. 10.4. Chronopotentiogram of the mixture Pb(ll) and Cd(I1) at mercury electrode.®®

In the particular case when the reduced form is further reduced at more negative potentials
(stepwise reduction):

O+ ne= Rl
(10.23)
Rl +Noe = R2
the ration of the transition times is:
2
T2 _2Mp, [”—ZJ (10.24)
1T Mn Ny
that is when n; =n, :
7pl71 =3 (10.25)
This means that the second transition time is three times longer than the first one.
As example oxygen reduction might be presented. It proceeds by two reactions:
2e
1) O,+———>H50
) 02 22 (10.26)

2)  Hy0,—2 520H"
The chronopotentiogram is presented in Fig. 10.5.
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T2

Potential

T

}__&(:_1}__2_5_%__{

7

Time

Fig. 10.5. Chronopotentiogram of (left) Oz, two two electron steps, /71 = 3; (right) reduction of
U(VI) in two steps, first one electron, second two electrons, /7 = 8.8

10.3 Chronopotentiometry with current reversal

The analog of the double potential step chronoamperometry is chronopotentiometry with
current reversal. In this technique after certain time equal or lower to the transition time the
direction of current is inversed and the potential followed, Fig. 10.6.

i - E
l |
|

0

f

(d)
Fig. 10.6. Current reversal and cyclic chronopotentiometry.®

To find the equation corresponding to this technique let us consider that the direction of
current is reversed after time t1 < 7. Equations and general solutions are as in simple
chronopotentiometry but the surface conditions are different. The concentration gradient is:

ob(0,t
P01 —1E2 0 0<t<y
oy (10.27)

+1&2 t>t
and its Laplace transform:
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ob (0,s) Iooab(o,t)
gy 0 oy
—Stl —Stl —Stl

:ggl(e _1+e ]:52{26 1

S S S S S

—stqe _ £2¢) [l st © st |
e vdt=¢ I{ Ioe dt+jt1e dt}—
J (10.28)

The solution for b in the Laplace space is:
b(y,s)= C3e_ﬁy

Mz_ﬁg(;g:gﬁ [ﬁ_lJ
S

oy S
1 2 Sh (10.29)
Cy=I&| 5 — =
32 (312
5(0,5)= 12 2”1
S)=18| =5 ——55
32 (312
The inverse Laplace transform might be carried out knowing than:
—ks
L_l[e J:O O<t<ty
gH
(10.30)

—ks PRY
1| £ |- =) t>t
s+ T (u)

where gamma Euler function is: I'(3/2)=T(1/2+1) =1/2I'(1/2) =z /2, T(1/2) =z , the

solution for b (u = 2/3):
1/2
0014252 @oay

The value of the surface concentration of b(0,t) becomes zero when the transition time is
reached, b(0,t) =0,t= =:

Jr2=2Jtp-t r2=4(rz-t)

th=fH+17ro (1032)
n_1
, 3

The ratio of the oxidation transition time to the reduction time is always 1/3 independent of the
concentrations, diffusion coefficients, and the electrode kinetics assuming that the reaction is not
totally irreversible.

In general if the forward and backward currents are different and their ratio is:

o= ib /If
T2 _ 1 (10.33)
b (1+a)-1
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For example, when the oxidation current is two times smaller than the reduction current, o =
0.5, the transition time ratio is 0.8 and it is much easier to determine than in the case of = 1.
An example of the application of the chronopotentiometry with current reversal is shown in

Fig. 10.7.

[=]
)
W

Transition
time

o
»n
T

E vs 8.C.E., volis

vo.g b 2H" + 27— W,

0 o 20 30 40 50 60

Time, Seconds

Fig. 10.7. Chronopotentiogram with current reversal for Fe3*/2* couple.®*

Evs. SCE

Fig. 10.8. Chronopotentiogram of oxidation/reduction of diphenylpicrylhydrazyl 1.04 mM in 0.1
M NaClO; at Pt electrode.®’

10.4 Irreversible process

The influence of the reversibility of the chronopotentiometric curves was discussed in detail in
Galus’ book.” In the case of totally irreversible reaction the potential-time relation is:
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* 1/2 ) 1/2
E =g 4+ R | MGk | RT oy (LT |— g+ Rl (2] | (10.34)
anF i onF T anF T

which is an analog of Eq. (10.15) for irreversible process.

Although chronopotentiometry is not a very good as an analytical technigue it has been used in
the determination of the mechanisms and kinetics of electrode processes. In many cases
analytical solutions can be found and this technique is not limited to low concentrations as other
techniques.

10.5 Chemical reactions

Chronopotentiometry was used to determine Kkinetics of homogeneous chemical reactions
preceding or following the electron transfer. Few examples will be shown below.

10.5.1 Preceding chemical reaction, CE

This problem is in general defined as:
Y=0 O+ne=R (10.35)

As the equilibrium of chemical reaction is shifted towards Y, K << 1, ox form must be
produced by the chemical reaction. If the rate constant ks = 0 only ox which is already in the
solution is reduced. When kf — oo all form Y is transformed rapidly to O and the transition time
corresponds to the total concentration of Y + O, .

This problem might be solved using the following substitutions (ca=co):

Ca +Cvy
U=s—"——— >
( ( C b

where c* is the total analytical concentration of Y and O in the bulk of solution. The system is
described by the partial differential equations:

u_ofu oz 0%
ot oy ot oy?
t=0 z=0 u=1

C =R k™Y K:E—f, A=k +kp (10.36)

(10.37)
t>0 y=0 a=0
du_dz_,
dy dy
Solution in the Laplace domain is:
U= % + cle—Jg Y, 2= cze—\/m y (10.38)

Using the boundary condition one obtains:
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j—“_—fclzl, = =_Js+1C,
y
I I
Ci=——%5, Ch=———— 10.39
N ) (10-39)
U:E_ ?’I/Z e_\/gy, 7 = I e_\és"_/%y
S s SNS+A
1 1 I
u0,s)=-—- , Z2(0,8)=- 10.40
08 =3 109 = 7— (10.40)
but
g 2tKU (10.41)
1+ K
then
K I 1 1
a(0,s) = - +=— 10.42
(©0.5) 1+K( Ksvs+4 S 33/2j ( )
The transition time is obtained when a(0,z) = 0:
L S S B
Ksvs+4 s 32
_ertatl +1—2|\ﬁ=o (10.43)
K\/Z s
vz _NanFADY2C” et Jat
2 2K

In the case of a very fast kinetics only the first term is left, which is the Sand Eq. (10.13).
When At > 4, erf J/Ar =1 and a simplified version of the equation is obtained:

12 .12 o N7
iT7 =ity — I ——— 10.44
rev 2K Fﬂ ( )
where zrev CcOrresponds to the very fast kinetics.

The plot of i 72 versus i is shown in Fig. 10.9. Such an analysis allows for the determination of
the kinetic parameters from the slope.
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Fig. 10.9. Variation of 72 with | for various values of (ks +ky), in s, calculated for K = 0.1,
co =0.11 mM.%8

10.5.2 ECE mechanism

ECE process is the system in which the product of the first electrochemical step (E) is
followed by the chemical reaction (C) which produces a new ox form which can be immediately
further reduced (E), i.e. standard potential of the second step is more positive than that of the first
one:

O+me=R E
k

Rk:>10' C (10.45)
-1

O'+nye=R" E

There are other possibilities where O’ can be oxidized at these potentials or when the redox
potential of the couple O’/R’ is more negative than that of O/R. However, here we will consider
only the first possibility, for other see ref. 7.

The system is described by the differential equations:8®
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da d%a % . ac d%
==, — , —=——+kb
5’( ay ot 8y ot ayz
t=0 >0
y }azl b=c=0
t>0 y—> o
t>0 y=0 ¢=0 (10.46)
da db 0
dy dy
Il =n d—a+n de

Introducing a new variable u = b + ¢ the system is described as:
da_o%a b o ou_o%
ot oy? ot gy ot gy
t=0 y>0
t>0 y—> o
t>0 y=0 u=b (10.47)

da db
dy " dy

}azlb:u:o

=0

I =(ny+n ) +n du
=M +Ny)——+Np——

dy “dy
Solution in the Laplace domain is:

a-lice ™, boce Y, goce (10.48)
S

and using the boundary conditions:
Is+k a(0 s)—l— pls+k (10.49)
33/2[2\/s+k—\/§}' ' n253/2[2\/5+k—p\/§} '

After inverse transformation the surface concentration becomes zero a(0,7) = 0 at the transition
time which gives a rather complex equation:

Cr=-

2 1
1/2 1/2 P exp( ) ]
IT T 1/2 -
® =l+p[—j erf (kyz)™ " +
- 1/2 1/2
(10.50)
1/2 1/2
ol 2kr) (ka7)
2 1/2 2 1/2
(-2 [-0?)

where 7 is the transition time observed for k1 — oo, p is the ratio:
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— M (10.51)
N1 +no
and function @ is:
X
o(x) = [ exp(uz)du (10.52)
0
At low current densities Eq. (10.50) reduces to:
cY2 12 L7
i =it — pi| — 10.53
! e (4‘(1] (1059

Using this theory the kinetics of the chemical reaction in the reduction of o-nitrophenol was

determined, see Fig. 10.10. Independence of the results of the o-nitrophenol concentration
confirms that the reaction is of the first order.

log (k7)'/2
~155  -115  ~0.75 -0.35 005 0.45  0.85
0.643 { _-|oc2
06823 ~0.04
0.603| -0.06
= e
$ 0.583 -0.0
< G -
= 0,583 m% -olo o
. / =
= O -
0 0.543 j-oiz -8
=) 07
= s
0,523 /] l-o1a 8
9.5 - 1018
e Y P o
0483 -—%g——// l-0.8
= &
0,463 . P -0.20
-2 -08  -Oa 0.0 ca c.8 12
log 712,

Fig. 10.10. Variation of log(iz*?/c*) with log(7+/%) for reduction of o-nitrophenol at pH = 6.2 and
different concentrations of o-nitrophenol .2

10.5.3 Disproportionation reaction

Disproportionation reaction regenerates the ox form and increases the measured signal. An
example is the disproportionation of U(V) during reduction of U(VI) (UO2%*):
UVl)+e=U(V)
k
2U(V)k<:>f U(VI) + U(IV) (10.54)
b
For such a process the following equation was developed:®

U3 1/2-1/32/3
. . 3 F/3p3/3.
12 i 12 _(_j u R .2/3

(10.55)
16 RN

which can also be rearranged into:
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. 1/2 1/3 2/3 1/3
T __, —(§j D d (10.56)
- 1/2 3 Do ( . )1/3

'7d ke 74Co

where iz is the value corresponding to the two electron reduction of ox (very fast
disproportionation reaction). The plot of Eq. (10.55) in application to U(VI) reduction is shown
in Fig. 10.11.

1 A

3
]
NN
L%

[
T

;3 2
ig 10
Fig. 10.11. Dependence of iz versus i® for the reduction of 9.63 mM UO2%* in perchloric acid

solutions: 1) 0.1 M, 2) 0.5 M, 3) 2 M. The value of ki/[H*] = 4.3x10%> M2 s is constant as H*
ions are involved in the disproportionation reaction: 2UOz* + H* — UO2%* + UOOH* *2

10.5.4 Following reaction, EC

Reaction occurring after the electron transfer decreases concentration of red form:
O+ne=R
K (10.57)
R—I>Y
and might be studied by the method with current reversal. This reaction decreases the oxidation
transition time. The above system is described by the following differential equations (see also
EC process in chronoamperometry):
2 2
a_a:a_a and a_bza_b_kb (1058)
ot oy ot oy?

with the following conditions: ¥-:%2
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t=0y=>0 }a:l

t>0 y >o|b=0
t>0 y=0 6_a+@20
oy oy
O<t<r d_a:_@: red
dy dy
da db
t>7 —=——=—lgy
dy dy

The solutions in the Laplace domain are:
a(y,) =+ VY B(y9)-CenVHY

1] _ |
a(0,s) =~ --ed b(0,s) = —d_
a0.9) s 32 (0.5) svs+k
a(O,t):1—2Ired\/; b(O,t):IrTekderf\/H

After time t1 the direction of current is changed and the anodic transition time is obtained:

b(y,s)=b(0,s)e”VS*K

S S

dy y S
_ 1 e—Stl e—Stl
—«/s+kb(0,s):lred - —lox
S S S
_ 1 e—Stl e—Stl
b(0,s)=-I - + 1y ———
©0:5) reOI[s\/s+k s\/s+k] X sds+k

At the anodic transition time the surface concentration of b (form red) becomes zero:

erf (Jkty erf k(t) —11) erf (Jk(t, —t1)
0=lreq - —lox——F—

* & *

which gives:

erf \k(ty+75) = (%+1}erf kzo

When the cathodic and anodic currents are identical Eq. (10.63) becomes:

1/2 1/2
2 erf [7—2 kftl} =erf {kftl (T—Z +1ﬂ
1 1

= fy © —st —st

db —st —st 1 € 1 € 1

9 g [t ol [ €St = g - € |1
0

(10.59)

(10.60)

(10.61)

(10.62)

(10.63)

(10.64)

The working curve of n/t1 versus Kinetic parameter kst allowing determination of the kinetics

is presented in Fig. 10.12. It can be simulated using Excel, see Exercise 29.
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Tr/tf
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krty
Fig. 10.12. Working curve allowing determination of the first order following reaction in
chronopotentiometry with current reversal.®*

Chronopotentiometry with the second order chemical reaction was also studied in the
literature.®® It was applied in the reduction of phthalimide, RH, in DMF:

RH+e=RH"~
(10.65)

2RH™ — X RH; +R™
where neither RH2™ nor R™ are active in this potential range. Comparison of the theoretical and
experimental curves o/t is displayed in Fig. 10.13, where w is:

..3/2
2Kk it
w=—01 (10.66)
nFAJzDg
A
0,3}
2ozt
3
W
0,1+
1 1 -
-1 7] g w
) "'“f "-I? [ag ip=

Fig. 10.13. Working curve second order reaction following electron transfer and the
experimental points for phthalimide reduction in DMF for t; = 0.22 5.%
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11 Linear sweep voltammetry

Linear sweep voltammetry (LSV) is probably the most popular electrochemical technique
despite the fact that the mathematical foundations are quite complex.®* Because of that it is used
very often only qualitatively. In this technique the potential sweep with the constant sweep rate,
v, is applied to the stationary electrode. For the nernstian (i.e. reversible) electrode process a
three dimensional representation i-E-t may be shown, Fig. 11.1.

(@) (b)
Fig. 11.1. (a) The i-E-t surface for a nernstian reaction. (b) Linear potential sweep across this

surface.®

Linear sweep voltammetry crosses this surface diagonally, Fig. 11.1. The potential program,
current response and concentration profiles for ox, A, and red, A-, forms are displayed in Fig.

11.2.
/ & *
EV 1

| | |
0 t E; EY E (or 1) x

(a) () (0)
Fig. 11.2. Applied potential (a), current response (b), and concentration profiles of ox, A, and
red, A-, forms (at potentials beyond the peak potential).®

E(-) —

The sweep rates change from 1 mV s (or less for reactions in solid materials: hydrogen
absorption/desorption, batteries) to 10° V s (or more) at ultramicroelectrodes. To obtain current
response the Fick diffusion equations must be solved. They will be presented for nernstian and
kinetically limited processes below.



232

11.1 Reversible red-ox reaction in semi-infinite linear diffusion

Let us assume a reversible redox reaction:
O+nezR (11.3)
with the linear potential sweep:
E(t)=E; -t (11.2)

11.1.1 Planar electrode

To solve this problem the Fick’s diffusion equations for ox and red must be solved:

2 2
%o _p, % R _ pg IR (11.3)
ot ox2 ot X2
with the following conditions:
t=0 x>0 o = C* o =0
t>0 x—-ow| 0 O R~
8Co aCR
x=0 Do—+Dr——=0 11.4
075, TPR, (11.4)
C_O:exp{n (E—EO )} . E=F—vt
CRr
Let us assume that Do = Dr = D and use the new dimensionless parameters:
a=f0 b= R y=— T-1L e TP 115
Co co VDo 0 nFv RT
The equations with their conditions become:
a_da w_
T oy? oT  ay?
T=0 >0
y } a=1 b=0
T>0 y->w (11.6)

y:O a_a+8_b:0 \P:a_a:_@
oy oy oy oy

Boep(-)  e-r(7-E

where W is the dimensionless current function and & is the dimensionless potential. The
dimensionless potential can be written as:

E(E_EO'):E(Ei_EO')_ﬂ

RT RT RT

_¢ -y -7 (11.7)
T=u+é

The conditions become:
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t=0 T=0 ¢&=-u

t>0 T=u+§:% (11.8)
y=0 % =exp(—¢)=exp(u-T)
The transformation to the Laplace space gives:
_ d’a — d%b
sa-a(y,0)=—x sb=— (11.9)
% dy dy

with solution:

(11.10)

From the condition at y — oo, C2 and C4 are both zero. From the conditions at y = 0 one gets:

2a(0,s) _ ¥
=0 ——2=—sC; =¥ Ci=——r
y o \/_1 1 7
ob (0,s) N7
=—Cavs —=-CavVs = 11.11
& - Cals 0o (11.11)
¥
Ca=—
s
The solution in the Laplace space is: B
a(y,s)=s-—e VY F(0,5)=1-——
s s s s (11.12)
_ v _ 5%
b(y,s)zﬁe Jsy |o(o,s):E

The surface concentrations in time space follow the Nernst equation. However, direct
transform into time space is not possible as the dimensionless current function ¥ is not known.
However, we can use the convolution theorem:

t
LH(R()- Fo(8) = [ f1(2) Fp(t—7)de (11.13)
0
Keeping in mind that:
—1( 1 1 1/
L = = LY P)=w 11.14
(\/gj N (¥) ( )
the surface concentrations become:
T
b4
a(QT)zl—%j T(T) dr=1-1¥
ToNITF (11.15)
v

b(0,T) = I'¥
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Substitution into the Nernst equation gives:

a(0,T) 1Y
b(O,T)_EXp( °)= |y
or (11.16)

11 }‘P(r)dr
lrexp(—¢) J;?O JT-1

Using T = u + § this equation becomes:

Y =

1 f ¥(r) 1
«/;_u N 1+exp(=¢&)
This is so called Volterra integral equation of the first kind where unknown function is (7). It

can only be found by the numerical integration of Eq. (11.17). The obtained function allows for
the determination of the current:

(11.17)

w(g) =2 - yPob e
ay y=0 C(*) OX x=0
oc = |D nFvDy =
- Dy =0 Ozw(g)co\/ 60 :\/ RTO co (&)
X=
i =nFAJ = nFACH fDCFQFV w(g) (11.18)
or

n¥2E32pY2 N2 o
72 (&)
(RT)

Function W(&) is often called *2y(ot) with o= nFv/RT. It is tabulated, see e.g. ref. 8. Its plot
versus potential is displayed in Fig. 11.3.
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Fig. 11.3. Dimensionless current function versus potential for a reversible redox reaction in
linear sweep voltammetry.®

The current function represents curve with a peak, with ¥ ,=0446 at &, =-1.109.

Substitution to Eq. (11.18) at 25 °C gives the Randles-Sev¢ik equation for the peak current for
the reversible redox reaction:

ip = 2.69x10°n¥2ADYAM ¢, (11.19)

2

: * cm : S .
fori-A,v-VIs, co_m_c’:i, A-cm?, DO_T' This equation indicated that then current is
cm

directly proportional to bulk concentration of ox form, square root of the sweep rate, and n*?.
This dependence on the number of electrons is different from those obtained for the steady-state
or chronoamperometric techniques. This means that if the number of electrons changes from 1 to
2, the peak current (when all other parameters are constant) increases 22 = 2.83 times.

The peak potential is:

nF (o nF
1109 T (E7 6y )< (e w20
RT 0.0285

Ep = E1/2 —1109F = E1/2 — V at25°C

The potential at the half peak height, i.e. half-peak potential is:

Ep/2 = E12 11,0080 (11.21)
nF
and
RT  0.0565

Eqg. (11.22) may be used as a criterion of the reversibility. Profiles of concentrations at
different points of the chronoamperometric curve are displayed in Fig. 11.4. It should be noticed
the surface concentration of ox drops to zero only after the current peak (~100/n mV after) and at
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the peak potential it is not equal to zero. The current function for the reversible reaction in linear
sweep voltammetry is shown in Table 11.1.

Table 11.1. Current function for the reversible process in the linear sweep voltammetry.®

nE~Eip) nE - Eyp) ME = Eip)  nE - Eyp)

RT/F mV at25°C w2y (on) (o) RTIF mV at 25°C  7Y2x(at) (oD
4.67 120 0.009 0.008 | —0.19 -3 0.400 0.548
3.89 100 0.020 0.019 | —0.39 -10 0.418 0.596
3.11 80 0.042 0.041 | —0.58 -15 0.432 0.641
2.34 60 0.084 0.087 | —0.78 —-20 0.441 0.685
1.95 50 0.117 0.124 | —0.97 —-25 0.445 0.725
1.75 45 0.138 0.146 | —1.109 —28.50 0.4463  0.7516
1.56 40 0.160 0.173 | —1.17 -30 0.446 0.763
1.36 35 0.185 0.208 | —1.36 -35 0.443 0.796
1.17 30 0.211 0.236 | —1.56 —40 0.438 0.826
0.97 25 0.240 0.273 | —1.95 -50 0.421 0.875
0.78 20 0.269 0.314 | —2.34 -60 0.399 0.912
0.58 15 0.298 0.357 | —3.11 —80 0.353 0.957
0.39 10 0.328 0.403 | —3.89 —-100 0.312 0.980
0.19 5 0.355 0451 | —4.67 -120 0.280 0.991
0.00 0 0.380 0.499 | —5.84 —150 0.245 0.997

“To calculate the current:

1. i = i(plane) + i(spherical correction).

2. i=nFADSCEa 7 Py t) + nFADGCE( fro)d(ar 1),
3. i = 602" ADSCE 2 (7 P xtarr) + 0.160[DE (ron' "))l 1)) at 25°C with quantities in the

following units: i, amperes; A, cmz; Dg, cm?fs; v, V/s; Cg, M; rp, cm.

PEyp = E + (RT/nF) In (Dg/Dg)'>.
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Fig. 11.4. Concentration profiles at different points of the chronoamperometric curve for the
reversible redox reaction in linear sweep voltammetry, v=0.1 V s14

11.2 Spherical electrodes

In the case of the reversible redox reaction at a spherical electrode an additional term appears
in the equation for current:

nFADoCo "

i =i(plane) + £)
L (11.23)
1 1
#e) = 1+exp(—¢) T 14 exp|[ nf (E—Eyp)]
and the peak current becomes:
iy = ip (plane) + (0.725 x 10°) ”A?—OCO o —cm (11.24)
0

An example of the voltammetric curve at a spherical electrode is displayed in Fig. 11.5. An
increase in the peak current and small shift of the peak towards more negative values is
observed. It should be stressed that the spherical term in Eq. (11.23)-(11.24) is independent of
the sweep rate.
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{E-Eyp) (mY)

Fig. 11.5. Linear sweep voltammograms for a reversible redox process at a flat (1) and spherical
(2) electrode; v =0.00333 Vst rp=0.05cm,n=2,D=10°cm?s’

11.3 Ultramicroelectrodes

At ultramicroelectrodes (UME) the spherical effects are much more pronounced. Influence of
the sweep rate on the voltammograms observed at spherical electrode are shown in Fig. 11.6.

12.0
10.0
8.0

1V/is

0.1V/s

6.0
0.01V/s
4.0

Current (nA)

2.0

0

20

40 | | | 1 |
0.3 0.2 0.1 0

Potential (V)

Fig. 11.6. Effect of the scan rate on the voltammograms at a spherical ultramicroelectrode, ro =
10 um, D = 10 cm? s, G = 1 mM.8

At the ultramicroelectrode the effects of the radial diffusion are much more pronounced in
comparison with micro electrode, Fig. 11.7. A practical example of the voltammetry at UME is
displayed in Fig. 11.8. It is obvious that under these conditions the radial diffusion is much more
important than linear diffusion and the cyclic voltammetric curves behave as stationary.
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Fig. 11.7. Influence of the electrode size on the obtained cyclic voltammograms.®

Microelectrode CV obtained with the CS-1200
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Experimental Procedure for Figure 2:
Working Electrode: 10 ym diameter platinum
Reference Electrode: Gel filled or the Premium "no-leak" reference
Polishing procedure: (see directions under "polishing")
Solution: 3 mm ferrocene and 0.1 M NaClO, in acetonitrile
Scan rate: 100 mV/sec Scan range: 0.0 mV to +500 mV and back to 0.0 mV

Fig. 11.8. Voltammogram of 3 mM ferrocene in 0.1 M NaClOg in acetonitrile at Pt disk 10 um
diameter at 0.1 V s™.

Influence of the sweep rate and electrode dimensions are illustrated in Fig. 11.9 and 11.10.
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Fig. 11.9. Influence if the relative (normalized) current, I/liim, on the electrode size for the
reversible process on the microdisk electrode, electrode sizes A) 0.1, B) 1, C) 10, D) 100, E)

1000 pum, F) comparison.®?

At low sweep rates the steady-state voltammograms are obtained but with the increase in v the
diffusional term increases (proportionally to v*’?) and becomes larger than the radial term.
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Fig. 5.17 Current density versus overpotential for the reversible oxidation of A to B on a
microdisc electrade. E:r' =0V;ia =05k =lens v = 1Vsh[Aly = | mM;
D=10"%em?s~l

Fig. 11.10. Dependence of the voltammetric current density on the microdisk electrode on the

electrode diameter.52

Fig. 11.10 shows that with the increase of the electrode diameter the radial term becomes less
important and the “normal” voltammograms at plane electrode are obtained. It should also be
noticed that the current density at small electrodes are much larger than those at larger electrodes
as the radial diffusion is very fast although its absolute value is much smaller at UMEs.

11.4 Double layer effect on voltammograms

During the potential sweep electrode double layer capacitance, Cq, is charged across the
solution resistance, Rs, where Cq = A Cqi, and A is the electrode surface area. As Cq4 and Rs are in

series the equation describing charging current is:

1t
E =Rgi+——[idt

Cdo
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but
E=E+wvt (11.26)
then
t
A
Ej +vt=Rgi+ —II dt (11.27)
Cyq 0
This is an integral equation which can be solved using the Laplace transform:
5+i2: RSi_+CiI_:i_(R+CiJ
> s d S ds (11.28)
1
Solution in Laplace space is:
B,V
[ S12 - % 1 +Ri 1 1
Re +— S S+ S S| s+
> Cys RsCq L RSC(J
but
1 (11.29)
sS(A+B)+A-
1 _A,L - RCqy
1 s 1 1
s| s+ S+ S| s+
R.Cy RsCyq RCy
A=R.Cy B= —RCy4
T:E;l+iRst1—de;1:
R S+—— Rs S S+
R.C R.C
svd s (11.30)
E; 1 1
=| =+-VCq |———+VCqy-=
Rs - S
RsCq
The inverse transform give the charging current:
ic =VCqy +(%—deJe RsCq (11.31)
S

It contains two terms one constant (or slowly changing with Cq) and other transient, existing
only after beginning of the sweep. When t >> RsCq the current becomes:

iC = ACd|V (11.32)
From the comparison of charging and faradaic currents it is obvious that the charging current
is proportional to the sweep rate, v, and the faradaic current is proportional to v? that is the

charging current increases much faster with v. Voltammograms at different sweep rates in the
presence of the charging current are shown in Fig. 11.11. It is obvious that at high sweep rates
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charging current becomes larger than faradaic current and determination of the faradaic current
becomes difficult.

v=900a

Fig. 11.11. Influence of double-layer charging on the linear sweep voltammograms of the
reversible process, the sweep rates changes form v =ato v =900 a.?

In fact, the ratio of the charging, ic, to faradaic peak current, ip, increases with v/
i cgM0°  2.4x1078Y? Do =10 cm?/s
i 2.69n%2DY%cs n%2 ¢cg C4 = 20uF / cm?

The double layer capacitance often changes with the potential In such cases to get the net

voltammogram the voltammogram of the double layer charging must be subtracted from the total
voltammogram, Fig. 11.12.

(11.33)
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Fig. 11.12. Voltammogram (a) in the absence and (B) in the presence of Cd?* in 0.5 M TBAP in
DMSO atv=2V s18

11.5 Effect of uncompensated resistance

In the presence of the uncompensated resistance in solution instead of applying linear voltage
sweep, Eq. (11.2), the real applied voltage to the electrode is:

E(t) = Ej —vt
E(t)=E; —vt+iR,

This indicates that it changes nonlinearly with time or the voltage applied by the potentiostat.
This is illustrated in Fig. 11.13.

(11.34)

-0.1 0.0 0.1
E Y,

applied

Fig. 11.13. Relation between the real potential at the electrode surface, Era and the potential
applied by the potentiostat, Eappies fOr reversible redox reaction; continuous line — no
uncompensated resistance, dashed line — in the presence of uncompensated resistance, Ru.
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In the presence of the uncompensated resistance the real potential applied to the working
electrode is nonlinear and only the numerical solutions can be found. In this case the
voltammograms are deformed, Fig. 11.14. The presence of the uncompensated resistance
decreases the peak potential and displaces the peak current towards the negative values. Such an
effect may be easily mistaken with the quasi-reversibility.

05—

1 1

— 1
100 0 -100 -200 -300

e n(E-E%).mV

Fig. 11.14. Voltammetric current function for a reversible heterogeneous reaction in the presence
of the uncompensated solution resistance; a) no resistance, b) to e) with increasing
uncompensated solution resistance nRy (where n is number of electrons): b) 19, c) 45, d) 84, e)
150 Q.%

11.6 Irreversible heterogeneous redox reaction
In the case of the totally irreversible reaction the backward heterogeneous rate constant might
be completely neglected (ko = 0). The flux is:

i aco (%, 1)

FA- D0 T o | 0(0,t) ( )
and the solution for the current is:
1/2
i = nFACH DY2L2 (%) W (bt) (11.36)

where and the current function W(bt) is calculated numerically and parameter b is proportional to
the sweep rate:

¥ (bt) = /7 z(bt)

an, Fv an F
bt="2 "t-2"a¢ (E_E;
T ~r (E-Ei) (11.37)
b
b:omaFv

RT
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Table 11.2 presents relation of /7 (bt) vs. (E - Eo)ana +g|n —ViDoOb'

y
Table 11.2. Current function for the irreversible reaction in linear sweep voltammetry together
with the spherical parameter.®

Dimensionless  Potential® Dimensionless  Potential®

Potential” mV at25°C 7 2y(bty $(br) | Potential® mV at25°C  w2x(bt)  (bt)
6.23 160 0.003 0.58 15 0.437 0.323
5.45 140 0.008 0.39 10 0.462 0.396
4.67 120 0.016 0.19 5 0.480 0.482
4.28 110 0.024 0.00 0 0.492 0.600
3.89 100 0.035 —-0.19 -5 0.496 0.685
3.50 90 0.050 -0.21 —5.34 0.4958 0.694
3.11 80 0.073 0.004 | —0.39 —10 0.493 0.755
2.72 70 0.104 0.010 | —0.58 —15 0.485 0.823
2.34 60 0.145 0.021 | —0.78 —20 0.472 0.895
1.95 50 0.199 0.042 | —0.97 -25 0.457 0.952
1.56 40 0.264 0.083 | —1.17 -30 0.441 0.992
1.36 35 0.300 0.115 | —1.36 ~35 0.423 1.000
1.17 30 0.337 0.154 | —1.56 —40 0.406

0.97 25 0.372 0.199 | —1.95 —50 0.374

0.78 20 0.406 0.253 | —2.72 —70 0.323

“To calculate the current:

1. i = i(plane) + i(spherical correction).
2. i = FADYXCED P a' Py(br) + FADGCE(1 frp)d(bi)

3. i=60ADYCEa ' Py (bi) + 0.160[DY (roa*v")]db(br)). Units for step 3 are the same as in Table 6.2.1.

Dimensionless potential is (aF/RTHE — E) + In [(wDob)"1k").
“Potential scale in mV for 25°C is a(E — EY) + (59.1) In [(mDob) " 21i™.

Comparison of voltammograms for the reversible and irreversible process is shown in Fig.
11.15. The peak current function is:

J7 x(bt) =0.4958 (11.38)
and the peak current:

iy =299 x10° n(an, )"? Ac DY? v¥/2 (11.39)
In general, the peak current for the irreversible to that of reversible process is:
ipirr 0.4958 oV/2

and it depends on the value of the transfer coefficient. For « = 0.5 the irreversibility of the
electron transfer process causes decrease of the peak current and shift of the peak potential into
more negative values, Fig. 11.15. The peak current increases linearly with the square root of the
sweep rate, v’2, and linearly with the concentration.

=0.785 for «=0.5 (11.40)
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Fig. 11.15. Theoretical current functions for the reversible (B) and irreversible (A) process in
linear sweep voltammetry.’

The peak potential depends on the kinetic parameters:

J7Dob
ana(Ep—EO)+gl n Y00 _ 534mv

KO

1/2 (11.41)
o RT K° RT )"
Ep=E" + -0.780+1In +1
an,F \/ o anaF v
It is obvious that the peak potential depends on the sweep rate:
oE oE
p____RT P __ 30 v oa 25°C (11.42)
aInv¥? an,F ologv ang,
Another useful parameter is the half-peak potential:
ana(Ep,Z—EO')+—|n" = 42.36 MV (11.43)

and the difference between the peak and half-peak potentlal is independent of the sweep rate but
depends on the transfer coefficient:

Ep—Ep2 = -1.857 RT =— 0.0477 Vat25°C (11.44)
an,F an,
One can also compare potentials at ¥z and % of the peak:
0.0408
S = \Y (11.45)
an,

At the bottom of the peak, when current is lower than 0.1 ip, one can assume that the bulk and
surface concentrations are similar and the following equation is obtained:

i = nFACG ks = nFACg k° exp{ ETF (E = )} (11.46)
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which allows for the determination of the rate constant and the transfer coefficient from the
slope:
olni _ an,F

- = (11.47)
11.7 Irreversible processes at spherical electrodes
At the spherical electrode an additional term must be added to Eq. (11.36):
i Zi(plan,irr) + "FADo co #(b) (11.48)

o
where function ¢(bt) is shown in Table 11.2. The spherical term increases the observed current, it
is independent of the sweep rate, as for the planar electrode, Eq. (11.23). An example is
displayed in Fig. 11.16. The behavior is, in general, similar to that observed for planar
electrodes.

A
7 (A)
3
2
2
1)
1+
i RN R RSN S N I i L A -~
160 120 80 40 G -40 -80
E (mV)

Fig. 11.16. Voltammetric curves for the irreversible process at a flat (1) and spherical (2)
electrodes; v=0.00333 Vs, rp=0.05cm,n=2,D=10°cm?s17

The influence of the uncompensated resistance for irreversible redox reaction at planar
electrodes is illustrated in Fig. 11.18.
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Fig. 11.17. Effect of uncompensated resistance on the shape of the LSV curves at a planar

electrode for different values of the parameter H; H=0: no Ry, H =(anF /RT)nR, FAcB(;rDob)ll 2
97

11.8 Quasi-reversible systems

In the case of the quasi-reversible systems both kr and ky are important and the flux is:
i oco(x,t)
—— =D ———*~ =ksCo(0,t) —kpcr (O, t 11.49
nEA 0O OX =0 f O( ) b R( ) ( )
In this case the voltammetric current depends on the potential, rate constants and transfer
coefficient:

J=

. nE 1/2
i =nFAcg Dg2 v/ (R—Tj W(E) = i(rev)¥(E)

Y(E) = f(Aa,E) (11.50)
A= K°
B . nE 2
D % DR ——
{ O “RRr V}
and the peak current:
ip =iy (rev)K(A, @) (11.51)

For Do = Dr =D Eq. (11.50) reduces to:

A= (11.52)

kO
Jov
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Functions W(E) and K(A, o) were calculated numerically.® The plots of the dimensionless
current function W(E) are displayed in Fig. 11.18. These plots allow for understanding of the
behavior of the quasi-reversible reaction in the LSV.
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N

Fig. 11.18. Plots of the dimensionless current parameter W(E) in LSV for three different values
of the transfer coefficient and the following values of the kinetic parameter A: 1) 10, II) 1, 11I)
0.1, IV) 0.01; dashed curve is for the reversible reaction.%

For the symmetrical process with & = 0.5 the increase of the irreversibility decreases the peak
current, Eg. (11.40), and shifts the peak potential towards more negative value (for A = 0.01
reaction can be considered as totally irreversible). This effect is much more pronounced for the
lower values of the transfer coefficient, & = 0.3, and less pronounced for & = 0.7. The peak
current function is displayed in Fig. 11.19. For the transfer coefficients lower than « < 0.809 the
peak current decreases with decrease of the kinetic parameter (increase in irreversibility) while
for o >0.809 it increases.
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Fig. 11.19. Variation of the dimensionless peak current function K(A, «) with the dimensionless
kinetic parameter A for different values of the transfer coefficient, o.%

The peak potential was defined as:
Ep—Eip = —Z(A, a)[%) =—-26Z(A,a) mV at 25°C (11.53)
and is displayed in Fig. 11.20. For fast reactions E; is independent of the kinetics (reversible
reaction zone) and for slow reaction (totally irreversible zone) it changes linearly with log A, that

is with the log v according to Eq. (11.41). The slope depends on the transfer coefficient.
The potential difference between current half-peak and peak, Ep2 — Ep, defined as:

Ep2 —Ep = A(A, a)[ RT ) _ 26A(A, ) MV at 25°C (11.54)

=
and is displayed in Fig. 11.21.
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Fig. 11.20. Variation of the dimensionless current peak potential with the kinetic parameter A for

different o.%
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Fig. 11.21. Dependence of the dimensionless Ep2 — Ep parameter A(A, «) with the Kinetic
parameter A for different values of the transfer coefficients o.%
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For the transfer coefficients smaller than « < 0.809 the peak is wider than that for the

reversible reaction but for « > 0.809 it is sharper.
In general electrochemical reactions in LSV might be divided in three groups:

reversible A>15 k?>0.3v2cms?
quasi-reversible 1020 < A <15 2x10%v2 cm st <k?<0.3v’2cm st
totally irreversible A < 102(+a) k0 < 2x10%v¥? cm st

Calculations of the voltammetric curves might be carried out by digital simulations of the
differential equations, by numerical solutions of the integral equations, or by series expansion of
the currents. Eq. (11.49) can be written in a dimensionless form:

%a . \/%[kfa(o,n- kpb(0,T)]

Y= Kfa(O,T) - Kbb(O,T)

(11.55)
where
Y [y=0 o 0

and the other parameters were defined in Eq. (11.5). The dimensionless surface concentrations
are given by the convolution integral, see Eg. (11.15):

1 ¢ W(r)
a(0,T)=1-—— dt=1- 1w

4/71' '(!;’\/T -7 (1156)
b(0,T) = I'¥

This leads to:
¥ =Ki(1- 1) —Kpl¥
or (11.57)

T
_ ¥
pery =K =YD L) o
K + K, 7o NT —7
This is Volterra integral equation of the second kind as the unknown function ¥ is under and
outside integral. Such an equation can be relatively easily solved using known methods.

11.9 Cyclic voltammetry

The potential sweep in the linear sweep voltammetry may be reversed and continued to the
initial potential. Such a method is called cyclic voltammetry and is illustrated in Fig. 11.22.
During the backward sweep the red form produced around the electrode surface during the
forward sweep is oxidized back to ox producing the anodic current.
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Fig. 11.22. Potential program (a) and obtained current-potential curve (b) in cyclic voltammetry.®

In this case the fundamental diffusion equations should be solved for the potential program in
Fig. 11.22a. The potential at which the sweep is inversed, E, should be more negative than the

peak potential by: ‘Ep — E/l‘ >90/n mV. The effect of the switching potential, E, on the shape

of the cyclic voltammograms is illustrated in Fig. 11.23.
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Fig. 11.23. Cyclic voltammograms for different switching potential, Ex, plotted versus time.®

The same curves plotted versus electrode potential are shown in Fig. 11.24. It is evident that
the absolute anodic peak current measured from the current zero line is always smaller than the
reduction peak current. It also depends on the switching potential. However, anodic peak current,
Ipa, Measured from the decreasing part of the cathodic current (after the cathodic peak) is
constant and equal to the cathodic peak current, ipc.
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Fig. 11.24. Cyclic voltammetric curves for different switching potential (as in Fig. 11.23) plotted
versus potential. Dashed curves correspond to the decreasing current after the peak but plotted in
the inverse direction.?

For the reversible process the difference between cathodic and anodic peak potentials is
independent of the sweep rate and depends on the number of electrons exchanged:

RT
E,; =Eq» +1.109—
pa 1/2 nE

(11.58)
RT 0.058

pa—Epc =222 = ===V at25°C

Often the ratio of ipa/ipc Must be determined; it is necessary in the verification of the stability of
the red form and determination of the kinetics of the reactions following the electron transfer
step. In such cases experiment the continuation of the sweep after the cathodic peak must be
carried out and then compared with that for smaller |Epc - Es|. In the case when going further
after peak is not possible because of further electrode processes this can be done with another
stable product in the same experimental conditions and the same |Eyc - E»| and the missing part of
the anodic current added.

When the product is stable and stays in the solution one can wait at the potential after the peak,

Exs in Fig. 11.24, until the current drops to zero and then continue backward scan, Fig. 11.24.

E

11.10 Multicomponent and multistep charge transfer

When two different species O and O’ are present in the solution the total current is the sum of
individual currents, Fig. 11.25.
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Voltammograms for solutions of (1) O alone; (2) O’ alone and, (3) mixture of O and O’
with n = n’, C§ = C§, and Dy = Dy-.

Fig. 11.25. Cyclic voltammogram of the mixture of two ox species: O and O’ (3); voltammogram
of O only (1) and of O’ only (2). Concentrations, number of electrons and diffusion coefficients
of these species are identical .2

In the mixture of O and O’ the cathodic peak of O’ must be measured from the decreasing part
of the voltammogram of O after the peak. This might not be known. A method was proposed in
which the sweep is stopped after the first peak (where surface concentration of O is practically
zero) and the current is followed as a function of time. This procedure is displayed in Fig. 11.26.

These pictures show that the determination of the individual peaks in the LSV is not
straightforward. However, when the separation of the standard potentials of these processes is
much larger determination is much simpler, Fig. 11.27.

When the separation of the half-wave potentials of two electrode processes has a pronounced
effect on the voltammograms, Fig. 11.28. When the potential of the second step is more negative
than that of the first one, two well-developed peaks are observed (a). When this difference is
decreased overlap is produced (b). When the separation is zero (c) or the potential of the second
step is more positive than that of the first only one peak (reversible) peak is observed.
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Fig. 11.26. Method of obtaining the baseline for the second peak. Upper curve: potential
programs, lower curve: the measured curves.®
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Fig. 11.27. Comparison of the cyclic voltammograms for one and two species in solution.
Simulation was carried out far after the peak, separation of E12 is 1 V.
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Fig. 11.28. Influence of the separation of E1» on the shape of the cyclic voltammograms of the
stepwise electrode process O + ne =R, R + ne = R’; AE = E.° — E;% a) -0.18 V, b) -0.09 V, ¢) 0
V, d)0.18 V.%

11.11 Quasi-reversible electron transfer in cyclic voltammetry

When the reaction is quasi-reversible anodic and cathodic peaks are observed but the
separation between Epa — Epc increases. This separation is independent of then transfer coefficient
for 0.3 < a < 0.7, Fig. 11.29. Dependence of the peaks potential separation on the kinetic
parameter, P, is shown in Table 11.3 where ¥ is defined as:

al?2
DOJ KO

(11.59)
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Fig. 11.29. Simulated cyclic voltammograms for quasi-reversible electrode process; 1) ¥ = 0.5, a

Normalized Current

260

-0.3

180 120 60

0 -60-120-180
E—Ep mV

=0.7;2)¥=050=03,3)¥=7.0,a=0.5,4) ¥=0.25 a=05.10
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Table 11.3. Dependence of the anodic and cathodic peak separation on the dimensionless kinetic
parameter ¥ .8

Table 6.5.2 Variation of
AE, with ¢r at 25°C (14)¢

Epa - Epc
P mVY
20 61
7 63
6 64
5 65
4 66
3 68
2 72
1 &4
0.75 92
0.50 105
0.35 121
0.25 141
0.10 212

“For a one-step, one-electron
process with E; = E, — 112.5/n
mV and a = 0.5.

An application of this method is illustrated in Fig. 11.30. Peak separation of Co(salen) was
determined at 25 um Pt ultramicroelectrode in 0.1 M TEAP in DMSO. Then the function ¥ was
calculated using Table 11.3 and plotted versus v'¥2. From the slope the standard rate constant
was calculated as k° = 0.39 cm 51,101

3.0

- w=(21.2£1.3)v 72 - (0.1640.10)

2.0
s15¢
10}

0.5}

0.0

. . A 0.5
0.00 03-51/2 /V-1/251/20 0

Fig. 11.30. Dependence of function ¥ on v*/? for Co(salen) in 0.1 M TEAP in DMSO on 25 um
Pt disk.20t
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Another application of the cyclic voltammetry to very fast electrode processes is shown in Fig.
11.31. It shows importance of the uncompensated resistance compensation.
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Fig. 11.31. Cyclic voltammograms of 14.3 mM anthracene reduction in acetonitrile in 0.9 M
NEtsBF; at a 2.5 um gold disk electrode; a) 100% IR compensated (solid curves) vs.
uncompensated (dashed curves voltammograms; b) 100% compensated (solid curves) vs.
simulated (dashed curves) voltammograms, ¢) variation of the anodic an cathodic peak potentials
as a function of scan rate for the uncompensated (open circles) and 100% compensated (solid
circles) modes. Sweep rates up to 1.25x10° V s, ks = 5.1 cm s1.102

11.12 Applications of convolution and semi-integration

11.12.1General equation for concentrations

Simulated voltammetric curves come from the numerical solution of diffusion-kinetic
equations. To analyze the experimental curves the peak potentials and peak currents are
determined (although the latter is often subject to some extrapolations). There is much more
information in these curves but they are usually not analyzed so deeply. It is possible to obtain
much more information after conducting further transformation of these curves using semi-
integration. This operation arises from the Riemann-Liouville operator for fractional calculus. It

is defined for partial integration for -1 <q<0:
t

d4 1 f (u)
—f()= du (11.60)
dtd Q) £ (t—u)?
and for partial differentiation, 0 < g <1.:
q t
=9t [ T g, (11.61)
dt® dt| F(1-a) g (t—u)®
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These operations for different values of the parameter g are:

q=1 differentiation

g=-1 integration

q=-1/2 semi-integration

q=1/2 semi-differentiation

It has been shown that the solution for the concentration in LSV is:

T
1 ‘P(z’)
a(0,T)=1-—=| —==dr
@1) ng N
t .
* 1 1 I(u)
co(o,t) =co - du (11.62)
© © nFADgZ[ﬁg«/tu j
(t)
* 1(t)
co(o,t)=co———=
© © hFADY2
Operation in Eq. (11.62) is semi-integration:
g2
dt_—ml(t) = 1(t) (11.63)
The maximum (plateau) of I(t) is obtained when the surface concentration of ox reaches zero:
| =nFADg ¢ (11.64)

This limiting convoluted (semi-integrated) current does not depend on the sweep rate and
depends only on the bulk concentration. This technique allows for the determination of surface
concentrations:

-1t

©00h= nII:ADgl)Z
0 (11.65)

cr(0,t) = — O

R WFADY?

This method might be applied to the reversible and quasi-reversible/irreversible processes.
11.12.2Reversible processes

Substitution of the surface concentrations to the Nernst equation gives:

o0 Ry PR RT W-1® g RT L-10 (g5
nF Do nF 1(t) nF I(t)
E1/2

This equation for semi-integrated currents resembles that for the steady-state techniques, Fig.
11.32.
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Fig. 11.32. (a) Voltammetric and semi-integrated curves, (c) surface concentration of ox and
In[(1-1)/1) versus potential 1%

11.12.3 Numerical semi-integration technique

Current i(t) is digitalized by the data acquisition system producing series of values i(At),
i(2At), i(3At),... at intervals At = tiota/N,

i(r)

[ —
Fig. 11.33. Digital acquisition of the voltammetric curve.

Then the numerical integration using Eq. (11.62) is simply carried out:”?

1
k—j+=
( Zj AYZi(jat) (11.67)

k
I(t)=|(k-At)=\/1_Z

T4 (k—j)!
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where
I'(n+1) =nI(n)

r[%):ﬁ r[g)zlr(%)zéﬁ (11.68)

2) 2
F(5)_3(3)_3.L.
2) 2 \2 22

etc. The semi-integrated current is simply produced from the experimental current. This
operation is sometimes incorporated in the commercial software for voltammetry.

An example of application of the semi-integration technique to reversible cyclic
voltammograms is displayed in Fig. 11.34.
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Fig. 11.34. Cyclic voltammogram of 1.84 mM p-nitrotoluene in 0.1 M TEAP in acetonitrile at
hanging Hg electrode at v =50 V s and its semi-integration.%*

11.12.4 Quasi-reversible and totally irreversible systems

The current for the totally irreversible reaction is described as:

_ 0 —anf(E—EO')
i =nFAksCo(0,t) = nFAK co(0,t)e (11.69)
but the surface concentration is described by Eq. (11.65) therefore:
KO —anf(E—EO')
i(t) = r[ 1= 1(t)]e (11.70)
and the equation for the irreversible reaction is:
. RT . k% RT _I,-I(t
E=E%+ " In =10 (11.71)

+
anF /Dy anF i(t)
For the quasi-reversible reaction current is:
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i(t) = nFA[kico (0,t) — ky CR(O,t)] =

_ko{l' —1@) eanf(EEol)_ﬂe(la)nf(EEO')}

Joo Tox ]

k¢

0 —anf(E—Eo') (11.72)
_kle e {|, —I(t)[l+§exp(E—Eo')}}

i(t):\/%exp[—anf (E—EOI)}{h —I(t)[1+e”f(E_E1/2)}} where §=\/%

The equation for the potential is:

RT kO RT || - I(t)|:1+enf(E_E1/2):|

E-g%+ In + In 11.73
anF \/DO anF i(t) ( )
and for the rate constant:
I —1(®)|1+exp|nf(E-E
In k¢ (E) = In Dgz—ln{ 1—10] I(':)[ ( 1’2]]} (11.74)

Semi-integration of the cyclic voltammetric curve produces curves with plateau. For the
reversible process the curves for the forward and backward sweeps overlap, Fig. 11.34, but they
do not overlap for quasi-reversible reaction, Fig. 11.35.

i I

5x 107 |~ 5x107®

| | |
-0.9 -1.3 -1.7
EN

Fig. 11.35. Cyclic voltammogram of tert-nitrobutane in 0.1 M TBAI in DMF at v=17.9 V s and
its semi-integration.%®

Analysis of the reversible convoluted curves allows for the determination of Ei, diffusion
coefficients, and the number of electrons while that for the quasi-reversible and irreversible
processes allows for the determination of the rate constants and transfer coefficients.
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Some applications of the cyclic voltammetric technique to determine the kinetics and the
mechanism of electrode processes are shown below.

1.6

1.0 <4

0.5 4 B“

0.0

-0.5

ipe

—-1.0 1

-1.5 4

-2.0 4

-25 T T T T T T T T T T

-0.4 -0.2 [¢] 0:2 0.4 0.6 0.8 1

-E/V
Fig. 11.36. Comparison of the voltammetric curves of a simple two electron reduction of Cd?* in
0.5 M TBAP in DMSO at Hg electrode at v = 2 V s; (A) experimental curve, (B) simulated
curve,10¢

In this case the transfer coefficient is o = 0.09 and the voltammetric curve is very asymmetric.
An application of the semi-integration technique is illustrated in Fig. 11.37.
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Fig. 11.37. Cyclic voltammetric curves of 0.8 mM Cd?* in (A) 0.1 M TEAP and (B) 1.0 M TEAP
in DMSO, v =2V s1.17

Convolution of the voltammetric curves in Fig. 11.37 is shown in Fig. 11.38.
1.1

1.0 A
B

0.9

0.8

0.7

0.6 H

0.5 4

l(exp)/le(cqlc)

0.4 -

0.3 1

0.0 T T T T T T T
0.8 1.0 1.2 1.4 1.6

—E/V

Fig. 11.38. Convolution of the voltammetric curves in Fig. 11.37.1%

Analysis of semi-integrated curves allows for the determination of the rate constants, Fig.
11.39.
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Fig. 11.39. Forward rate constants ki for Cd?* reduction in DMSO at Hg electrode in (A) 0.5. (B)
0.75, (C) 1.0 M TEAP.X”

kf / cm §7

The nonlinearity of log ks vs. potential curves was explained assuming CE mechanism.

Another application is presented for Zn?* reduction in HMPA. The shape of the CV curves was
explained by fitting the experimental curves to the simulated ones. For different mechanisms
were assumed but good fit was found only assuming CEE mechanism, Fig. 11.40.

3 3
(a)
2 2]
-
g1 ’-E’ 1
= S
0 0
-1 -1 1
-24 -20 -16 -12  -08 -24 -20 -16 -12 -08
E/Vvs. Ag/Ag’ : E/Vvs Ag/Ag’
1.6 16 ]
1.2 1.2
0.8 0.8
» ®
cEl 0.4 1 -—‘E 0.4
S 0.0 < 00
-0.4 | -0.4
-0.8 -0.8
-1.2 ' -1.2 | ;
24 -20 -16 -12 -08 -24 -20 -16 -12 -08
+
E/ Vvs. Ag/Ag’ E / V vs. Ag/Ag

Fig. 11.40. Comparison of the experimental (symbols) and the simulated (lines) CV for 3 mM
Zn?" in HMPA at v = 0.1 V s%; mechanisms: a) E, b) EE, ¢) CE, d) CEE.10®

Convolution for spherical electrodes was considered by Oldham.%®
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11.13 Voltammetry of adsorbed species

In above voltammograms of species in solution only were considered. In such cases
voltammograms are determined by the diffusion of electroactive species to and the electrode.
Another case is when the electroactive species are adsorbed at the electrode surface and their
diffusional transport might be neglected. Such cases will be considered in this chapter.

11.13.1Reversible electrode process

Let us assume that initially ox is adsorbed at the surface and the redox reaction takes place at
the surface between two adsorbed species, i.e. only adsorbed species are electroactive:

Ogds +Ne = Rggs (11.75)

In such a case the current is:
i _aro(t) _arR(t)

= (11.76)
nFA ot ot
and the sum of the surface concentrations of ox and red forms is constant:
Tot)+Tr(t) =To (11.77)

*
where I'g is the initial surface concentration of the ox species. Assuming Langmuir adsorption
isotherms the surface coverages are:

Fot) = Bol'o,sCo(0:1)

1+ fol'o,sCo(0.1) + frI'R sCR (0, 1)
PRIRsCR(0,1)

1+ fol 0,50 (0,t) + BrI'R sCR (0,1)

where T'j 5 are the surface coverages at saturation. The ratio of the surface concentrations is:
To() _ Aol'o,sCo(0,t) _bpcp(0,)
I'r(t)  BrIRsCR(OT) brcr(0,t) (11.79)
bo = :BOFO,S br = IBRFR,S

For the reversible reaction:

(11.78)

Ir(t)=

Co(0,t) _ 0
Cr(0.D = exp[nf (E E )} (11.80)
and its substitution into Eg. (11.80) gives:
I'o(0,t :
ralty (%}exp[nf (e-%)] (11.81)
and the potential changes linearly with time:
E=E-wt (11.82)
then the current:
i dlo(t) _arp(t) v (11.83)
nFA ot oE

This leads to the following equation for current:



and the peak current:

is observed at
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n2E2A ' (bo /bR)exp[nf (E - EO')J
| =

RT [1+ (bo /bR )exp[nf (E — Eol)ﬂz

2p2
. n“F *

Iy = VAI'
Pogrr 0 ©
Ep:EO'—ﬂln[bszg

nF bR

(11.84)

(11.85)

(11.86)

where Eg " is the formal potential for the adsorbed species which might be different from the
formal potential of the species in solution. The plot of current versus potential is displayed in

Fig. 11.41.

(n2F2IRT)vAT,

Ep
i
— l (n?F%IRT)VAT

Fig. 11.41. Cyclic voltammetric curve for the reversible surface redox reaction and Langmuir

adsorption isotherm.®

The cyclic voltammograms of surface reaction are different from those observed for diffusing
species; the peaks are symmetrical and the peak current is proportional to the sweep rate, v, (not
v2). The peaks are narrower with the half-with of:
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RT 90.6 R

AEp 12 = 3.53F == mV, 25°C (11.87)

Fig. 11.41 presented cyclic voltammetric curves for the reversible redox process of adsorbed

species following the Langmuir isotherm. For the Frumkin adsorption isotherm similar but
flatten curves are obtained, Fig. 11.42.

y, anod.
or Wy,

W, cath.

Fig. 11.42. Cyclic voltammetric curves for the adsorbed species assuming the Frumkin
adsorption isotherm; the interaction parameter (-g) is indicated in the graph, the value of O
corresponds to the Langmuir isotherm, negative value corresponds to repulsion and positive to
attraction between the adsorbed molecules.!*

A practical example of the reduction of 9,10-phenanthrenequinone irreversibly adsorbed on a
pyrolytic graphite electrode in 1 M HCIO4 is shown in Fig. 11.43.
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I
e

Current, pa

Fig. 11.43. Cyclic voltammetric curve of the reduction of 9,10-phenanthrenequinone irreversibly
adsorbed on a pyrolytic graphite electrode in 1 M HCIO4, v = 50 mV s; continuous line —
experimental, dashed line — calculated using Eq. (11.84), points — taking into account Frumkin
isotherm. !

Let us also consider another mechanism of electrosorption where only the product of the redox
reaction is adsorbed at the surface and the diffusion of ox might be neglected (its concentration is

*
sufficiently large i.e. the surface concentration is Co =Co(0):

for which, assuming Langmuir adsorption isotherm, the current is:

©_ _do_ do_ kfexp[—af(E—EO)](F*-FR)CO(O)

=0p—=0V—==

where o1 is the charge necessary for the full coverage, o1 = nFI™*, in C cm?, k? in cm® s mol*
and k% in s, I'* is the total surface concentration of active sites, and I'r is the surface
concentration of adsorbed R. Introducing the surface coverage 6k = I'r/T"™* leads to:

i = kYT *exp| —a f (E~E) |(1-6r ) co (0) (11.90)
B kglr*exp[(l—a) f (E - EO):|6R

The equilibrium potential is obtained when i = 0:
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RT, | (1-6R)

_g0, RU
Eeq=E + = In k01CR 9; (11.91)

q

where * denotes equilibrium values. The reference potential, Ep, is usually taken at & =0.5 and
defining = E - E,, Eq. (11.90) becomes:

i=F {v (kf(l—a)kglar xgrl-a ) (1-6g)e - (kf(l—a)kglar* ¢ 1—a) O =) fn} _

(11.92)
=F{k(1-06r)—koR|
where
k=kOexp[-afn]; k= koexp[(l—a) fr]
(T-a), oo w(1-a) (11.93)
KO = (k)™ (k%) T*(co)
and the final equation may be written as:
[ :—O'lvddi;:F[k (1—0R)—k0R] (11.94)
At a constant potential current is zero and the surface coverage might be determined as:
L (11.95)

Op = — =
R 1+exp[ fn]

It changes with potential from zero to one. Its derivative necessary for the determination of the
current is (reversible case):

dHR _f exp[ fﬂ]
dE {1+exp| f77]}2 (11.96)
i = oyVf exp[ f77] |
= oy .
{1+exp[ f7]}

Eq. (11.96) is formally identical with Eqg. (11.84) when bo = br. Plots of Egs. (11.95) and
(11.96) are shown in Fig. 11.44.

1.0 10
0.8+ B 84
0.6 < 6
>
< 1]
0.41 T 4
3
k]
0.2+ B 24
0.0 T T T T T 0 T T T T T
-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2
nlv nlVv

Fig. 11.44. Dependence of the surface coverage and its derivative on potential for the reversible
reaction with the red form electrosorbed at the surface on potential.
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11.13.2 Irreversible electrode reaction

Let us assume surface reaction as in Eqg. (11.88) which is described by Eq. (11.94). For the
totally irreversible process one gets:

i=0'1ddif= Fk (1- 65 )= Fk°(1- 65 )exp(-afn)

=0 LR = RO (1- g Jexp(~ar ) (11.97)
n
dogg  FkC°
R _(1-6R)exp(-af
dn le( R) IO( a 77)
with the solution
0
OR =1—exp{—%e_m’7} (11.98)
but
: R
| = O'1V—
dn
0 0 (11.99)
d_6?= Fk e_afnexp _RTk -2l 7
dn oy aoV

The plot of the surface coverage and its derivative versus overpotential for the irreversible
electrosorption is displayed in Fig. 11.45. Comparison with the reversible case, Fig. 11.44,
reveals that in the case of the irreversible adsorption the curves are asymmetrical, the current
increases slowly then decreases more rapidly after the peak. The peak potential depends on the
kinetics and the sweep rate:

. RT [ RT k°
Epeak =E° +——In| — — 11.100
peak aF [aal v J ( )
The peak half-width is larger than for the reversible case:
RT ) 625
AEpeak,]_/Z = 244(a—|:j = 7 mV 250(: (11101)
The peak of d@/dn is:
do aF
— =—— 11.102
d |peak eRT ( )
where e ~ 2.718, the peak current depends linearly on the sweep rate:
OCFGlV

= L 11.103
P (2.718)RT ( )
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Fig. 11.45. Dependence of the surface coverage and its derivative on overpotential for the
irreversible electrosorption reaction for k%v = 10 mol V! cm™,

11.13.3 Quiasi-reversible electrode reaction
The quasi-reversible process is described by Eq. (11.94):112

d Or Fko —-af (1-a)f

SR R 11— 05)e ¥ _gne U 11.104

T~ o L 0R) re(t) 7] (11.104)
Solution of this differential equation after integration from the initial7; to final 7. and

assuming a = 0.5 is:

A _ _ m a2 _ _
0= — Aexp {_ (exp( 8772; exp(aﬂz))} T exp { oy Aexp(-tig)— Aexa(an) }d 1 (11.105)
7i
where:
0
A=FK Aot —ost (11.106)
O'1V
and the derivative is:
(e_anz + ea772 )exp |:_§(e_a772 _ ea’72 )}
d6r _ Aexp(-an,) + A (11.107)
n

m A
x j exp[—an + —(e_a” - eaﬂ)}dn
a
i
Examples of the plots of the surface coverage and its derivative calculated using above equations
are shown in Fig. 11.46.
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Fig. 11.46. Dependence of the current on potential for different reaction rates for the reduction
with formation of adsorbed species.

With increase in irreversibility the peak decreases and is shifted to larger overpotentials. This
shift is accompanied with growing asymmetry of the peak shape. The peak potential as a
function of the sweep rate is displayed in Fig. 11.47. Such plots permit for determination of the

reaction kinetics.
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Fig. 11.47. Dependence of the peak potential on log of the sweep rate for irreversible and quasi-
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11.14 Both dissolved and adsorbed species electroactive

In the above chapter we have considered that only adsorbed species are electroactive. Now let
us consider that species in solution and adsorbed at the electrode are electroactive. In such a case

Eq. (11.76) must be replaced by:

8co(x,t)| _ aro(t) __ DR aCR(X,t) . 6FR(t) _ i (11108)
X o ot X lyg ot nFA

For this case case only numerical solutions exist. Let us consider few possibilities.

Do

11.14.1Product R strongly adsorbed

Let us suppose that only ox is initially present in the bulk of solution only the form red, R, is
adsorbed at the surface. In such cases adsorption peaks appear before the diffusional peaks, Fig.

11.48

1
(n*F?IRT)AC.D Y2y

0.1 0.0 -01
WE=Eyp), V

Fig. 11.48. Simulated cyclic voltammogram for the reduction process when the product, R, is
strongly adsorbed at the electrode surface. Dashed line in the absence of adsorption.*3

The effect of adsorption strength on the voltammograms is shown in Fig. 11.49. With increase
of the adsorption strength, that is the parameter fr, the adsorption peak appears at potentials
more positive than the voltammetric peak due to reduction from solution.
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Fig. 11.49. Cyclic voltammograms for reduction when the product is strongly adsorbed. The

adsorption energy dimensionless parameter 41“}} Pr(nFv/ RT)ll2 / (7Z'DR)1/ 2 decreases from A to
D: A) 2.5x105, B) 2.5x105, C) 2.5x10%, D) 2.5x103 112

The effect of the scan rate on such process is shown in Fig. 11.50. The normalized current
~iv'¥2 for diffusion processes should be independent of the sweep rate. However, with increase

of I'r the reduction peak increases because the adsorption peak is proportional to v.

0.4+

U1a’2

1/2
o

(nPFPIRT)ACD
o
(%]
!

| | |
200 100 0 -100
(E - E”Q)n, mV

Fig. 11.50. Effect of scan rate and I'r on the voltammograms when product is strongly adsorbed.
Parameter 4Tg B (NFv/RT)Y2 / (zDR)V?: A) 1.6, B) 0.8, C) 0.2.12®
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The influence of the bulk concentration of ox, CB on the LSV when product is strongly

adsorbed, at a constant sweep rate is displayed in Fig. 11.51. It is interesting to note, that as the
bulk concentration is low, only the adsorption prepeak is visible. With increase in the bulk
concentration the adsorption peak increases and approaches saturation value while the

diffusional peak current increases with concentration. Therefore, i/c(*) for adsorption peak
decreases with concentration while the diffusional peak is approximately constant.

04+

(nPFYRT)AC.D 0"
o
N
I

o—=" | ! 1
200 100 : 0 -100
(E—Eqp)n, mV

Fig. 11.51. Effect of the bulk concentration of ox, c’{), on the reduced current in LSV;
co (D)2 /[4rg(an/ RT)UZJ A) 0.5, B) 2.0, C) 8.0.113

11.14.2Reactant O strongly adsorbed

When the reactant, form ox, is strongly adsorbed, its reduction is energetically more difficult
and a postpeak is observed, Fig. 11.52.
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Fig. 11.52. Cyclic voltammogram for reduction when the reactant, O, is strongly adsorbed.!*®

11.14.3Weak adsorption of reactant or product

In the case of weak adsorption no separate peaks are formed and both processes take place at
the same potentials. When reactant is weakly adsorbed the cathodic peak is affected. The effect
of the sweep rate on the reduced current in cyclic voltammetry is shown in Fig. 11.53.
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Fig. 11.53. Effect of scan rate on cyclic voltammograms when reactant, O, is weakly adsorbed;
relative scan rates are 2500:100:1; 4F6ﬁo(nfv/ RT)1/2/(7TDO)1/2 A) 5.0, B) 1.0, C) 0.1.1%3

In the case when the product of the electrode reaction, R, is weakly adsorbed the curves with
Ipa > Ipc are obtained, Fig. 11.54. To distinguish between the cases of weak adsorption of reactant
or product the ratio of anodic and cathodic peak currents, ipa/ipc On the sweep rate might be
studied, Fig. 11.55. This ratio deviates from the value of one at higher sweep rates: for the
reactant adsorption this ratio decreases and for the product adsorption it increases with the sweep
rate.
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Fig. 11.54. Effect of scan rate on cyclic voltammograms when the product is weakly adsorbed;

4FEﬂR(an/RT)1/2/(7zDR)U2: A) 20, B) 5 C) 0.1; the relative scan rates are:
4000:1500:1.%13
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Fig. 11.55. Peak ratio vs. sweep rate for cyclic voltammetry when (A) the reactant is weakly
adsorbed and (B) when product is weakly adsorbed.*®
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11.15Thin layer voltammetry

Classical LSV considers semi-infinite diffusion to the electrode. Another approach used in
analytical chemistry is to study thin layer cells possessing a large surface area to volume ratio. In
such cells the volume is of a few pl and the thickness of the solution layer of 2-100 um. For such
cells when the sweep rate is slow the solution layer thickness, I, is smaller than the diffusion
layer thickness, that is: | << (2Dt)? and the diffusion inside the solution layer might be
neglected and the concentration is uniform. Examples of such cells are displayed in Fig. 11.56
and 11.57.

Auxiliary electrode
Micrameter —l— y

-=—— Reference electrode

Glass

C wall

Working
Cavirty electrode (glass)
Platinum
Thin -
solution
layer
|
Micrometar
(€} | Auxiliary
electrode
(a)
Platinum

electrodes

Cavity

(2)

Fig. 11.56. (a) Schematic diagram of a single electrode thin-layer cell; (b) micrometer twin-
electrodes thin-layer cell with adjustable solution layer thickness, (c) close-up of electrode
portion for single-electrode thin-layer electrode.'*
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e
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Fig. 11.57. Capillary-wire single-electrode thin-layer cell (solution is contained between the
metal rod and inner surface of glass capillary).!t*

When potential is swept slowly the concentration of 0x, co(t), is uniform in the whole volume
and one can write the following equation for current:

i — —nFV “g—t(t) (11.109)
where V is solution volume. The concentration is uniform, with the error ¢ if the sweep rate is
below:

2
<RUZD, (1“’9) (11.110)
nF 312 1+¢
Assuming that the redox reaction is reversible one can write the Nernst equation:
E— E()‘ RT R p ot Co(t)
nF CrR (t)
and (11.112)
Co =Co(t) +Ccr(t)
and the concentration is:
0
= exp(nf(E-E
cot) = oy P ) (11.112)

© 1+ exp(nf (E-E)
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The equation for current is:
- n2F2va6 exp[nf (E — EO']

11.113
RT ( )

{1+ exp[nf (E — EO']}2

which is formally identical with Eqg. (11.84) in which the amount of moles of adsorbed species,
AT o, is replaced with Vco™. In this case the current peak appears at E* and its value is:
- n2F2va6
P 4RT
The observed current is proportional to the sweep rate and concentration or more precisely the
amount of moles of ox. An example of thin-layer voltammogram is shown in Fig. 11.58.

(11.114)

10

0.5

Figure 11.7.3 Cyclic
current-potential curve fora
nernstian reaction withn =1
V=10puL, [v| = 1 mVs,
Cs=10mM, T=298K
[From A. T. Hubbard and
F. C. Anson, Electroanal.
Chem., 4, 129 (1970), by
-1.0— courtesy of Marcel Dekker,
Inc.]

Fig. 11.58. Thin-layer cyclic voltammogram for the reversible process forn=1,V=1.0 ul,v =
1mV st co =1 mM.14
Studying the peak current versus the sweep rate for very thin layers a linear relation is

obtained, however with the increase in layer thickness transition from i, ~ v to iy ~ v¥2 is
observed.
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Fig. 11.59. (a) Dependence of the peak current on scan rate for different layer thickness; (b)
zones of thin layer and semi-infinite diffusion.!?®

For the irreversible redox reaction the current is described as:

i = FAk¢Co (1)

and the curves with peak are obtained. The peak potential and current are:

(11.115)
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0
Ep _g0, RT In ARTKk
aF aFwW

0
a0 _ _ g0 __AK _ _g® 11.116
i = FAK coexp{ af(E E ) avaeXp[ af(E E )}} (11.116)
i _aFZcha
P 2.718RT

These equations are formally similar to those developed for the adsorbed species, EQs.
(11.103) and (11.100). An example of the LSV curves for irreversible redox reaction is presented
in Fig. 11.60.

E-E" VWV

Fig. 11.60. Theoretical LSV curves for one-electron irreversible reaction for different values of
k%: (A) reversible, (B) 10, (C) 108, (D) 10° cm s; other parameters: v =2 mV st A =05

cm?, Co = 1.0 MM, o= 0.5,V = 2.0 ul.16

11.16 Chemical reactions in voltammetry

For linear sweep or cyclic voltammetry only numerical solutions exits.”#3261 Solutions
obtained for the preceding or following reaction depend on the kinetics of the electron transfer.
Although the voltammograms can be simulated for different electron transfer kinetics in the
following sections it is assumed that the electron transfer is fast (reversible).

11.16.1Preceding chemical reaction, CE

The case of the preceding chemical reaction, Eq. (9.174) the for the reduction reaction current
is lower than that without chemical reaction limitations.!t”11® This is illustrated in Fig. 11.61.
With increase of the sweep rate or decrease of the rate constants the peak current function
decreases. This is also shown in Fig. 11.61 and 11.62. These numerical results were obtained by
solving the appropriate integral equations but can also be obtained using digital simulations.
These integral equations might be represented as infinite series. The kinetics might be estimated
from the ratio of the kinetic, ipk, to the diffusion limited ipq, peak currents. The simplified semi-
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empirical equation describing dependence of this ration on the kinetic parameter is shown in Eq.
(11.117):

ok _ ! (11.117)
ipd  1.02+0.471/nFv/RT (K¢ +kp) / K

Second order preceding reaction was also considered in the literature, %120

20 80 0 -60
POTENTIAL, mv

Fig. 11.61. Dependence of the dimensionless current function versus potential defined as:
(E - Exo)n - (RT/F) In(K/(1+K))  for different values of the Kkinetic parameter

JNFV/ RT (kg +kp) / K 18
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Fig. 11.62. Dependence of the reduced peak current function, (‘P/K)/\/RT(kf +Kp) / nFv

versus dimensionless potential §=nF(E—E0)/RT for different Kkinetic parameters
A=nRT (ks +kp)/nFv and K = 10" Following chemical reaction, EC of the first and the
second order

In the case of the following chemical first order reaction the anodic peak current decreases
because the electrode reaction product disappears in chemical reaction, see Fig. 11.63. However,
the anodic to cathodic peak ratio depends also on the switching potential i.e. the potential at
which the sweep rate is inversed because the amount of the red form is decreasing with time and
if the switching potential is more negative, longer time is passed until oxidation potential is
reached and the anodic peak is smaller.

The cyclic voltammograms in the case of the totally irreversible following chemical reaction
are illustrated in Fig. 11.64. It can be noticed that with increase of the kinetics of the following
reaction anodic peak decreases and the cathodic peak potential is shifted towards more positive
values. The peak potential might be described by the following equation:!8

Ep = Eypo —%(0.780— In | R0 ] (11.118)

nFv
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O+ne=R=7
NE o -I-b

Jr X(ot)

POTENTIAL,mv

Fig. 11.63. Dependence of the dimensionless current on potential defined as:
(E-Eyo)n—=(RT/F)In(1+K)  for different values of the Kkinetic parameter

K\/an/ RT (ks +ky) for EC (reversible) mechanism in cyclic voltammetry.'!8

oX=Ri 7

V7 X(at)

80 120 &0 0 -60
{E'E"l:il'l,l'l'l‘n'

Fig. 11.64. Cyclic voltammograms for the EC (irreversible) mechanism for different values of
the Kinetic parameters RTki#/nFv in cyclic voltammetry.!8

Example of the dependence of the ratio of anodic to cathodic peak current as a function of the
kinetic parameter log(ks t), where 7 is the time from E1. to the switching potential E.. is displayed
in Fig. 11.65, which permits for the simple determination of the kinetics.
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Fig. 11.65. Ratio of anodic to cathodic peak current as a function of the kinetic parameter ks z for
the first order following chemical homogeneous irreversible reaction.!8

The following second order dimerization reactions were also studied.!?%1?2 These reactions
may proceed according to different mechanisms:?*

1) DIM1
This is the classical radical dimerization:
AT rez A (11.119)
2A 2 A-A (11.120)
with reaction (11.120) as the rate determining step.
2) DIM2

After the first electron transfer, reaction (11.119), three different mechanism are possible:
a) DIM2-ECE

AT+ A2 A-AT (11.121)

A-AT e A-A (11.122)
with reaction (11.121) as the r.d.s.
b) DIM2-DISP1
Taking into account reduction potentials of reaction (11.119) and (11.122) homogeneous
reaction in solution is possible:

A-AT+ A2 A-A+ AT (11.123)
with regeneration of the ox form. Mechanism involving reactions: (11.119), (11.121), and
(11.123) with (11.121) as ar.d.s. is called DIM2-DISP1 mechanism.

c) DIM2-DISP2
In this mechanism reactions: (11.119), (11.121), and (11.123) proceed with (11.123) as the
r.d.s. and with the equilibrium constant of reaction (11.121) denoted as K.
3) DIM3
In this mechanism after two electron reduction:
At +2e =2 A (11.124)
dimerization of the substrate and product occurs:

AT+ A =2 A-A (11.125)
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In all these mechanisms the final product is a dimer A-A. These mechanisms might be
distinguished from the dependence of the peak potential on sweep rate and concentration. These
equations are shown in Eq. (11.126)'?! assuming that the rate determining step is irreversible and
the electron transfer is reversible:

DIM1 Ep=E®-1.038"— RT , RT |pkacox
F Vv
DIM2-ECE  E,=E?-0456 30+ XL ¥160x
F v
DIM2-DISPL  E,=E°-0. 803% g| kiCox (11.126)
Vv

2
Kkl CO
DIM2-DIsP2  E.=E®_1.043°  RT M
P F  3F v

RT  RT | kiCox
v
Saveant and coworkers published a series of the theoretical and experimental papers on the
determination of the dimerization mechanism,121:123-138
An example of the determination of the kinetics of DIM1 reaction for dimerization during
reduction of immonium cations is illustrated in Fig. 11.66.

DIM3 Ep—EO 0.401——

L BB TT E S I RUT! N S S TR 1! H NI A B S U1

1
00 0,5 5 50v. 500
Viv-s)

1,70

Fig. 11.66. Dependence of the peak potential on the logarithm of sweep rate for 1 mM
immonium iodide in acetonitrile.*?

At the inflection point v; = 87 V s, which give the dimerization rate constant:

K =08— Vi —28x105M~1s7! (11.127)

RTCO
Determination of the kinetics of the dimerization reaction is probably easier from the ratio of
the anodic to cathodic peak current.’?> Olmstead et al. published a table of the ratio of the anodic
to cathodic peak currents, ipa/ipc, s a function of the kinetic parameter o defined as:
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log = log (klcgr) 1+0.034(ar — 4) (11.128)
where 7 is the time from the reversible half-wave potential to the switching potential, Ex.:
El/Z — Eﬂ, nF
=—< 24 ar= E E 11.129
. =7 (Ev2—Ez) ( )

For the reversible processes E12 is observed at 0.85 ipc. An illustration of this method is shown
in ref, 139

11.16.3 ECE and disproportionation (DISP) mechanisms

These two mechanisms are interrelated and three reaction schemes can be
distinguished.1*-14’ECE
This mechanism is described by the reactions

O +ee Ry (11.130)
K

R, kb 0, (11.131)
f

0,+e2R, (11.132)

where the chemical reaction (11.131) is the rate determining step.
However, because of the standard potentials of reactions (11.130) and (11.132) a
homogeneous redox reaction is possible:

kp
R1+02—> O1+Ry (11.133)
In the ECE mechanism this reaction does not proceed.

2) DISP1
In this mechanism reactions (11.130), (11.131), and (11.133) proceed with the first order
reaction (11.131) as the rate determining step.

3) DISP2
In this case reactions (11.130), (11.131), and (11.133) proceed with the second order
reaction (11.133) as the rate determining step.

The kinetics of these processes might be studied using the dependence of the peak potential on
the sweep rate and concentration but it is simpler to study the increase of the peak current due to
these reactions. These equations are: 140146

ECE
RT RT, RT RT
Ep_E1—078? Sp I {\[(1 K)} (11.134)

DISP1

Ep E1—1127ﬂ RT | RT L RT, K (11.135)
F 2F F 2F v(l+K)

DISP2
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Ep = £0 126811 RT |, RT RT, knto (11.136)
F 3F F 3F K
where k =K¢ +kp and K =k¢ /Ky .
Similar equations were also developed for the convoluted curves.
Nevertheless, it is usually easier to study the increase of the peak current and to determine the
kinetics from the plot of the peak current in the presence of the reaction, ip« to that in its absence,
ip,d for ECE 48149 and DISP1%01% mechanisms.

103

11.16.4 Catalytic processes

The increase of the current due to the catalytic reaction depends on the reversibility of the
redox process. Changes in shape of the cyclic voltammograms for the reversible charge transfer
and irreversible catalytic reactions are displayed in Fig. 11.67.118

Tolm ke/ax 1O
0==R

08

0o

04

V7 X(at)

02

0 O - ’ i’

20 60 o -60
(E-E,)n,myv

Fig. 11.67. Cyclic voltammograms (current function) for the reversible charge transfer followed
by the irreversible catalytic reaction for different values of the kinetic parameter

kf la= Rka [nFv 118
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With increase of the kinetics of the catalytic reaction the cathodic (forward) current increases
and the anodic peak current disappears as the product is quickly transformed into ox. The ratio of
the kinetic to diffusion limited peak current is displayed in Fig. 11.68.

4.0

30+ Yo T

g 20

|.Op

0.0 l ] ]
0 05 O 15 20

A

Fig. 11.68. Dependence of the ratio of the kinetic, ipx to the diffusion limited, ipq as a function of
the kinetic parameter (RTk¢ /an)ll 2 for the catalytic mechanism with reversible (VII) and
irreversible (V1I1) electron transfer reaction.!8

Some applications were reviewed by Savéant.'>2
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12 Rotating disk electrode
12.1 Introduction

In the above chapters transport of electroactive species to the electrode was by diffusion only.
These methods are called transient techniques. In this chapter we will consider one technique
with forced convective mass transport: rotating disk electrode. Other methods with convective
(called also hydrodynamic) mass transport methods are: wall jet electrode, vibrating electrodes,
streaming mercury electrodes, etc.!®31% |t should be added that in the electrochemical cells there
might appear natural convection related to the temperature gradient which causes the density
gradient and solution movement. There might also be convection due to gas bubbling. However,
using the rotating disk electrode the hydrodynamic conditions are very well defined.

The rotating disk electrode, RDE, is displayed in Fig. 12.1. It is placed vertically and rotates
with a constant frequency, f, in, s (or Hz) revolutions per second. The angular frequency is then
w=2xf . The disk is usually made of Pt, Au, glassy carbon, but may be made of any other

material.

2 Brush
= contact
Shaft __|
(brass)
Insulator Disk
(Teflon) (platinum)

Bottom view

Fig. 12.1. Rotating disk electrode.®
12.2 The solution velocity profile

In order to solve the equation for the current at the RDE one should know liquid velocity, V ,
profiles in solution generated by the electrode rotation. This problem was solved separately by
von Karman and Cochrane.'®* There are two equations describing the system which should be
solved simultaneously:

1) Equation of continuity

divw =0 (12.1)
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2) Navier-Stokes equation

OI—V=—iVP+vV2\7+L (12.2)
dt dg ds

where V is the vector of the solution velocity:
V(% y,2) = Vy + [Vy +kV, (12.3)

where i, j k are unit vectors of the axes, P is the pressure, V operator denotes the gradient:
P P —oP

VP =gradP =1 — —+k — 124
J x Ty & (12.4)
div is the divergence of a vector:
_ _ 0V oViy oV,
diw =v.V =X Z LY | Tz (12.5)
OX oy 0z

ds is the solution density, v is the kinematic viscosity, in cm?s?, i.e. the ratio of the solution
viscosity, 7s and density:

(12.6)

f is the force per volume exerted on a solution element by gravity. The kinematic viscosity of
water is:

viy,0=0.01cm?s™" at 20°C (12.7)

The Navier-Stokes equation represents the Newton’s first law for the liquid, the second term
represents the liquid friction forces, and the third the natural convection due to differences in
solution density.

In order to solve this problem the Cartesian coordinates: X,y,z, should be changed to
cylindrical, r, y, ¢, see Fig. 12.2.

Fig. 12.2. Cylindrical coordinates for the RDE.®

Rotation of the electrode causes movement of the solution towards the disk and then outside of
the center. This process is well visible when graphite powder is added to the solution, Fig. 12.3.
Rotating disk acts as a pump sucking solution for the bulk to the surface.
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Fig. 12.3. Liquid flow patterns at a RDE. Electrode rotates at 10 rpm.

Moreover two types of flow may be distinguished: laminar and turbulent. This is illustrated in
Fig. 12.4.

—— ——
———e e
—— ———
-—— -
Laminar flow Turbulent flow

Fig. 12.4. Laminar (left) and turbulent (right) flows.?
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When the flow is smooth and steady, and occurs as if separate layers (laminae) of the fluid
have steady and characteristic velocities, the flow is said to be laminar, Fig. 12.4. The velocity at
the tube walls is zero and it is maximal at the center and the velocity profile is parabolic. This is
observed at lower velocities. On the other hand when the flow is fast it can become locally
chaotic and unsteady it is called turbulent. In such a case the fluid also moves in tube but on
average forms a different velocity profile. Turbulent flow will also appear if there is an obstacle
in the solution, Fig. 12.4. In hydrodynamics one uses dimensionless variable called Reynolds
number, Re, defined as:

Re= U IV (12.8)
where uveh is the characteristic velocity, | is the characteristic length, and v kinematic viscosity of
the fluid. When this number exceeds certain critical number, Rec, the flow becomes turbulent.

For the RDE the characteristic velocity of the edge of the disk is: veh = @ r1 where ry is the disk
radius. Then, the Reynolds number is:

_ o
v
For lower rotation rates the flow is laminar. More details will be given later.

Re (12.9)

The problem solved bay von Karman and Cochrane is defined as:
y:0, Vr:O, Vyzo, Vq):a)r
y—)OO, Vr:O, Vy:UO V(p:O
assuming that:
1) The flow is stationary (dV/dt = 0) and laminar
2) The flow does not depend on the coordinate ¢, because of the axial symmetry

olop=0
3) The fluid is not compressible and its surface is horizontal
4) f =0 natural convection might be neglected

Under such conditions the continuity and Navier-Stokes equations might be written as:
oV

Ny Ve Dy
o r oy

=0

2 2 2
v M Vo Ve [0V 0V Ve Yy
S O oy or? ror 2
2 2 (12.10)
Y 6V(p _VrV(p Ry GV(sz 8V(p+8V(P+8V(p_\/_(p
or r oy’ or? ror g2

yNe L Ny ap [azvy A, avy]
r

+Vy + =V + +
or oy  dgoy oy’ or2  ror

The solution, i.e. three components of the velocity, was given in terms of the dimensionless
distance:
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y = \E y (12.11)
1%

2
Vr=r-a)-F(7)=ra)[ay—%—%b73+"'] (12.12)
by + < ay®
V¢:r-a)-G(y):ra} 1+ y+§a7/ 4o (12.13)
3 p,4
Vy:(a)v)lle(;/):\/a)-v —ay2+%+%+~-- (12.14)

where a =0.51023 and b = 0.6159.
At the electrode surface, when y — 0, the solution velocity can be written keeping only the
first term in Eq. (12.14):

Vy = Jov (—ayz) — 0.5102 032y V2 y2 (12.15)
On the other hand, when y — o, the solution for H(y) is given by:
H(y) = —0.88447 + 2.11exp(— 0.884y) —... (12.16)
and the velocity becomes constant:
Vy =-0.88447 Jov = Ug (12.17)

Hydrodynamic layer which rotates with the electrode has thickness

m=36=[2y,
(12.18)

Yh 23.6\/2
()

It is called the hydrodynamic or Prandtl boundary layer thickness and represents the thickness
of liquid dragged by the disk. Under these condition H(3.6) = 0.8 H(«) and G(3.6) = 0.05 G(0).
This means that outside this layer the solution velocity is small, 5% of the rotation at the disk
surface and the vertical speed is 80% of the maximal value at infinity. The plots of the functions
F, G, and H on distance from the electrode is illustrated in Fig. 12.5.
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Fig. 12.5. Variation of the velocity components with the dimensionless distance 5.8

Function F() corresponding to the radial velocity is zero at the surface as for the laminar flow
the first layer of the solution turns with the disk surface. It passes through a maximum and
decreases far from the surface meaning that the solution far from the disk surface does not flow
radially. Function G(») corresponds to the solution rotation velocity; solution rotates with the
disk at the disk surface and with the increase of distance from the surface this rotations decreases
to zero due to the friction (viscosity). Function H(») corresponds to the velocity towards the disk
from the bulk of solution. Of course at the electrode surface solution cannot go any further but
with the increase in distance from the disk it goes to a constant. The velocity profiles are shown
in Fig. 12.6. Vector representation of fluid velocities near the rotating disk are shown in Fig.
12.7.

-y

-r
|

—Uy = 0.88447 (av)"?

Fig. 12.6. Variation of the normal, Vy, and radial V; fluid velocities as functions of the distance
from the disk surface and the radial distance, r.8



303

[=]
=]

~

ER——
— ]

@

y = 0 EEEETTT

S

—
B
—

(k)

Fig. 12.7. (a) Vector representation of fluid velocities near the rotating disk; (b) flow vectors in
the liquid.®

The size of the hydrodynamic layer, yn, depends on the rotation rate. For water v=0.01 cm? st
and the following distances are obtained:

Table 12.1. Dependence of the thickness of the hydrodynamic layer on the rotation angular
velocity.

o/s? f/rpm yn/cm
1 9.55 0.36
10 95.5 0.11

100 955 0.036

1000 9550 0.011

12.3 Solution of the convective-diffusion problem

Knowing the solution velocity in liquid it is possible to solve the Fick equation involving
convection and diffusion. For one dimensional conditions it has been already presented:

%_ a\]i'x
ot OX
OC; -
Ji,=-Di L +cV 12.19
1,X I 5X 1YX ( )

aCi aZCi - 8ci
—t=D—l-v,—
ot ox2 OX
However, for the rotating disk electrode a three dimensional equation must be considered:
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i aci Jacl +kaci +Ci\_/=—Di VCi +Ci\7
OX oy oz

%=—V'J_i =diVJ_i
ot

_V 2L
ox oy oz

%: D. azci N 820i N azci 7 oci acj
' ox Y oy oz
div(V)=0

oc; 7 OC 7 OCj OVy aVy ov,
— —Gj +
X2 8y2 072

j (12.20)

g, %y G _yg o6
X ox y&y ‘oz

oG _ D, azci 820i N 82ci
ot x> oy?  oz®
0? N 0? N 0?
ox? 8y2 072
In the development it was taken into account that divergence of V' is zero, Eq. (12.1). It can be

% =DV2c;-V+Ve;  where VZ=A=

noticed that the flux is a vector but its divergence, div, and the Laplacian V2 are scalars.
This problem may be simplified taking into account cylindrical symmetry of the system.

Changing Cartesian coordinates into cylindrical and assuming a steady-state, oCq /0t =0 gives:
vV 2 2 2

aco+ oCo +V, oCo - Do aco+6co+1c_o+iaco

o r op Yoy oy ard ror 2 5¢?

This equation might be further simplified assuming:
1) Do is independent of the concentration

v, (12.21)

800 8 CO ~0

2) co is independent of the coordinate ¢, i.e. >
o0 O

3) co is independent of the coordinate r fory =0, i.e. for0<r<r; Gg_o =0
r

4) disk surface is smooth

Under such conditions much simpler ordinary differential equation is obtained with the
following conditions:

Vy dCO DO d CO
dy dy?
y=0 ¢5=0 (12.22)

y—>x© Co= Cg
where conditions of the limiting current were assumed. To solve it first substitution is carried
out:
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dg , d%po  dX
dy 2 dy
y dy y (12.23)
Vy o9
DO dy
rearranging and integrating gives:
V
d_X — _ydy
X Do
1 y
In X =——[Vy(2)dz+2 (12.24)
Do 0
1 y
X =a; exp D_ogvy(Z)dz
Returning to the original variables:
y
dCO 1
—= =a; exp| — | Vy(2)dz 12.25
o~ o pLDogy()J (12.25)
and integrating gives:
1 y
dcg = a7 exp = jvy(z)dz dy
o
0 (12.26)
y t
1
co(y) :aljexp D—jvy(z)dz dt +ap
0 Oo
Constant a; might be determined from the surface condition:
0 t
co(0)=0=2a j exp[Dijvy(z)olz]oma2 (12.27)
0 Oo '

ay = 0
Constant a1 might be determined form the condition in the bulk of the solution. The integration
form the surface, y = 0 to infinity might be divided into two parts, one inside the hydrodynamic
layer, [0, yn], I1, and the other outside the hydrodynamic layer [yn, o], Io:

. o 1 t
Co =ay | exp| — | Vy(z)dz |dt =
j {DOJ y

0 0
Yh 1 t o 1 t
=a [ exp = [Vy(2)dz |dt+ag [ exp = [Vy(2)dz |dt = (12.28)
(0] 0]
0 0 Yh 0
Il |2

=ay(l1+12)
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The hydrodynamic conditions inside and outside the hydrodynamic layer are described by Egs.

(12.15) and (12.17);

0 <y<yh V, =— 0510%2yY2y2 = _By?: B =0510°% 12

y
Y > Yh Vy = —0.8845vvw
Integration inside the hydrodynamic layer gives:

Yh 1 ¢
Iy = jexp[D Ivy(z)dr]dt

0 O0
but
t t B3
Ivy(z)dz = I(—Bzz)dz =
0 0

then

This integral might be evaluated using substitutions:

u:31t du:31dt dt:3&du
3Do 3Do VB

The integration limits are also transformed:

y: from 0 to vy

u: from 0 to 3i-yh=3i-3.6\/2=1.995sl>>1
3DO 3DO w DO

For water, v =0.01 cm? s and Do ~ 10° cm? s, the upper limit of u_is large:

U=1.995 3 o.og ~ 20
V10

and the integration might be safely conducted to infinity:

23—

Iy = 3DO eV = ,/3DO'[ 0y ~ ,stOje_” du

o
but the integral to the infinity is known analytically:

o0 3 o
I e du= 1 _[ £ dt- F(ﬂj = EF(EJ =0.8934 or more precisely 0.89298
3 12/3 3) 3 (3
where I'(x) is the gamma function. Then the integral I is:
3 D1/3 1/6

Sel T 0.8934 =1.6126 D3 /0 ~1/2

I =

Next, let us evaluate I>:

(12.29)

(12.30)

(12.31)

(12.32)

(12.33)

(12.34)

(12.35)

(12.36)
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00 t
I, = jexp[D—lojvy(z)dr]dt

Yh 0

t t
[Vy(2)dz = [(-0.8845\ver | dr = ~0.8845\ve t
0

0 (12.37)
. jexp{_o.8845\/m Nt 08845V , 1}:
[

Do
=—~ ____exp|—
DO :| 0.8845\vaw P |: DO

Yh

-3. 18—}

o, 8845\/_ [ Do

Knowing that for aqueous solutions v/Do ~ 102, exponent exp(-3180) ~ 0. Therefore, only 11 is
important and the parameter ay is easily determined:

Co = a; -1.6126 DY v/ 6o ~12

1/2 (12.38)
Cow
ay =O.620—?/3 7
Dov
Using this constant in Eq. (12.28) the concentration as a function of the distance is found:
* 1/2 y B 3
C 0. 620 exp| ———t° |dt 12.39
o(¥)= D1/3 1/6.[ p[ 3G } (12.39)
and the concentration gradient at the surface:
* 1/2
4 _, 62007 (12.40)
dy DO 1%
allows for the determination of the current:
ij =nFADq dc(0) _ ¢ 620 nFADZ 3at/2 8¢y (12.41)

This is so called Levich equation. It predicts that the limiting current is proportional to the bulk
1/2

concentration, ca and the square root of the rotation rate, @~ " . The value:
—b— =0.620nFADZ %y /6 (12.42)
o Co
is called Levich constant. The thickness of the diffusion layer, &o, is:
i) =nFADg ;—0 5o =1.613 DY3w 12,16 (12.43)
0

The ratio of the hydrodynamic and diffusion layer thickness is:

3.6,/1
Yh _ ) <2 3/ v (12.44)
Do

5o 1.61 D%)/s o U2,1/6
The term under root is called Schmidt number:
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Sc= v

Do
and for aqueous solutions it is: Sc = 1000 and do ~ 0.05 yh. The values of these parameters for
different rotation rates are shown in Table 12.2. It should be recalled that the hydrodynamic layer
is the portion of the solution rotating with the electrode and the diffusion layer thickness is the
portion of the solution where the concentration gradient occurs, see Table 12.2.

(12.45)

Table 12.2. Values of the hydrodynamic and diffusion layer thicknesses for different rotation
rates.

wlst yh/cm dolcm
1 0.36 0.018
10 0.11 0.0055
100 0.036 0.0018
1000 0.011 5.5x10

Eq. (12.43) for the diffusion layer thickness was obtained assuming only the first term in Eq.
(12.14). Gregory and Riddiford®? presented more exact equation:

0.36
5o =1.61 DY V612 [1+ 0.3539(%1 } (12.46)
|4

The difference between 6o calculated using Levich and Gregory-Riddiford equations is 3% for
Sc = v/Do =10% and 17% for v/Do =10.
Newman?®® carried out calculation for a wider interval of Do/v and obtained:

1/3 2/3
5o =1.61DY3/ /6412 [1 10.2980 (Ej + 0.14514(E) ] (12.47)
14 1%

Kassner'®* presented a numerical solution valid for up to Do/v = 0.25 and applied it to the
dissolution of Ta in liquid tin.

The shape of the RDE has an influence on the fluid flow. The best shape is the bell-like,
however, it is more complicated to prepare and the cylindrical shapes are usually used in
experimental research.
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Fig. 12.8. Steady state fluid flow patterns at different RDE.'®

12.4 Limitations

There are limitations for the Levich equation, (12.41), at low and high rotation rates. At low
rotation rates the condition that the electrode radius must be larger than the hydrodynamic layer

thickness, yh,
B> yh =36 /1 ~4 /1 (12.48)
w w

©>16— (12.49)

i

that is:
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Assuming v = 0.01 cm?s? and r1 = 0.1 cm, @ > 16 s, or f = 2.5 rounds per second or 153
rpm.

The upper rotation limit is related with the supposition of the laminar flow which at too high
rotation rates become turbulent. The Reynolds number, Eq. (12.9), must be lower than the
critical value, Regr. It was determined®®? that the critical Reynolds number is:

5 r12
Regr > 210° = L (12.50)

which leads to @ < 2x10° s but in practice the limit is lower, o ~ 1000 s = 160 rounds per
second = 9600 rpm because of the non-ideal character of the electrode; it might not be perfectly
polished, surface might not be ideally perpendicular to the rotation axis, there might be a small
eccentricities in electrode position, cell walls might be too close to the electrode, formation of
vortex at the electrode, etc. Reassuming, for aqueous solutions and r1 = 0.1 cm the limits are:

2551 < f <1605t or 153rpm<f <9600 rpm (12.51)

12.5 Concentration profile

The concentration profile is described by Eq. (12.39), which might be rearranged by
substitution:

l 2 Y
Co(y) =0.620-02 : j exp| ——2—13|dt B =0510¥2 V2
D1/3 176 3Do

Y3:it3 dtzsﬁdy
3Dg VB

* 12 1/3 Y
_ Coa) \ED
CO(Y)—0-620 D(13/3V1/6(m 1/2 _1/6}Iexp( )du

Y
co(y) = 1.119c6 _[ exp (—u3)du
0

(12.52)

where Y :y/(3B)ﬂ3. The plot of the relative concentration versus dimensionless distance

1/2
y _ @ is displayed in Fig. 12.9.

y
3/3Do 1.8 DY V6

B
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Fig. 12.9. Dimensionless concentration of ox versus dimensionless distance from the electrode.®

The distance y = 6o when

=0.89, Eq. (12.43).
5/3Do
B

12.6 Current potential curve for the reversible process

When current is lower than the limiting current, the surface concentration is greater than zero,
thatis:y =0, co(0) =0, and Eq. (12.25) becomes:

y
dCO _ 1 Coa)
oy e D—jvy(z)dz =0.62-9 SRR jv (12.53)
and
dCO (0) Co (01/2
=a=062——= 12.54
Integration of this equation gives:
d
co(y):(lj [exp j Vy (z)dz |dt+a, (12.55)
dy 0
F(t)

From this equation it is obvious that the surface concentration (integration from 0 to 0) is co(0)
= ay. Integration to infinity gives the bulk concentration:
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y > o coly)—co

. o (12.56)
Co = MI F(t)dt + co (0)
dy 0
and
x dco(0) 7
Co — Co(0) = —j F (t)dt (12.57)
dy 5
or the current
i =nFADg dcdo ©) _nrapy 0= (12.58)
y
j F(t)dt
0
but
00 D1/3V1/6
[ Ftydt=1.6126—>— =55 (12.59)
0 w

and, in the case where ox and red forms are initially in the solution, the current might be written
as:

i — "FADo [cz; —¢o (0)} ] (12.60)
lo%) o
and might be expressed by the forms ox or red:
i — nFADoCO 1— C0£0) _ ii . Co —50(0) (1261)
%0 Co ~ ¢Co
and
i =i cr =Cr(0) (12.62)
CrR
where the limiting oxidation current is:
. NFADR x _
a="" R cq g =1.61 DY Y216 (12.63)
R
For the reversible reaction the Nernst law may be used and the following equation is obtained:
: io—i -l
- g%+RTjpPro% (RT,Phe =t g Ryl e (12.64)
nF  Dpdr nF =115 nF I=1j 4

RT D 213
E1/2=EO +—1In —“R
nF DO

This equation was obtained earlier for the steady-state techniques.
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12.7 Quasi-reversible and totally irreversible systems

For the totally irreversible system one can write:

i =nFAkscq (0) (12.65)
but from Eq. (12.61)
i =i (%‘—50(0)] — ¢o(0)=ch {1—;} (12.66)
o Ilc
and Eqg. (12.65) becomes
i =nFAKeCh, (1—%} (12.67)
lc

At the bottom of the voltammetric curve the surface concentration equals to that of bulk and
the current is purely kinetic

Co ~C (0)
0~ N (12.68)
ik =nFA kf Co
Eq. (12.67) might be rearranged to:
i =i | 1-——
Ic
1 1 1 1 1 1 (12.69)
i i e i 0.620nFADE 3 Vocg o!/2
slope

The plot of 1/i versus w? gives a straight line with the slope depending on the bulk
concentration and diffusion coefficient and the intercept gives the kinetic current and the rate
constant. Plot of the total current versus o'? gives the curved dependence as at large rotation
rates current might be limited by the kinetic current. This is shown in Fig. 12.10

i / Levich line (ig = n'?)

1/2
w

Fig. 12.10. Variation of current with »? at an RDE, at constant potential, for slow kinetics.®
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To obtain the kinetics the plot of Eq. (12.69) is usually carried out; this is so called Koutecky-
Levich plot, Fig. 12.12. All the slopes are identical and the intercept gives the kinetic current and
the rate constant of the reduction reaction.

1/

1/ig

w12

Fig. 12.11. Koutecky-Levich plots used to determine the electrode kinetics; E1 corresponds to a
slow and E; to the fast electrode kinetics.®
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Fig. 12.12. (a) Current versus potential for the reduction of 1 mM Oz in 0.1 M NaOH at a
rotating gold disk electrode; (b) Koutecky-Levich plots at different potentials.®

General equation for the quasi-reversible process was developed earlier, Eq. XXX
i = nFAcg (0)ks —nFAcg (0)ky

1 _%0 exp(—anf ) - r(0) exp[ (1-a)nfn|= 0O pa_ROp-a  (12.70)
) Co CR Co CR
b= exp(nfn)

and because:
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or

1 b [1 p@ pte
TE | Tt
I 1-b|ig i c i a

i 1-blip 062nFA Y802\ DZ%c5  DE°ck

The plot 1/i vs. @*allows for determination of the kinetic parameters.
Eqg. (12.70) might also be rearranged into

el o

i — nFA—KiC0 —KoCR
14 K% | KpdRr
Do  Dr

(12.71)

(12.72)

(12.73)

(12.74)

When the process is totally irreversible, ky = 0, one can obtain equation of the potential-current

curve at the RDE:

- nFAkfc(*D LT I
1+ %% 1, Do 4, Po. exp[anf (E - EO')J
Do Soks 5ok
: o—1i
E-g%+ R jpPo | RT Le
anF k05o anF I
Rearranging Eq. (12.75) one can get:
. nFADoCo
= Do
oo +—
o] ke
The process might be considered as reversible when:
-5 —4
5o >> 20 5o >10x 010" o
ke ke ke
and totally irreversible when:
-5 -6
o0 <0.1x10 _10° cm

ke k

(12.75)

(12.76)

(12.77)

(12.78)



317

12.8 Current distribution

Current distribution at a rotating disk electrode is, in general, not uniform. In solution current
flows through the solution resistance and the current density is larger at the disk edges than in its
center.>”1%7 There are three principal cases of current distribution:

a) primary current distribution

b) secondary current distribution

c) ternary current distribution

The primary current distribution is observed when the surface and concentration overpotentials
are neglected and the electrode surface is equipotential. It is displayed in Fig. 12.13.

[
2 =01
% 7°

Fig. 12.13. Primary current distribution at the RDE. Solid lines show lines of equal potential at
values of ¢/go, where ¢o is the potential at the disk electrode surface measured against the
reference electrode at infinity. Dotted lines are lines of current flow. The number of lines per unit
length represents the current density, j.*’

To obtain the current and potential distribution it is necessary to solve the Laplace’s equation:

V2D =0 (12.79)
with the boundary conditions at the electrode:
i =—xgrad® = —xVO (12.80)
and
o (12.81)
oy

at the insulating surface where y is the distance perpendicular from the surface. This problem
was solved by Newman'®” and presented in Fig. 12.13.

It is obvious that the current density is larger at the disk edge than at the center. The direction
of current is perpendicular to that of the potential. The current density at the disk is described by:
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i
p—L (12.82)

r 2
2 1U
o
where iavg IS the average current flowing to the disk. It is illustrated in Fig. 12.14. At the disk
edge the current goes to infinity.

2.5 +
2.0 -

15 +

ifiavg

1.0 -

0.5

0.0 0.2 0.4 0.6 0.8 1.0
r/r0

Fig. 12.14. Primary current distribution at the disk electrode according to Eq. (12.82).

The solution resistance at the disk electrode is:

1
Ro=— 12.83
Q 41cr0 ( )

Secondary current distribution is observed for slow electrode kinetics. In such a case the
current distribution is more uniform than the primary distribution. The current distribution can be
considered as a function of the dimensionless parameter p:*>*

R
=X (12.84)
where Re is the electrode resistance due to charge transfer and Rq is the solution resistance. The
average electrode resistance is given by:

J- 2zrdr
RE 877/8I

and the current is given by Eq.(6.56). The secondary current distribution is shown in Fig. 12.15.

(12.85)
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Fig. 12.15. Secondary current distribution at an RDE for different values of the parameter p, Eq.
(12.84).1%4

When p — o (line 10), i.e. when the charge transfer resistance goes to zero and process is
reversible the current distribution becomes primary, as in Fig. 12.14. When p decreases and
becomes small the current distribution becomes uniform (line 1). As current distribution
becomes uniform the potential distribution at the electrode becomes non uniform. This effect is
illustrated in Fig. 12.16. In such a case potential |®o| is higher in the center and decreases
towards the electrode edge. The maximum potential difference between the center of the disk
and its edge is:

o _ 0-3630iavg
K

Diagnostic plot for the current uniformity at the RDE is displayed in Fig. 12.17. For the
different values of the solution specific conductivity and kinetic conductance (di/d7) in Q* cm™
zones of the primary (non-uniform) and secondary (uniform) current distributions can be found.

(12.86)

The ternary current distribution is observed when additional mass transfer, e.g. due to bubble
formation at the vertical electrode is considered.'%®
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Fig. 12.16. Primary current distribution (as in Fig. 12.14) and a dimensionless potential
distribution for a uniform current density.*®’
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Fig. 12.17. Diagnostic plot for the current uniformity at the RDE.*>*
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12.9 Rotating ring-disk electrode

Rotating ring-disk electrode, RRDE, contains a conductive ring around the central disk. It
permits studying of the inverse processes as in double potential step chronoamperometry,
chronopotentiometry with current reversal, or cyclic voltammetry. Schematics of the RRDE is
presented in Fig. 12.18. The disk radius is r1, and that of the ring between r» and rs. The surface

area of the ring is: A:n(r32 —r22). The space between ry and rz and that >rs is insulating (e.g.
Teflon, Kel-F).

Electrade matarial
(e.g., platinum)
Insulator

{e.g., Tellon)

Shaft and ring material
(e.g., brass)

~J
Fig. 12.18. Rotating ring-disk electrode.®

12.9.1 Rotating ring electrode

Let us first consider a case where only ring surface is active in the electrode process. Let us
also suppose:

1) stationary conditions, dc/dt =0

2) concentration is independent of the angle ¢, ¢ # f(¢)

3) diffusion coefficient is independent of concentration, D = f(c)

4) radial diffusion is negligible in comparison with radial convection

2
DOF ‘0 +38C—0} «v, %o (12.87)

o2 r oor or
In this case the following equation is obtained from the general Eq. (12.21):
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2
VraC_OJrVyaC_O: DO& (12.88)
or oy oy?
Contrary to the equation for the disk, for the ring the radial convection cannot be neglected.
This equation must be solved with the following conditions:

y—>o coly)—co

co=0 Hh<r<n (12.89)
=0
y %o _ 0 r<r,r>r
oy
where:
Vi =raoG(y)=rm(ay)=0.51 0?3712 ry = Bry
%—J
B (12.90)
This substitution to Eq. (12.88) gives:
2
B rya;—o—By2 5;;/3 = Do 0 Cg
r
28y (12.91)
r aCo _yaCo _[Dojia Co
or oy By ay?
The total current must be integrated over the electrode surface:
"3 oc
ir =NFDg 27 j [—Oj rdr (12.92)
r y:0
Solution for the limiting ring current is:
2/3 *
i 1. =0.620 NF ;z(r33 - r23) D&% Y6512y (12.93)
or, in general,
in :iR,L{CO_CO*(yzo)} (12.94)
Co
Comparing the ring, Eq. (12.93), and disk, Eq. (12.41), currents gives:
2/3
3 .3 2/3
: - 3 .3
iR _(r3 r2) _p23_|B K
B 5 = e = 33 (12.95)
D n ) n

This ratio is a constant geometric factor independent of the rotation rate.

12.9.2 Rotating ring-disk electrode: Collection experiment

There are two principal types of experiments carried out at the RRDE: a) collection experiment
and b) shielding experiment. In the collection experiment the conditions are such that at the disk
electrode ox is reduced into red and at the ring red is oxidized into ox, Eq. (12.96). Let us also
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assume that the applied potentials correspond to the conditions of the limiting current, i.e.
surface concentrations of ox at the disk and that of the red at the ring are zero. Of course, the disk
current is not affected by the process at the ring.

disk O+ne=R

. 12.96
ring R-ne=0 ( )
Conditions at the ring are:
r(aC—R]—y acr _(DRJE ocR
or oy B )yl oy?
0<r<p DR(ﬁc—j :—Do(ac—oj __1b
oy y=0 oy y=0 nFA
or [aC—R b
ay y=0 nr12 nFDR (1297)
R<r<n (aC—R] =0
ay y—o
Hh<r<r cr(y=0) =0
limcg=co limcg =0
y— y—>
The ring current is:
I3 a
ir =nFDR 2r (i) rdr (12.98)
or y=0
n
Solution is given in terms of the collection efficiency, N:
[
N=-R (12.99)
ID
which depends only on the RRDE geometry:
N=1-F (ﬁj BR[1-F (a)]-(1+a+B)**{1-F ng(l+a+ﬁ)}
B B
3 3 .3
a{r—?] 1 p=2-2 (12.100)
il n n
3
1/3
J3 (1+x ) 3 31 1
F(x)=-—In{~——}+—arctan| ——— |+~
Ar 1+ X 2z 33 4

The values of N as function of ri can be easily calculated using Excel. For example for: r1 =
0.187 cm, r> = 0.200 cm, r3 = 0.323 cm the collection efficiency is N = 0.555. The mass flow
for such an experiment is displayed in Fig. 12.19. Red form generated at the disk is forced
toward the bulk of solution and to the ring.
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Fig. 12.19. Concentration profiles of the form red for the collection experiments at the RRDE.*>*

Current-potentials steady-state voltammograms for the collection experiment are shown in Fig.
12.20 (top). Curve (1) represents ip vs. Ep and curve (2) ir at a constant potential, E;,
corresponding to the condition cr(0) = 0. When the disk current increases the ring current
corresponding to the oxidation of R follows to the constant value described by the collection
efficiency, N.

i (cath) 4

/ O+ne =R
"L", iim

E; J Eg

1 |

4 Ep
\\._ ig =Nip jm

R—=0+ne

+ Q+ne—=R
/ ) 'é,i\'-f o, lim

o _ p23
‘R_un—ﬁ 0 owm

. 3 )
IR, lim = 1R, lim ™ N"n’). Im

T / {
1*’2=-\'4n.|m / Eg

()

Fig. 12.20. (a) disk voltammogram corresponding to the collection experiment: (1) ip vs. Ep, (2)
ir (measured at E = E1) vs. Ep; (b) shielding experiment: (3) ir vs. Er When ip = 0 (that is when
Ep = E1), (4) ir vs. Er When ip = ip,c (that is when Ep = E).8

12.9.3 Rotating ring-disk electrode: Shielding experiment

When the disk current is zero, ip = 0, the reduction current on the ring is described by Eqg.
(12.93) or, according to Eq. (12.95):
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i) = 52, (12.101)
where ip, is the limiting current which could have been observed at the disk electrode (if active).
When the disk current is flowing, the flux of ox to the ring is decreased. Its decrease is the same

as the flux of stable red product to the ring in a collection experiments, -Nip. The limiting current
at the ring is:

ir) =ik~ Nip (12.102)
or
i1 = iR (1-Ng) (12.103)

This equation shows extend of the decrease of the ring current due to the presence of the disk
current. Disk is shielding ring by consuming part of the ox form. The curves ir vs. Er are
displayed in Fig. 12.20b. When the disc current is zero, curve (3), a normal voltammogram on
the ring is observed. However, when the disk current is not zero, curve (4), and the disk is at the
potential of the limiting current, E», at the more positive potentials collection phenomenon is
observed while at more negative potentials the shielding effect is visible.

The collection phenomenon is often used in the determination of instable
products/intermediates of the redox reaction and in the study of the subsequent chemical
homogeneous reactions. Examples of the application of this method to study the stability of
Cu(l) during reduction of Cu?* is displayed below. In the chloride solutions Cu(l) is stabilized by
the presence of the complex with chlorides and two well separated waves are observed and in the
potential range of the first wave presence of Cu(l) is detected at the ring electrode, Fig. 12.21.
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Fig. 12.21. Disk and ring currents vs. disk potential, the potential of the ring is kept positive in
the range of the limiting current of Cu(l) in 1 M KCI. %°

The mechanism of the reaction is:
Disk

first reduction wave:  Cu?"+e" —XC, cu*(cucly)

(12.104)
second reduction wave: Cu2++ 2e- > Cu

Ring CuCl; > Cu?" + e~
However, in sulfates, only one reduction wave is observed, but in the potential range at the

bottom of the wave anodic current on the ring is observed indicating that Cu(l) appears as the
reduction product,



327

Dic
in{nA)

(LY oo

Rang

iy (uA)

+10F

L 1 { 1
-0t -02 -4} -b4d
Ep(VIN.CE)

Fig. 12.22. Reduction of Cu?* vs. disk potential at the RRDE in 1 M NazSO4.1%

Similar method was applied to detection of H2O. during the reduction of O in alkaline
solution at Pt electrode. The intermediate H20. was detected by oxidation, Fig. 12.23. This
method is often used in the selection of electrode materials for oxygen reduction for fuel cells.
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Fig. 12.23. Reduction of O at Pt disk electrode in 0.12 M KOH and oxidation of H20> at the
ring electrode.'’®

Ring 7y i peA)

12.10 Chemical homogeneous reactions

12.10.1Preceding chemical reaction, CE

The case of the preceding chemical reaction for RDE was studied by several authors.1’117* In
this case the reduction current, ik, is smaller than the mass transfer limiting current, i;, when the
preceding reaction is infinitely fast:

. i
j=— (12.105)

1+ L P

Ko\ A
where K = 06 /cf(, Eq. (9.175), A =k¢ +ky, , and dis the diffusion layer thickness. When:

3
1D (12.106)
8\ 13

*

Dc

Eq. (12.105) may be expressed as:

Ik = 1 61DY3,V6 (1 + M2, Y26, 16 g 61K) (12.107)
where ¢” = Cg + C:(' This equation may be also expressed in a different form:1™
' ; 1/6;
=7 s (12.108)

Jo Vo 160K (K +kp)
Plot of iy INo vs. Ik leads to the kinetic parameter: K (ks +ky) . Example of such a plot for
infinitely fast and kinetically limited case is displayed in Fig. 12.24.
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i/ w

g=0

Fig. 12.24. Dependence of ix / @' versus ix for the preceding homogeneous reaction in RDE; p =
ke is the forward rate constant.6°

12.10.2 Following chemical reaction, EC

In this case a shift of the reversible half-wave potential towards more positive values is
observed:1"
EInk—f (12.109)
2nF o

Ef, =ED, +ﬂ|n(1.61v1’6D§1’6)+

nF
It is easier to study the kinetics using RRDE. Because of the following reaction the collection
coefficient decreases.’’®!’” However, this coefficient depends on the electrode geometry.
Probably the best way to obtain the working curve is to carry out the digital simulations.!’”” An
example of the dependence of the collection coefficient as a function of the kinetic parameter

XKT = kev/3 1 wDV3(0.51)%'3 is displayed in Fig. 12.25.

0.10 |-

0.08

N, 0.06

0.04 —

0.02 |~

0 2 4 6 g8 10 12 14 16
XKT
Fig. 12.25. Example of the dependence of the collection coefficient, Nk, as a function of the
kinetic parameter XKT for the following chemical reaction in RRDE,!’’ points from ref.176.
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12.10.3 ECE mechanism

Theory of the ECE reaction was solved by Filinovsky!’® and Riger.}’® The limiting current
might be expressed as:1"®

i) = FACO (D/5d)[ —%J (12.110)
d
where & is the diffusion layer thickness, Eq. (12.43) and &k the thickness of the kinetic layer:
Sk = S tanh (S / 8k ); S = D (12.111)
kf + kb

The last term in parentheses in Eq. (12.110) changes between 2 for fast kinetics to 1 for slow
kinetics. An example of the determination of the kinetics of the ECE reaction ion the case of
electrooxidation of acetyltriphenylamine is shown in Fig. 12.26.%°

Ren

1.4}

1.3

1 1 |
0.0 0.5 1.0
log D™ 0 'l ctpo

1.2

1.1

1.0 1 ] 1 L 1 1 1 |
—6.5 -6.0 =55 -5.0 —4.5 -4.0 -3.5 loge 'c%

Fig. 12.26. Determination of the kinetics of the acetyltriphenylamine showing the effective
number of electrons exchanged versus kinetic parameter ~ ™.

12.10.4 Catalytic reactions

Catalytic reaction increases the limiting current.!’®181182 The Kinetic limiting current is
described as:

i), = NFACG b (12.112)
S

where 5;; is described by Eq. (12.111) and 5y =D /k .
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