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Preface 
This course presents the fundamentals of the electrode-solution interface, theory of the 

electrode potential and potentiometry, kinetics of mass and electron transfer, and the 

electroanalytical techniques: chronoamperometry and chronocoulometry, chronopotentiometry, 

linear sweep voltammetry, rotating disk electrode. Although these topics are already presented in 

several books1-8 this information is often dispersed in different books or reviews/articles. The 

purpose of this course is to give unified theory of these topics. 
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1 Properties of the electrode-solution interface 

1.1 Interface electrode-solution 

Interfacial zone is different from the bulk of the phase. In the bulk of solution water has its 

proper structure but there is neither net dipole orientation nor net charge density (if the ions are 

present in solution). On average the solution is homogeneous although locally there is a dynamic 

structure. However, close to the surface the water dipoles are oriented. There are electrical and 

chemical forces between the electrode and solution. This zone where redistribution of solvent 

dipoles and ions occurs is called the electrical double layer. This phenomenon is illustrated in 

Fig. 1.1 and Fig. 1.2. 

 

 
Fig. 1.1. Interface electrode-solution. In the interfacial zone there is a net orientation of the 

solvent dipoles and possible excess of charge.3  

 
Fig. 1.2. Interphase zone and bulk of solution.3 
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Similar orientation is observed at other interfaces, e.g. water-benzene, water-air, metal-

vacuum, etc. This orientation produces a potential difference. When there are ions in the solution 

the excess of charge may exist in the electrode, qM, and in the solution, qs, but the total charge of 

the interface that is of the double layer is null. 

 

 M s 0q q+ =            (1.1) 

 

 
Fig. 1.3. Excess of charge in solution and in the electrode. The total charge of the interface 

charge is null.3 

Dimensions of the zone of the excess charge density in solution depend on the concentration of 

ions. In concentrated 1 M electrolytic solution there are ~1020 ions per cm3 and the thickness of 

the space charge layer is ~5 Å = 0.5 nm. For the concentration of 10-4 M the thickness of the 

diffuse layer is ~300 Å = 30 nm. On the other hand in metals the concentration of free electrons 

is ~1022 cm-3 and the thickness of the space charge layer is ~0.5 Å = 0.05 nm, therefore of the 

atomic dimension. One can state that in metals the excess charge is localized at the surface. In 

semi-conductors the space charge layer can be larger than that in the solution. 

The term electrical double layer is used to describe the interfacial zone where exists excess 

charge and orientation of dipoles. The first surface layer is occupied by the solvent dipoles (the 

solvation layer of the electrode) and by the specifically adsorbed species as ions or molecules, 

Fig. 1.4 and 1.5. It is called compact or Stern layer. In the presence of specific adsorption when 

the species are in contact with the electrode and there are chemical interactions species-

electrode. The plane which passes through the center of adsorbed species is called inner 

Helmholtz plane. The plane which passes through the center of solvated (not specifically 

adsorbed) ions closest to the electrode surface is called outer Helmholtz plane or the plane of the 

closest approach.  
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Fig. 1.4. Structure of the electrical double layer.9 

 

Fig. 1.5. Schematic representation of the electrical double layer.10 
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1.2 Type of the electrodes 

There are two limiting cases of the electrode polarization: ideally polarized (or blocking) and 

ideally non-polarized (or depolarized) electrodes. Their electrical equivalent circuits are 

presented in Fig. 1.6. 

 

C

R

C

R

R →∞ R →0

a) b)

 
Fig. 1.6. Schematic representation of the ideally polarized (a) and ideally non-polarized (b) 

electrodes. 

The ideally polarized electrode is the electrode where there is no charge transfer between the 

electrode and solution. This corresponds to the case in Fig. 1.6a with the parallel resistance of 

infinity. Such electrode behaves as an ideal capacitor. On the other hand the ideally non-

polarized electrode is the electrode with the parallel resistance of zero, Fig. 1.6b. It is impossible 

to change the potential of such electrode as infinite current can pass without any resistance. In 

practice the ideally polarized electrode behave ideally only in a limited potential range, Fig. 1.7.  

 

 

Fig. 1.7. Schematic polarizations curves for ideally and non-ideally polarized electrodes. They 

keep their properties in a limited potential range or limited current range, respectively.11 

Practical examples of the ideally polarized (blocking) electrodes are mercury, gold, glassy 

carbon, etc. electrodes in the supporting electrolyte where there is no red-ox reaction. Of course 

at the extreme potentials redox reactions involving the reduction/oxidation of the electrolyte or 

oxidation of the electrode will always take place. An example of the ideally depolarized 

electrode is a good reference electrode which can keep its potential despite the passing current. 
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However, in practice, because of the electrode kinetics its characteristics deviates from vertical 

line and represents some slope, Fig. 1.8.  

 

 

Fig. 1.8. Non-ideally polarized electrode.11  

 

1.3 The electrochemical potential 

The chemical potential of the species i in the phase α, 
α
i  is a measure of the work of bringing 

one mole of neutral species, i, from infinity where the molecules are in vacuum and well 

separated (so there are no lateral interactions between them) into the phase  where they have 

certain activity 
α
ia . It is defined as: 

 
α 0,α α
i ii lnRT a = +   (1.2) 

or 

 

i j

α
i

i , ,T p n

G

n




 
=  

 
  (1.3) 

where 
0,α
i  is the standard chemical potential of species i in phase , G is the Gibbs free energy 

and ni number of mols of species i.  

For charged species the electrochemical potential was introduced (Butler, Guggenheim): 

 
α α α
i i iz F  = +  (1.4) 

where zi is the charge of the species and  is the absolute electrostatic potential of the phase; for 

non-charged species zi = 0 and the electrochemical potential is equal to the chemical potential. 

Of course neither chemical nor electrochemical potential can be determined, however, the 

change of the potential for the reaction can be measured. 

In the thermodynamic equilibrium: 
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 id
0

dx


=  (1.5) 

1.4 Internal, external, and surface potentials 

In order to understand internal, external, and surface potentials let us look what happens when 

a test charge +q approaches a metallic sphere of radius r having electrical charge +Q, Fig. 1.9. 

 

r

+Q +q

x

 
 

Fig. 1.9. Model of the interactions of the test charge +q with a metallic sphere having charge +Q. 

The work necessary to bring the test charge from the infinity (where there are no Coulombic 

interactions) to the distance x from the surface, Wx is given as: 

 x xd

x

W F x



= −    (1.6) 

where Fx is the force of the interactions. There are two contributions to this energy: 

1) Coulombic forces 

2) image forces 

 

Coulombic force between two charges is: 

 
( )

C 2

1
where

4 o

Q q
F k k

x r 
= =

+
  (1.7) 

where  is the dielectric constant of the medium and 0 is the dielectric permittivity of the free 

space, 0 = 8.8541910-12 C2 N-1 m-2 (or F m-1). This work is: 

 
( )

x 2
d

x
qQ kqQ

W k x
x rx r

= =
++

   (1.8) 

The potential corresponding to this work is: 

 
x

C
W Q

k
q x r

 = =
+

  (1.9) 

When a charge approaches metallic surface it induces a charge of the opposite sign in metal. 

This space charge is distributed but it is equivalent to the charge of the same magnitude but 

opposite sign at the same distance from the electrode, Fig. 1.10. The force of the interaction 

between the test charge and its image is: 
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( )

2 2

im 2 242

q q
F k k

xx
= − = −   (1.10) 

and the corresponding work: 

 
 

Fig. 1.10. Origin of the image forces.3 

 

2 2

x 2 44

x
q kq

W k dx
xx



 
= − − = − 

 
 

   (1.11) 

Finally, the image potential is: 

 
x

im
4

W kq

q x
 = = −   (1.12) 

The total potential is the sum of the coulombic and image interactions: 

 C im
4

q Q
k

x r x

 
 =  +  = − + 

+ 
   (1.13) 

This equation has two limiting cases: 

1) x >> r,  = C 

2) x << r,  = im 

 

It is possible to define three potentials: 

a) External potential, , which is the measured by the work of bringing the test charge (+q) 

from the infinity in vacuum to the point just outside the image forces. The difference of 

external potentials is called Volta potential difference. This is the contribution attributed to 

the coulombic charges of phases and this potential is measurable. It is illustrated in Fig. 

1.11. 
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Fig. 1.11. Illustration of the definition of the external potential.3 

b) Surface potential, . At charged interfaces there is orientation of solvent dipoles. Such an 

orientation is equivalent to the charge separation and produces a potential difference. This 

surface potential is measured by the work of transferring the test charge from the infinity to 

the dipole layer and then across this layer, when the electrostatic charge of the phase is 

null, see Fig. 1.12. Such a potential exists at the metal-solution and metal-vacuum 

interphase. In the latter case some electrons try to leave metal but are attracted by the 

positive charge created by departing electrons, see Fig. 1.13. Neither the surface potential 

nor its difference are measurable. 

 

 
Fig. 1.12. Illustration of the surface potential.3 
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Fig. 1.13. Metal-vacuum and metal-solution interface.3  
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c) Internal potential, , is defined by the work of bringing the test charge from the infinity to 

the interior of the phase and includes the coulombic and surface potentials: 

 

  =  +   (1.14) 

This is illustrated in Fig. 1.14. 

 

 
Fig. 1.14. Illustration of the internal potential.3 

 

The difference of the internal potentials of two phases is called Galvani potential difference. 

Because the surface potential is not measurable,  is also not measurable. However, the 

difference of Galvani potentials across more interfaces (at least three) can be measured. In 

principle only the difference of the internal potentials between two pieces of the phases of the 

same chemical nature, e.g. two pieces of copper, might be measured. 

 

An example of the measurement of the Volta potential difference (difference of the external 

potentials) is shown in Fig. 1.15. 
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Fig. 1.15. Device used to measure Volta potential difference of phases  and . 

In this case phases  and  form a vibrating capacitor. The external potential is changed until 

no ac current flows in the external circuit and the potential difference is compensated. One 

should avoid any surface contamination. 

 

Example 1.1. 

Plot curves of the external, image, and total potential vs. log of the distance (in cm) around a 

metallic sphere of radius r = 1 cm containing the electrical charge of 1.1110-12 C. 

 

Calculation can be carried out in Excel. 

 
0 8.85E-12 F/m     

r= 0.01  m      

Q= 1.11E-12 C     

k= 8.99E+09 F/m     

q= 1.60E-19 C     

        

log(x/cm)    x/m    EC     Eim       Etot 

-8   1.00E-10 9.98E-01 -3.60E+00 -2.60E+00 

-7.9   1.26E-10 9.98E-01 -2.86E+00 -1.86E+00 

-7.8   1.58E-10 9.98E-01 -2.27E+00 -1.27E+00 

-7.7   2.00E-10 9.98E-01 -1.80E+00 -8.07E-01 

-7.6   2.51E-10 9.98E-01 -1.43E+00 -4.36E-01 

-7.5   3.16E-10 9.98E-01 -1.14E+00 -1.41E-01 

-7.4   3.98E-10 9.98E-01 -9.04E-01 9.34E-02 

-7.3   5.01E-10 9.98E-01 -7.18E-01 2.79E-01 

-7.2   6.31E-10 9.98E-01 -5.71E-01 4.27E-01 

-7.1   7.94E-10 9.98E-01 -4.53E-01 5.44E-01 

-7   1.00E-09 9.98E-01 -3.60E-01 6.38E-01 

-6.9   1.26E-09 9.98E-01 -2.86E-01 7.12E-01 

-6.8   1.58E-09 9.98E-01 -2.27E-01 7.70E-01 

-6.7   2.00E-09 9.98E-01 -1.80E-01 8.17E-01 

-6.6   2.51E-09 9.98E-01 -1.43E-01 8.54E-01 

vibrating 

capacitor 
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-6.5   3.16E-09 9.98E-01 -1.14E-01 8.84E-01 

-6.4   3.98E-09 9.98E-01 -9.04E-02 9.07E-01 

-6.3   5.01E-09 9.98E-01 -7.18E-02 9.26E-01 

-6.2   6.31E-09 9.98E-01 -5.71E-02 9.41E-01 

-6.1   7.94E-09 9.98E-01 -4.53E-02 9.52E-01 

-6   1.00E-08 9.98E-01 -3.60E-02 9.62E-01 

-5.9   1.26E-08 9.98E-01 -2.86E-02 9.69E-01 

-5.8   1.58E-08 9.98E-01 -2.27E-02 9.75E-01 

-5.7   2.00E-08 9.98E-01 -1.80E-02 9.80E-01 

-5.6   2.51E-08 9.98E-01 -1.43E-02 9.83E-01 

-5.5   3.16E-08 9.98E-01 -1.14E-02 9.86E-01 

-5.4   3.98E-08 9.98E-01 -9.04E-03 9.89E-01 

-5.3   5.01E-08 9.98E-01 -7.18E-03 9.90E-01 

-5.2   6.31E-08 9.98E-01 -5.71E-03 9.92E-01 

-5.1   7.94E-08 9.98E-01 -4.53E-03 9.93E-01 

-5   1.00E-07 9.98E-01 -3.60E-03 9.94E-01 

-4.9   1.26E-07 9.98E-01 -2.86E-03 9.95E-01 

-4.8   1.58E-07 9.98E-01 -2.27E-03 9.95E-01 

-4.7   2.00E-07 9.98E-01 -1.80E-03 9.96E-01 

-4.6   2.51E-07 9.98E-01 -1.43E-03 9.96E-01 

-4.5   3.16E-07 9.98E-01 -1.14E-03 9.96E-01 

-4.4   3.98E-07 9.98E-01 -9.04E-04 9.97E-01 

-4.3   5.01E-07 9.98E-01 -7.18E-04 9.97E-01 

-4.2   6.31E-07 9.98E-01 -5.71E-04 9.97E-01 

-4.1   7.94E-07 9.98E-01 -4.53E-04 9.97E-01 

-4   1.00E-06 9.98E-01 -3.60E-04 9.97E-01 

-3.9   1.26E-06 9.97E-01 -2.86E-04 9.97E-01 

-3.8   1.58E-06 9.97E-01 -2.27E-04 9.97E-01 

-3.7   2.00E-06 9.97E-01 -1.80E-04 9.97E-01 

-3.6   2.51E-06 9.97E-01 -1.43E-04 9.97E-01 

-3.5   3.16E-06 9.97E-01 -1.14E-04 9.97E-01 

-3.4   3.98E-06 9.97E-01 -9.04E-05 9.97E-01 

-3.3   5.01E-06 9.97E-01 -7.18E-05 9.97E-01 

-3.2   6.31E-06 9.97E-01 -5.71E-05 9.97E-01 

-3.1   7.94E-06 9.97E-01 -4.53E-05 9.97E-01 

-3   1.00E-05 9.97E-01 -3.60E-05 9.97E-01 

-2.9   1.26E-05 9.96E-01 -2.86E-05 9.96E-01 

-2.8   1.58E-05 9.96E-01 -2.27E-05 9.96E-01 

-2.7   2.00E-05 9.96E-01 -1.80E-05 9.96E-01 

-2.6   2.51E-05 9.95E-01 -1.43E-05 9.95E-01 

-2.5   3.16E-05 9.94E-01 -1.14E-05 9.94E-01 

-2.4   3.98E-05 9.94E-01 -9.04E-06 9.94E-01 

-2.3   5.01E-05 9.93E-01 -7.18E-06 9.93E-01 

-2.2   6.31E-05 9.91E-01 -5.71E-06 9.91E-01 

-2.1   7.94E-05 9.90E-01 -4.53E-06 9.90E-01 

-2   1.00E-04 9.88E-01 -3.60E-06 9.88E-01 

-1.9   1.26E-04 9.85E-01 -2.86E-06 9.85E-01 

-1.8   1.58E-04 9.82E-01 -2.27E-06 9.82E-01 

-1.7   2.00E-04 9.78E-01 -1.80E-06 9.78E-01 

-1.6   2.51E-04 9.73E-01 -1.43E-06 9.73E-01 

-1.5   3.16E-04 9.67E-01 -1.14E-06 9.67E-01 

-1.4   3.98E-04 9.59E-01 -9.04E-07 9.59E-01 

-1.3   5.01E-04 9.50E-01 -7.18E-07 9.50E-01 

-1.2   6.31E-04 9.38E-01 -5.71E-07 9.38E-01 

-1.1   7.94E-04 9.24E-01 -4.53E-07 9.24E-01 

-1   1.00E-03 9.07E-01 -3.60E-07 9.07E-01 
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-0.9   1.26E-03 8.86E-01 -2.86E-07 8.86E-01 

-0.8   1.58E-03 8.61E-01 -2.27E-07 8.61E-01 

-0.7   2.00E-03 8.32E-01 -1.80E-07 8.32E-01 

-0.6   2.51E-03 7.97E-01 -1.43E-07 7.97E-01 

-0.5   3.16E-03 7.58E-01 -1.14E-07 7.58E-01 

-0.4   3.98E-03 7.14E-01 -9.04E-08 7.14E-01 

-0.3   5.01E-03 6.65E-01 -7.18E-08 6.65E-01 

-0.2   6.31E-03 6.12E-01 -5.71E-08 6.12E-01 

-0.1   7.94E-03 5.56E-01 -4.53E-08 5.56E-01 

0   1.00E-02 4.99E-01 -3.60E-08 4.99E-01 

0.1   1.26E-02 4.42E-01 -2.86E-08 4.42E-01 

0.2   1.58E-02 3.86E-01 -2.27E-08 3.86E-01 

0.3   2.00E-02 3.33E-01 -1.80E-08 3.33E-01 

0.4   2.51E-02 2.84E-01 -1.43E-08 2.84E-01 

0.5   3.16E-02 2.40E-01 -1.14E-08 2.40E-01 

0.6   3.98E-02 2.00E-01 -9.04E-09 2.00E-01 

0.7   5.01E-02 1.66E-01 -7.18E-09 1.66E-01 

0.8   6.31E-02 1.36E-01 -5.71E-09 1.36E-01 

0.9   7.94E-02 1.12E-01 -4.53E-09 1.12E-01 

1   1.00E-01 9.07E-02 -3.60E-09 9.07E-02 

1.1   1.26E-01 7.34E-02 -2.86E-09 7.34E-02 

1.2   1.58E-01 5.92E-02 -2.27E-09 5.92E-02 

1.3   2.00E-01 4.76E-02 -1.80E-09 4.76E-02 

1.4   2.51E-01 3.82E-02 -1.43E-09 3.82E-02 

1.5   3.16E-01 3.06E-02 -1.14E-09 3.06E-02 

1.6   3.98E-01 2.44E-02 -9.04E-10 2.44E-02 

1.7   5.01E-01 1.95E-02 -7.18E-10 1.95E-02 

1.8   6.31E-01 1.56E-02 -5.71E-10 1.56E-02 

1.9   7.94E-01 1.24E-02 -4.53E-10 1.24E-02 

2   1.00E+00 9.88E-03 -3.60E-10 9.88E-03 

2.1   1.26E+00 7.86E-03 -2.86E-10 7.86E-03 

2.2   1.58E+00 6.26E-03 -2.27E-10 6.26E-03 

2.3   2.00E+00 4.98E-03 -1.80E-10 4.98E-03 

2.4   2.51E+00 3.96E-03 -1.43E-10 3.96E-03 

2.5   3.16E+00 3.14E-03 -1.14E-10 3.14E-03 

2.6   3.98E+00 2.50E-03 -9.04E-11 2.50E-03 

2.7   5.01E+00 1.99E-03 -7.18E-11 1.99E-03 

2.8   6.31E+00 1.58E-03 -5.71E-11 1.58E-03 

2.9   7.94E+00 1.25E-03 -4.53E-11 1.25E-03 

 

The plots of the external, image, and total potentials are displayed below. 
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Fig. 1.16. Plots of the Coulombic, image and total potential as functions of the logarithm of the 

distance from the metal surface, data as in Example 1.1. 
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Example 1.2.  

Is it possible to have charged phases in electrochemistry? 

Let us consider a copper sphere of radius r = 5 cm containing 10-10 mole of Cu2+ (i.e. from 

which 210-10 mole of electrons was removed). What will be the electrical potential at the Cu 

surface? 

 

Q = 2 F nmoles = 2 equivalents/mol96485 C/equivalent10-10 mol = 1.910-5 C 

 
5

9 2 -2 6

0

1 1.9 10 C
8.988 10 N m  C 3 10 V

4 0.05m

Q

r




−
= =      

This charge would produce ~3 million Volts at the surface. However, in electrochemistry 

potentials rarely exceed 2-3 V. This means that overcharging must be much lower, of the order 

of 10-16 moles of electrons. 

1.5 Distribution of energy levels 

Isolated atoms contain well defined energy levels. Let us consider an atom of s group, 

containing one s electron on the outermost orbit (it would be 3s1 electron for Na atom). If there 

are two atoms in contact this level is split into bonding and antibonding levels. When a number 

of atoms increases the number of levels created increases as well. For a metal in which there are 

many atoms one can talk about continuous distribution of energy levels. This process is 

illustrated in Fig. 1.17. 

Distribution of electrons is described by the Fermi law. It gives the probability f(E) of finding 

an electron having energy E: 

 
1

( )

1 exp
f

f E
E E

kT

=
− 

+  
 

  (1.15) 

where Ef is so called Fermi level. At the temperature 0 K all the levels are occupied up to this 

level and higher levels are empty.  

With increase of the number of atoms the s and p levels overlap. In other words the valence 

and conduction bands overlap and form one partially filled band. It is well known that only 

partially filled bands can conduct. The Fermi distribution function is presented in Fig. 1.18. It 

should be noticed that at temperatures larger than 0 K the Fermi level is occupied in 50%. 

Electrons at the Fermi level possess the kinetic Fermi energy, F. Now, the energetic diagram 

of electrons in metals might be constructed, see Fig. 1.19. 

The electrochemical potential of electrons in metal, 
M
e , is described as: 

 

M

M M M

M M M M M

e e

e

F

F F F

  

 

−

= −

= − −  = − −    (1.16) 

where 
M
e  is the chemical potential of electrons and 

M  is the electron work function that is 

the energy of removing of the electron from the Fermi level of non-charged metal and other 
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symbols have their previously defined meaning.12,13 The work function is described as a sum of 

the chemical and surface contributions: 

 ( )M M M M
e eF   = − − = −   (1.17) 

where 
M
e  is called real potential of electrons. This, as well as 

M , are measurable quantities. 

 

 

Fig. 1.17. Formation of bands in metals. 
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Fig. 1.18. Distribution of electrons in a metal characterized by the Fermi level Ef = 4.72 eV at the 

temperature: a) black 0 K, b) blue 25 C, c) red 200 C. 

 
 

Fig. 1.19. Energetic diagram of electrons in metals. 

 

  



19 

 

The work function may also be described as: 

 

 ( ) ( )M
F F b sV V V  = − + = − + +   (1.18) 

where the total potential energy of electrons, V, is the sum of the bulk, Vb, and surface, Vs, 

potentials: 

 b sV V V= +   (1.19) 

 sV F M= −   (1.20) 

Finally, the chemical potential of the electrons is: 

 
M M

F F be V F V   = + + = +   (1.21) 

All these relations follow from the diagram in Fig. 1.19. 

 

1.6 Two metals in contact 

Let us look what happens if two different metals, M1 and M2, are in contact. In equilibrium the 

electrochemical potentials of electrons in two metal must be equal: 

 1 2M M
e e =   (1.22) 

or 

 1 1 2 2M M M M
e eF F   − = −   (1.23) 

and 

 ( )2 1 2 1M M M M1
e e

F
   − = −  (1.24) 

This Galvani potential difference is not measurable. However, one can measure the contact 

potential difference as Volta potential difference i.e. the difference of external potentials which is 

related to the difference of work functions: 

 1 1 1 2 2 2M M M M M M
e eF F = − −  = = − −    (1.25) 

 ( )2 1 1 2M M M M
F −  =  −   (1.26) 

The process of formation of the contact potential difference is illustrated in Fig. 1.20 and 1.21. 

Some electrons from the metal having higher Fermi level go to the one having lower Fermi level 

to create one common Fermi level in two metals. This produces the potential difference between 

them. 
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Fig. 1.20. Two metals having different work functions: A separately and B in contact. In contact, 

two metals have the same Fermi level but different external potentials.6  

 
Fig. 1.21. Illustration of Eq. (1.14) for two metals in contact.6 

1.7 Metal-solution interface 

Let us look at the interface metal-solution where the following redox reaction takes place: 

 ( ) ( ) ( )M s   M   M Me+ + =   (1.27) 

where indice s denotes solution and M metal. For such reaction one can write equality of 

electrochemical potentials: 
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s M

M
M

e  
+

+ =   (1.28) 

where the electrochemical potential of metal is equal to its standard chemical potential: 

 
0

M M M  = =   (1.29) 

Eq. (1.28) might be rewritten as: 

 0,s s M M 0
MMM

ln eRT a F F    ++
+ + + − =   (1.30) 

or 

 ( )M s 0,s M 0

MM

1
lne M

RT
a

F F
      ++

− =  = + − +   (1.31) 

This equation expresses the Galvani potential difference between metal and solution in terms 

of the activity of metal ions in solution. It resembles Nernst equation; however the Galvani 

potential difference (in parentheses) is not measurable. One can only measure the difference of 

internal potentials between two pieces of the same (chemically) phase. This implies that there 

must be at least three interfaces, e.g. 
'
1 2 1M | M |solution | M  where 

'
1M  and 1M  are two different 

pieces of metal 1M . In this case the measured potential difference consists of three parts: 

 ( ) ( )
' '

1 1 1 2 2 1M M M M M Ms s
mesE        

 
= − = − + − + − 

 
  (1.32) 

This is illustrated in Fig. 1.22. 

  



22 

 

 
 

 Fig. 1.22. Example of the simplest measurable cell and its potentials. 

1.8 Absolute electrode potential 

There was a great interest in the literature to determine the absolute electrode potential. 3-17 The 

problem with the absolute potential is that it might be defined in different ways. The problem of 

defining an “absolute” electrode potential consists of finding an appropriate reference level for 

electrons. They are displayed in Fig. 1.23 as A, B, and C.14 Between them only the way B can be 

experimentally verified. The absolute potential defined here is composed of the work function of 

the metal and the differences of the external potentials metal-solution: 
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Fig. 1.23.Three different ways (A, B, C) of transferring an electron from M’ to M.14 

 

( )

( ) ( )

1

1
1

1
1

1
1

MM M' M
M' M

mes

MM
MM s s

M M
M M

M M
M M
s s

e e e e

s s

E
e e

e e

e e

e e

   
 

− −
= − = =

 
= − −  + +  +  − 

 
= +  −  −  −  −

    
= +   − +     

     

   (1.33) 

because 

 1MM'
e e =   (1.34) 

and might be written as the difference of two absolute potentials (in parentheses): 

 

M
M M
abs sE

e


= +     (1.35) 

In this case the reference state is the electron in vacuum close to the solution surface just 

outside of the image forces that is its external potential, 
s . Both values can be experimentally 

verified. 

 

1.9 Absolute potential of the standard hydrogen electrode 

The absolute potential of the standard hydrogen electrode might be estimated using the 

thermodynamic cycle displayed in Fig. 1.24. 
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Fig. 1.24. Thermodynamic cycle to determine the absolute standard hydrogen potential. 

In this cycle oxidation of H2 might be obtained by direct electrochemical oxidation of H2 to H+ 

or by dissociation of H2, 2H 2H→ , ionization of in vacuum, H He +− → , solvation of H+ in 

aqueous solution, 
+

sH H+→ , and transporting an electron from vacuum to the solution surface 

just outside of the image forces, s: 

 
0 M M

sG e =  +     (1.36) 

 2 2
+ +

H H0 H s s H s
ion iondiss dissH H

1 1

2 2
G G G e G G  =  +  + −  =  +  +   (1.37) 

Because 0G  was written for oxidation and the absolute potential is the reduction potential: 

 
0

absG FE =   (1.38) 

Using the experimental values of the parameters: 

 

2

+

2

H 1
2 diss

H 1
ion

H 1
vac s0H O

1
H 2H 203.30 kJ mol

2

H H 1313.82 kJ mol

H H 1088 2 kJ mol

G

e G



−

+ −

+ + −

→  =

→ +  =

→ = − 

  (1.39) 

one can get: 

 1203.20 1313.82 1088 429.12 kJ molG − = + − =   (1.40) 

and taking into account the experimental error: 

 0 12 kJ 429 molG − =    (1.41) 

This value leads to the absolute potential of hydrogen reduction reaction: 

 
+

2H /H
abs

4.45 0.02 VE =    (1.42) 

Because of the large experimental error in the determination of the real solvation energy of 

proton the error of the standard potential is large, ~20 mV. Because of that the potentials are 
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determined with respect of the standard hydrogen electrode and can be obtained with the 

precision of the fraction of mV. 
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2 Potentiometry  

2.1 Activity 

Chemical potential for the ideal solution depends on concentrations: 

 
ideal 0
i i ilnRT c = +   (2.1) 

however, in real solutions, because of the interionic interactions, concentration must be replaced 

by activity: 

 
real 0
i i i i i ilnRT a a c  = + =   (2.2) 

or 

 
real ideal
i i i-i ilnRT   − =  =   (2.3) 

where I is the activity coefficient. Of course, with increasing dilution (decreasing concentration) 

the interionic distances increase and solutions becomes ideal: 

 0 ilim 1c → =   (2.4) 

Thermodynamically, it is possible to determine only the salt activity. Let us suppose a 

completely dissociated salt 
+

M A −
 

 
+ M AM A M A 0

i i

z z
c z c z v z v z      + −

− + − + − + − + + − −→ + = + = + =    (2.5) 

for which one can write: 

 
+

M A M A M A
z z z z 

        
+ − + −−

+ − + −= + = +   (2.6) 

where 

 
0

0

ln ln

ln ln

RT m RT

RT m RT

      

      

+ + + + + + + +

− − − − − − − −

= + +

= + +

  (2.7) 

Introduction of mean activities leads to: 

 

( ) ( )

( )

( )

0 0 1/ 1/

0

0 0
0

1/

1/

ln ln

ln ln

RT m m RT

RT m RT

m m m

   

 


 

   


 

   
 

 

  

   


 

  

+ +− −

+ −

+ −

+ + − −


+ −

+ + − −
+ − + −

+ −

   

+ + − −


+ −

 + −

 + −

+
= =

+

+
= + +

+

= + +

+
=

+

=

=

  (2.8) 

where m is the molality (in mol/1 kg of solvent). 
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Exercise 2.1. 

Determine relation between mean and single ionic parameters for NaCl, CaCl2, and Fe2(SO4)3 

salt concentration m (molality). 

a) NaCl 

 

( )

+Na Cl

1/2

1/2

Na Cl

2

( )m m m m m m m m

 


  

−

+ −



 + − + − 



+
=

= = = =

=

  (2.9) 

b) CaCl2 

 

( ) ( )

2+2

2+ 2+

CaCl Ca Cl

0 0

Ca Cl Ca Cl

1/3 1/3
2 2

2

2 2

3 3

ln lnRT m m RT

  

   


 

−

− −



+ − + −

= +

+ +
= =

+ +

  (2.10) 

 ( )

( )2+

1/3
2 1/3

1/3
2

Ca Cl

2

2 4 1.5874

m m m m

m m m m m

  
−

− +





= =

 = = =
  

=

  (2.11) 

c) Fe2(SO4)3 

 

( ) ( )

3 2
4

3 2
4

3 2
4

3 2
4

1/

Fe SO

Fe SO

1/5 1/5
2 32 3

Fe SO

1/5
2 3

Fe SO

2 , 3

2 3 2.5508

v
v v

v v v

m m m

m m m m

m m m m m m

  

+ −
+ −

+ −

+ −

+ −

+







= +

 
=  

 

= =

   = = =     

 
=  

 

  (2.12) 

In diluted solution molarity and molality are very similar, however, in concentrated solutions, 

they are quite different. 

 

Exercise 2.2. 

Compare molar and molal concentrations in 0.275 M (d = 1.005 g cm-3) and 30% (d = 1.198 g 

cm-3) of HCl. 

a)  MHCl = 36.47 g mol-1, in 1 l there is 0.275*36.45 = 10.0 g HCl. 
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1 l – 1005 g solution = 10.0 g HCl + 995.0 g H2O 

In 1 kg H2O there is 
0g/l *1000g

10.05 g HCl
995g/l


=  or 10.05 g / 36.47 g/mol=0.276 mol of HCl. 

Threfore, molal concentration 0.276 m (and molar concentration is 0.275 M). 

b) 1 l of solutution weights 1198 g, mass of HCl 1198*0.30 = 359.4 g HCl  (+838.66 g H2O) 

Molar concentration 
HCl

M
HCl

359.4g/l
9.855 M

36.47 g/mol

m
C

M
= = =   

Solution consists of 1000g of solvent and HCl 
mol 1000g/kg

9.855 11.75 m
l 838.66g/l

=   

It is evident, that in 30% HCl there is large difference between molarity and molality. 

 

2.2 Debye-Hückel theory of ion-ion interactions 

In the indefinitely diluted solutions the ions are separated and there are no interactions between 

them. In such a case the activity coefficients are equal to one and the solution behaves as ideal. 

However, when solutions become more concentrated interionic interactions cause deviation from 

the ideal solutions and the activity coefficients must be introduced.2,6,18 These interactions for the 

individual ion are defined as: 

 ( ) ( )i i i-i ireal ideal lnRT   − =  =   (2.13) 

where i-i  is the free energy of ion-ion interactions. This term may be estimated by work of 

charging on an “uncharged ion” to the charge zie0, where zi is the ion valence and e0 is the 

elementary charge. Such a process is illustrated in Fig. 2.1 and the corresponding work is W. 

 
Fig. 2.1. Process of charging of the “discharged ion” in the solution.2 

The chemical potential of charging is Avogadro number, NA, times individual fork W: 

 i-i AN W =   (2.14) 

The charge of an individual ion is: 

 i 0q z e=   (2.15) 

and the work of charging: 

 

i 0

ion

0

d

z e

W q=    (2.16) 

where the electric potential, ψ, at the distance r around the ion, is 
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 ion
04

q

r



=   (2.17) 

Then, the work of charging is: 

 
( )i 0 2
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= = = = 

 
   (2.18) 

and the chemical potential: 

 A i 0
i-i A ion

2

N z e
N W  = =   (2.19) 

Debye and Hückel have shown how to estimate theoretically the activity coefficients. 

2.2.1 Limiting Debye-Hückel theory 

When solutions are very diluted ions may be considered as point charges. Let us consider a 

simple 1:1 electrolyte, where the charges are unitary and total number of cations and anions is 

the same: 

 
0 0

i  1,z z N N N+ − + −= = = =   (2.20) 

In this theory it is considered that each ion is surrounded by the ionic cloud of the opposite 

charge. The distribution, according to the Boltzmann law, is given by: 
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e kT

e kT

N N
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



−
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− −
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=

  (2.21) 

where  is the total electrostatic potential at the distance ri. The volumetric charge density is: 

 

i
i 0 i

i
i

d

d
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d

d

N
e z

V

N
N

V

 =

=

  (2.22) 

 ( )0 0/ /0
i 0 0 i 0 e e

e kT e kT
N z e N z e N e

   −
+ + − −= = + = −   (2.23) 

Of course, the average charge density of the solution is zero. Eq. (2.21) may be linearized 

when: 

 i 0 1
z e

kT


   (2.24) 

and, in such a case: 

 ( )
2

exp 1 ... 1
2

a
a a a− = − +  −   (2.25) 

Such a linearization is a fundamental assumption of the D-H theory. In this case the charge 

density is: 
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  

 

  (2.26) 

To find the potential  the Poisson equation must be solved: 

 
2 2 2

2 2 2
0x y z

   



  
+ + = −

  
  (2.27) 

As we are interested in the radial potential distribution around the charge the spherical 

coordinates may be used. Spherical symmetry simplifies the problem and the Poisson Eq. (2.27) 

simplifies to: 
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  (2.28) 

where Eq. (2.26) was substituted for ρ. To solve this problem a new variable μ is introduced and 

the derivatives calculated: 
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  (2.29) 

Substitution into Eq. (2.28) gives: 
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  (2.30) 

Solution of Eq. (2.30) is given as a sum of exponentials: 

 

e e

e e

r r

r r

A B

A B

r r

 

 





−

−

= +

= +
  (2.31) 

with the condition: 

 0,  0r B→  → =   (2.32) 

and the following solution is obtained 
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e r

A
r




−

=   (2.33) 

Parameter A may be found form the condition in infinitely diluted solution, when κ→0 the 

potential equals to that of the individual ion, Eq. (2.17): 

 

 i i

0 0

0

4 4

A q z e
A

r r




 

→

= = =
  (2.34) 

and the solution for the radial distribution of the potential around an ion is: 

 i 0
r

0

e

4

rz e

r






−

=   (2.35) 

Distribution of the potential is displayed in Fig. 2.2. 

 
Fig. 2.2. Radial distribution of the electrostatic potential around an ion.2 

Next, we have to calculate the charge distribution around an ion. The charge is related to the 

potential by Eq. (2.28): 

 

2
r

0

2
0 e

4

r
iz e

r




 








−

= −

= −

  (2.36) 

It is clear that the charge density decreases with the distance, similarly to the potential, Eq. (2.35) 

and Fig. 2.2. However, the charge at the distance r in the spherical shell of the thickness dr is 

 
2d 4 dq r r =   (2.37) 

Dependence of this charge contained in the spherical shell 24 dr r  is displayed in Fig. 2.3 and 

2.4. 
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Fig. 2.3. Spherical shell of thickness dr at distance r from the central ion.2 

 
Fig. 2.4. Variation of the charge dq contained in a spherical shell of thickness dr on normalized 

distance r/κ -1.2 

This distribution of the charge density of the opposite sign around the central ion is visualized 

in Fig. 2.5. 

 
Fig. 2.5. Distribution of the charge around a central ion.2 
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The charge density in the spherical shell has a maximum. The distance of the maximum, rm, 

can be found by differentiation of the charge: 

 
( ) ( )2 2

0 0

1
m

d d
e e e 0

d d

r r r
i i

q
z e r z e r

r r

r
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

− − −

−

= − = − − =

=

 (2.38) 

It is equal to κ-1. Redistribution of the charge in solution around the central ion is called ionic 

cloud. The charge of the ionic cloud is: 

 ( )
2

2 2i 0
cloud i 0 i 0

0 0 0 0

e
d 4 d 4 d e d

r r
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z e
q q r r r r z e r r z e
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→   −
−

=

= = = − = − = −     (2.39) 

which means that the central ion is surrounded by the ionic cloud of the opposite sign and its 

total charge is equal to that of the central ion, Fig. 2.6. 

 

 
Fig. 2.6. Ionic cloud of the total charge –zie0 around the central ion zie0.

2  

The total potential around the central ion, ψr, is composed of two contributions, one due to the 

presence of the central ion, ψion, and due to the ionic cloud, ψcloud  ̧Fig. 2.7: 

 r ion cloud  = +   (2.40) 

 
Fig. 2.7. The superposition of the potential, ψion, due to the central ion (b) and the potential due 

to the ionic cloud (c), ψcloud, around the central ion.2 
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From which potential due to the ionic cloud might be obtained using Eqs. (2.35) and (2.17): 
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As before, the exponent might be linearized at low concentrations when: 
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  (2.42) 

Comparing the ionic and cloud potentials it is possible to notice that the cloud potential is 

equivalent to the ion of the opposite sign at the distance κ-1, Fig. 2.6 and Fig. 2.8  

 

 
Fig. 2.8. Contribution of the ionic cloud is equivalent to the charge equal in magnitude and of 

opposite sign to that of the central ion, placed at the distance κ-1.2 

The distance κ-1 is called thickness (radius) of the ionic cloud or the Debye-Hückel length. 

Taking into account that the concentration is: 
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  (2.43) 

where NA is the Avogardo number. Substitution into Eq. (2.28) gives 
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  (2.44)  

where I is the ionic force of the electrolyte: 

 
2

i iI c z=    (2.45) 

For the electrolyte 1:1 the ionic force equals to the concentration and for the electrolytes with 

|zi| > 1 it is larger than the concentration. The parameter B is: 

 
1/2 3/2 1/2 1502.90 ( ) dm  mol  nmB T − − −=   (2.46) 
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or for water at 25 C: 

 3/2 1/2 13.2864 dm  mol  nmB − −=   (2.47) 

The values of the parameter -1 are shown in Table 2.1. 

 

Table 2.1. Dependence of the ionic cloud thickness, -1, in nm, on the electrolyte concentration.2 

 
 

Deviations from the ideal solution described in Eqs. (2.13) and (2.14) are related to the 

electrostatic ion-ion interactions and ionic cloud potential: 
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The activity coefficient is 
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or 
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where  
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The parameter A is: 

 
6 3/2 3/2 1/21.82481 10 ( ) dm molA T − −=    (2.52) 



36 

 

and for water at 25 C: 
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  (2.53) 

The activity coefficients of the single ions can be estimated by theory but cannot be 

determined experimentally. In order to compare the results of the Debye-Hückel theory 

calculated mean activity coefficients of the electrolyte should be with those determined 

experimentally. Keeping in mind that the activity coefficient of the electrolyte is: 
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  (2.54) 

Eqs. (2.50) and (2.54) describe so called Debye-Hückel limiting law. It is applicable to very 

diluted solutions with the ionic force usually lower than I = 0.001 for 1:1 electrolytes (sometimes 

more). Comparison of the experimental and calculated activity coefficients is shown in Fig. 2.9 

and 2.10. Different slopes correspond to different values of |z+ z-|. 

 
Fig. 2.9. Comparison of the experimental (points) and calculated (line) activity coefficient of 

HCl.2 
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Fig. 2.10. The experimental log ± versus I1/2 for three different types of electrolytes: 1:1, 2:1, 

and 2:2.2  

However, at higher concentrations (higher ionic force) deviations from the linear dependence 

are observed, see Fig. 2.11. 

 
Fig. 2.11. Dependence of log ± (here f±) versus I1/2. Linear relation is observed only at very low 

concentrations.2 
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The first source of deviations observed might arise from the assumption that the ions are point 

charges. The Debye-Hückel limiting law is valid when the thickness of the ionic cloud is much 

larger than the ionic radius, 1/ >> ri. This problem will be considered in the next chapter. 

2.2.2 Influence of the ionic radius 

In the previous chapter in Eq. (2.39) integration of charges around the central ion was carried 

for the parameter r from 0 to ∞. However, because each ion has an effective radius a the 

integration must be carried out from a to ∞. The procedure carried out in this case will affect the 

parameter A in Eq. (2.33): 
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  (2.55) 

From which the parameter A is obtained: 
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and the potential as a function of distance becomes: 
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The difference between Eq. (2.57) developed for the ions of radius a and Eq. (2.35)  developed 

for the point charges is the presence of the term in parentheses in Eq. (2.57). When a = 0 this 

term is equal to one. As earlier, Eq. (2.41), we can calculate the cloud potential: 
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  (2.58) 

After linearization of the exponential (as above) the following equation is obtained: 
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and the corresponding activity coefficient of a single ion is obtained using procedure in Eq. 

(2.48)-(2.50) 
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and for the electrolyte: 

 
| |
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A z z I
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  (2.61) 

The parameter a is the effective ion diameter. It is an experimental parameter and its values are 

displayed in Table 2.2. These values are given for single ions but the values for the electrolytes 

are not well defined which is the weakness of this theory. 

 

Table 2.2. Values of the parameter a and activity coefficients of various ions at different ionic 

forces.19 

 
As one can see the values of a for many ions are around 3 nm which gives aB ≈ 1 and a 

simpler form of Eq. (2.61) is often used: 
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Bates and Guggenheim proposed an equation used in the pH determination: 

 i
| |

log
1 1.5

A z z I

I
 + −= −

+
  (2.63) 

The last two equations do not require any specific information about the individual ions. To 

account for the variation of the experimental activity coefficients at higher ionic forces, Fig. 2.12 

and 2.13, another semi-empirical equation was proposed: 

 
| |

log
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A z z I
CI

Ba I
 + −

 = − +
+

  (2.64) 

This equation works well for ionic strengths up to 0.3. The approximations of the experimental 

activity coefficients by different equations is illustrated in Fig. 2.14. The value of the parameter 

C = -0.1z+z- was used. 

 
Fig. 2.12. Dependence of the mean activity coefficients on the square root of the concentration.2 

 
Fig. 2.13. Variation of the mean activity coefficients with concentration. 
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Fig. 2.14. Dependence of the mean activity coefficient of NaCl on square root of molar 

concentration at 25 C. Symbols – experimental, curve 1 calculated using Debye-Hückel limiting 

law, Eq. (2.54); curve 2 according to Eq. (2.62); curve 3 according to Eq. (2.61) with a = 0.325 

nm; curve 4 according to the Bates-Guggenheim Eq. (2.63); curve 5 according to the Bates-

Guggenheim + 0.1C; curve 6 according to Eq. (2.64) with a = 0.4 nm, C = 0.055 dm3 mol-1.6 

More complex equations were also proposed in the literature for concentrated solutions.6 

 

2.3 Electrode potentials 

Physically one can measure potential difference between two electrodes. If the reference 

electrode is the standard hydrogen electrode the word electrode potential can be used.  

Reversible hydrogen electrode, Pt|H2(
2Hp )|H+(

H
a + ), consists of Pt/Pt black electrode 

immersed in solution and bubbled with H2 gas, Fig. 2.16 and 2.16.  

Standard hydrogen electrode, SHE, (earlier called normal hydrogen electrode, NHE) is the 

reversible hydrogen electrode with to the hydrogen activity of one: 

 ( )0

H H H
/a c c+ + +=   (2.65) 

where 
H

 +   is the activity coefficient of protons in solution, 
H

c +  is the concentration of H+, and 

0c  = 1 M is the standard concentration, and the hydrogen gas fugacity of one: 
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 ( )2 2 2

0
H H H /f p p=   (2.66) 

where 
0 510 Pap =   is the standard pressure (earlier a pressure of 1 atm = 1013251 Pa was used). 

The real hydrogen pressure should be corrected by the water vapor pressure, 
2H Op  , which are 

tabularized,5 and the solution depth, h, at which hydrogen is bubbled: 

 
2 2

5
H barometric H O 4.2 10p p p h−= − +    (2.67) 

where pressure in in atmospheres and h in mm. The potential of the standard hydrogen 

electrode is by definition zero at all the temperatures. Practical tips on preparation of hydrogen 

electrodes are found in ref. 5. It should be stressed that the standard hydrogen electrode does not 

exist because it is not possible to prepare solution of 
H

a +  =1 exactly  and only the RHE can be 

used in practice. However, it is possible to determine the electrode potential versus SHE by 

extrapolation to low concentrations, see Chapter 2.8. 

 
Fig. 2.15. Reversible hydrogen electrodes.5 
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Fig. 2.16. Schematic view of the reversible hydrogen electrode Pt | H2 | H

+; 1) Pt black electrode, 

2) gaseous hydrogen, 3) solution of fixed pH, 4) gas bubbler to avoid air entrance, 5) ionic 

connection with another electrode.20 

 

The definition of the measured parameters is resumed below: 

1) potential difference or cell voltage is the potential difference between two electrodes 

(current might flow) 

2) electromotive force, EMF, is the potential difference measured in the open circuit, without 

any current 

3) potential is the potential difference when the reference electrode on the left hand side is the 

standard hydrogen electrode 

4) standard cell potential is the electrode potential when all the concentrations and fugacities 

are equal to one. 

2.4 Nernst equation 

The Nernst equation is the consequence of the electrochemical equilibrium. It can be easily 

obtained from the electrochemical potentials. Instead of solving a general case let us look at the 

example of the cell without liquid junction potential: 
2+Cu’ Ag AgCl|Cl , | Zn Zn u|C−

        (2.68) 

The reactions taking place at the electrodes are: 
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1  Zn + 2e Cu  = Zn

2) AgCl + e Cu’  = Ag + Cl                × -2

Zn +2 Ag + 2 Cl + 2 e Cu  = Zn + 2 AgCl + 2 e Cu’

Zn +2 Ag + 2 Cl  = 

___

Zn 

_____

or

+ 2 AgCl 

−

−

−

   (2.69) 
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In order to get the total equation both reactions are written as reductions and that at the left hand 

side is multiplied by -2 to be able to cancel the electrons on both sides. It is important to notice 

that the final redox reaction does not contain electrons: 

  
2+Zn +2 Ag + 2 Cl  = Zn + 2 AgCl −

  (2.70) 

To develop the Nernst equation one should write the electrochemical potentials for all the 

species including the electrons in Eq. (2.69): 

2

AgCl AgZn Cu' s s Cu
Zn AgAgCl Zn Cl

2 2 2 2 2e e      
+ −

+ + = + + +     (2.71) 

but 

22 2
s 0,s s

ZnZn Zn

s 0,s s

ClCl Cl

Ag AgCl0 0 Zn 0
Ag AgCl Zn ZnAg AgCl

Cu Cu Cu Cu' Cu Cu'

Zn Cu' Ag

ln 2

ln

e e e e

Cu
e e e e

RT a F

RT a F

F F

  

  

     

     

   

++ +

−− −

= + +

= + −

= = =

= − = −

= =

    (2.72) 

and after substitution 

( ) ( ) ( )22

Cu Cu'

0 0 0 0 0 2
Zn AgCl Ag ZnZn Cl Cl

2 ( ) 2

2 ln

F FE

RT a a

 

     ++ − −

− = =

− − − − +
  (2.73) 

which might be rearanged as: 

( )2
0 2

Zn Cl
ln

2

RT
E E a a

F
+ −

= +         (2.74) 

with 

( ) ( )2
0 0 0 0 0

Zn AgCl Ag
0 Zn Cl

2

2
E

F

    
+ −

− − − −

=     (2.75) 

Eq. (2.74) is the Nernst law for the cell in Eq. (2.68). It is obvious that it is the consequence of 

the equality of the electrochemical potentials for this cell. In general, the Nernst equation is 

written in the form: 

 
0 ox

red

ln
RT a

E E
nF a

= +   (2.76) 

but all the species involved in redox reactions must be included in this equation. 

It should be stressed that according to the IUPAC convention the cell potential corresponds to 

the potential difference: right minus left: 

 right leftE E E= −   (2.77) 

From the thermodynamic point of view the cell potential is related to the Gibbs energy of 

reaction G nFE = −  . The sign of the cell potential can tell us in which direction the reaction is 

spontaneous: 

 

E < 0  G  > 0  Reaction spontaneous to the left 
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E > 0  G < 0  Reaction spontaneous to the right 

 

In the above example the standard potential of the cell is -0.985 V which means that when the 

two electrodes are connected through the resistor the reaction (2.70) will proceed to the left. 

In the electrochemical cells one vertical line “|” denotes separation of phases and two lines”||” 

liquid junction that is contact of two different solution containing different electrolytes, different 

concentrations or different solvents. The liquid junction of two different solutions is connected 

with the formation of the additional potential difference: the liquid junction potential. 

2.5 Formal potentials Eo’ 

Calculations of the electrode potentials demands knowledge of the activities. However, 

activities are rarely determined and, in some cases, they are difficult to estimate. In such cases 

instead of the activities one can use concentrations and replace standard by the formal potential, 

E0’: 

 

0'

0 0 0'ox ox ox ox

red red red red

ln ln ln ln

E

RT a RT RT c RT c
E E E E

nF a nF nF c nF c




= + = + + = +   (2.78) 

Of course the formal potential depends on the solution ionic force and electrolyte nature, but 

can be used when they constant. Another example is for the potential of Fe3+/Fe2+ in HCl: 

 
3 3

2 2

0 0'Fe Fe

Fe Fe

ln ln
a cRT RT

E E E
nF a nF c

+ +

+ +

= + = +   (2.79) 

where 

 
3

3+ 2+ + -
2 3 4Fe

2- 3-
5 6

Fe FeCl FeCl FeCl FeCl

FeCl FeCl

c +
         = + + + +
         

   + +
   

  (2.80) 

2.6 Types of the electrodes 

There are few principal types of the electrodes. 

2.6.1 Electrodes of the first kind 

Electrodes of the first kind are of the type metal-metal ions in the solution, Mz+|M. The 

Nerstian potential of such an electrode is given as: 

 
z+M + z e M   (2.81) 

 
0

MM |M
ln zz

RT
E E a

zF
++

= +   (2.82) 

Examples of such electrodes are: Ag+|Ag, Cu2+|Cu, Zn2+|Zn, etc. Another example are the 

amalgam electrodes, e.g. Cd2+|Cd(Hg), where its potential is given by: 

 
2

2
Cd

Cd |Cd(Hg) Cd(Hg)

ln
2

aRT
E E

F a

+

+
= +   (2.83) 
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where aCd(Hg) in the activity (~concentration) of cadmium amalgam. 

 

2.6.2 Electrodes of the second kind 

Electrodes of the second kind consist of the metal, its poorly soluble salt, and anions of the salt 

in solution, e.g.: M|MX|X-. Below examples of the electrodes of the second kind will be shown. 

a) Cl-|AgCl|Ag 

 AgCl + e  Ag + Cl−   (2.84) 

Potential of this electrode may be developed form the Nernst potential of Ag+ ions which are 

always, in small quantities, in the solution saturated with AgCl: 

 +
0

AgAg |Ag
ln

RT
E E a

F
+= +   (2.85) 

In the saturated solution there is a thermodynamic equilibrium described by the solubility 

product 

 
AgCl
so Ag Cl

K a a+ −=   (2.86) 

Substitution of the activity of Ag+ to Eq. (2.85) gives: 

 +
0 AgCl

so ClAg |Ag
ln ln

RT RT
E E K a

F F
−= + −   (2.87) 

or 

 
0
AgCl|Ag Cl

ln
RT

E E a
F

−= −   (2.88) 

where 

 +
0 0 AgCl
AgCl|Ag so

Ag |Ag
ln

RT
E E K

F
= +   (2.89) 

Eq. (2.89) allows for the determination of the solubility product from the standard potentials. 

b) 
2

2 4 2 4C O |ZnC O |Zn−
 

 
2

2 4 2 4ZnC O 2 Zn C Oe −+ +   (2.90) 

The equilibrium potential is developed as above: 
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F
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 2 4
2 2

2 4

ZnC O
so Zn C O

K a a+ −=   (2.92) 

 2 4
22+

2 4
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ln ln
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RT RT
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F F
−= + −   (2.93) 

 2
2 42 4

0
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2

RT
E E a

F
−= −   (2.94) 

 2 4
2+

2 4

ZnC O0 0
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ZnC O |Zn Zn |Zn
ln

2

RT
E E K

F
= +   (2.95) 
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c) Hg|HgY2-|Y4- where Y4- is the anion of EDTA 

 
2- 4HgY + 2 e  Hg + Y −

  (2.96) 

 22+
0

HgHg |Hg
ln

2

RT
E E a

F
+= +   (2.97) 

The complex stability constant is: 

 
2

2
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HgY

HgY
Hg Y

a

a a
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−

−
+ −

=   (2.98) 
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a
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E E
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HgY |Hg
Y

ln
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a
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E E
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−
−

= +   (2.100) 

 22 2+
0 0

HgYHgY |Hg Hg |Hg
ln

2

RT
E E

F
 −−

= −   (2.101) 

Electrodes of the second kind are often used as the reference electrodes or in analytical 

potentiometry as the ion selective electrodes. 

2.6.3 Electrodes of the third kind 

Electrodes of the third kind consist of the metal 1, its sparsely soluble salt, another sparsely 

soluble salt of the same anion with another cation 2, and cation 2 in the solution, e.g.:  

M1 | M1X | M2X | M2
+. It is important that the salt M1X must be much less soluble than M2X 

(otherwise an exchange of ions will occur leaving M1 and M2X).  

a) Zn | ZnC2O4 | CaC2O4 | Ca2+ 

 2 4
22+

2 4

ZnC O0
so C OZn |Zn

ln ln
2 2

RT RT
E E K a

F F
−= + −   (2.102) 

 2 4
2 2

2 4

CaC O
so Ca C O

K a a+ −=   (2.103) 
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RT K RT
E E a
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+= + +   (2.104) 

 22+
2 4 2 4

0

CaCa |CaC O |ZnC O |Zn
ln

2

RT
E E a

F
+= +   (2.105) 

 
2 4

2+ 2+
2 42 4 2 4

ZnC O
0 0 so

CaC OCa |CaC O |ZnC O |Zn Zn |Zn
so

ln
2

RT K
E E

F K
= +   (2.106) 

with the condition: 2 4 2 4ZnC O CaC O
so soK K   

This electrode of the third kind allows to obtain electrode reversible to Ca2+, which because of 

the hight activity of calcium toward water is impossible using the electrode of the first kind: 

Ca2+|Ca.Hg | HgY2- | CaY2- | Ca2+ 
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  (2.109) 
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Hg|HgY |CaY |Ca Hg |Hg
CaY

ln
2

RT
E E

F
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−

− − +
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= −   (2.110) 

with the condition: 2 2HgY CaY
 − −  

This kind of the electrode is used in potentiometry and potentiometric titrations. 

2.6.4 Redox electrodes 

Redox electrods are made of an inert metal (which does not react with the components of the 

solution) in the solution containing redox couple, i.e. ox and red forms. Metallic electrode most 

used is platinum; examples are: Fe3+/Fe2+, MnO4
-/Mn2+, Cr2O7

2-/Cr3+, etc. 

2.6.5 Concentration cells 

Concentration cells are composed of two electrodes of the same type but containing different 

concentrations. There are two types of such cells: 

a) with liquid junction, in which two solutions with different ionic concentrations are in 

dirtect contact 

An example of such cell is: Ag’|Ag+ 0.1 M ||Ag+ 0.01 M |Ag. The cell potential difference is 

equal to the potential difference of two electrodes and contains the liquid junction potential. 

 

0
right Ag (right)Ag |Ag

0
left Ag (left)Ag |Ag

Ag (right)
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Ag (left)
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RT
E E a

F
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E E a
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E E E E
F a

++

++

+

+

= +

= +

= − = +

   (2.111) 

b) without liquid junction potential and ionic transfer 

In this case two solutions are separated by a metallic electrode, e.g. 

Pt’|H2|HCl(a1)|AgCl|Ag|AgCl|HCl(a2)|H2|Pt.  The potential difference of the cell is the sum of the 

potential differences of two cells connected in series, assuming the the hydrogen pressure is 

105 Pa and the standard potential of hydrogen electrode is zero: 
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 0 0
right AgCl|Ag AgCl|Ag ,2H Cl

2
ln ln

RT RT
E E a a E a

F F
+ − = − + = − +   (2.112) 

 0 0
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2
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 ,2
cell right left
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2
ln

aRT
E R E

F a





= + =   (2.114) 

Another example of the cell without liquid junction potential and ionic transfer is cell with 

amalgams, e.g.: Ag|AgCl|NaCl (a1)|Na(Hg)|NaCl (a2)|AgCl|Ag or 

Pt|H2|MOH(a1)|M(Hg)|MOH(a2)|H2|Pt where M is a metal. In the last cell the electrode reactions 

at the right may be written as: 

 

2 2

2 2

1
H O H OH

2

M M(Hg)

_____________________________

1
H O M(Hg) M OH H

2

e

e

−

+

+ −

+ = +

+ =
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  (2.115) 

and the total potential difference of the complete cell is: 

 
2

2

H O,2,1

,2 H O,1

2
ln ln

aaRT RT
E

F a F a





= +   (2.116) 

2.6.6 Primary and secondary batteries 

Primary batteries are non-rechargeable and secondary are rechargeable. Below few examples 

of these batteries are displayed.21 

1) Primary batteries 

a) Leclanché, acid 

C|MnO2|MnOOH|NH4Cl,Zn(NH3)2Cl2|Zn 

b) Leclanché, alkaline 

MnO2|Mn2O3|KOH|ZnO|Zn 

c) zinc-mercury 

Zn|Zn(OH)2|KOH|HgO|Hg 

d) zinc-silver 

Zn|ZnO|KOH|Ag2O|Ag 

e) zinc-air (or aluminum-air) 

Zn|air|C 

f) lithium-SO2 

Li|SO2, LiBr,AN|C 

2Li+2SO2=2 Li2S2O4 

g) Li-SOCl2 

Li|SOCl2, LiAlCl4|C 

4 Li + 2 SOCl2 = 4 LiCl + S + SO2 

h) Li-FeS2 

Li|LiI,PC|FeS2 

FeS2 + 4e = Fe + 2 S2-  
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i) Li-CuO 

Li|LiClO4|CuO|Cu 

j) Li-MnO2 

Li|PC,LiCl|MnO2|LixMnO2 

2) Secondary 

a) lead-acid 

Pb|PbSO4|H2SO4|PbO2|PbSO4|Pb 

b) Cd-Ni 

Cd|CdO|KOH|NiOOH|Ni(OH)2|Ni 

c) Cd-Ag 

Cd|CdO|KOH|Ag2O|Ag 

d) Ni-H2 

NiOOH|H2 

e) Ni-metal hydride 

NiOOH|AB5Hx 

f) zinc-silver oxide 

AgO|Zn 

g) Li-ion 

negative 

LiC6, LiWO2, LiMoO2 

positive 

LiCoO2, LiNiO2, LiMn2O4 

organic solvents 

-BL, PC, THF, DME… 

salts 

LiClO4, LiPF6,… 

 

3) Fuel cells 

a) alkaline H2-O2 

 
b) polymer membrane (acidic) PEMFC 

c) phosphoric acid 

d) direct methanol DMFC 
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e) solid electrolyte SOFC 

2.7 Reference electrodes 

In practice, certaine reference electrodes are used, depending on the solutions studied. The best 

way is to avoid liquid junction potentials. 

The most popular reference electrode is the saturated calomel electrode, SCE: Hg|Hg2Cl2|sat. 

KCl. Its potential at 25 C is E = 0.2444 V. However, the solubility of KCl depends strongly on 

temperature and normal calomel electrode is sometimes used using 1 M KCl solution. Of course 

its potential also depends on temperature as G0 is also temperature dependent but this 

dependence is smaller. 

Another reference electrode is Ag|AgCl|Cl- electrode in diluted chloride solutions. In more 

concentrated solutions AgCl is slowly dissolved forming soluble complexes as AgCl2
-. 

Other popular electrodes are Hg|Hg2SO4|SO4
-, Hg|HgO|OH- or reversible hydrogen electrode, 

RHE, in the studied solution, Pt|H2|H
+ (or OH-).  

To avoid contamination of the working solution by the ions from the reference electrode 

special junctions were proposed, Fig. 2.17 and a double junction reference electrode is 

sometimes used, Fig. 2.18. The reference electrode used in electrometric experiments should be 

characterized by low resistance (impedance), < 1 kΩ. However, reference electrodes with higher 

resistance might be used in potentiometric measurements. 

 

 
Fig. 2.17. Different types of junctions for reference electrodes.5 
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Fig. 2.18. Double junction for the reference electrode.5 

2.8 Determination of the standard electrode potential 

Although the standard hydrogen electrode does not exist it is possible to determine the 

standard electrode potential. Such a procedure will be shown for the determination of the 

standard potential of AgCl|Ag electrode. The cell necessary to determine this parameter is shown 

below: 

Cu’|Pt|H2|H
+, Cl-|AgCl|Ag|Cu        (2.117) 

The reaction in the half-cells are: 
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  (2.118) 
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2 2 1/2 1/2

H Cl
  ln ' 'a a m f f A I A m+ −    =  =      (2.122) 

where ( )
1/2

m m m m + −= =  is the electrolyte (HCl) molality. To obtain the standard potential 

of AgCl/Ag electrode Eq. (2.121) is rearranged to: 

 
2

1/2 0 1/2
H

2 2 '
ln ln

RT RT RTA
E m E m

F F F
+ − = −   (2.123) 

where all terms on the left hand side are known and are plotted versus m1/2; the intercept gives us 

the standard potential. Such a plot is displayed in Fig. 2.19. The extrapolated value is E0 = 

0.2225 V. 

 

 
Fig. 2.19. Plot to determine the standard potential of AgCl/Ag electrode.22 

Knowing standard potential of one electrode allows using AgCl|Ag as a reference electrode 

and determine standard potentials of other electrodes. 

In the cases when the equilibrium at the electrodes cannot be reached because of sluggish 

kinetics of the electrode reactions the standard potential can be calculated from G0 of the total 

reaction. For example the standard potential of the O2/H2O reaction can be calculated form the 

standard Gibbs energy of water formation G0 = -237.2 kJ mol-1 for the cell: H2|H
+, H2O|O2. 
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and 
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Another example is the calculation of the standard potential of the cell: Pb|PbO2|Br-,H2O|Br2 

knowing that the Gibbs energy of formation of PbBr2, G0 = -210.14 kJ mol-1: 
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2 2

Br 2 2 Br

PbBr 2 Pb Br            ( 1)

____________________________
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e
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+ = + −   (2.126) 
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2 2 96485
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F


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  (2.127) 

In this case the potential difference measured is independent of Br- concentration, E = E0 of 

the cell. 

Finally a more complex example will be shown for the calculation of the standard potential of 

Ca2|Ca couple. Of course direct measurements are not possible because of the reactivity of 

metallic Ca with water. One looks for the standard potential of: 

 6)        
2+ +

2Ca + H = 2 H + Ca   (2.128) 

E0 might be calculated by addition of several reactions: 
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2.9 Potentiometric determination of the activity and activity coefficients 

Electrolyte activities and activity coefficients might be determined using physicochemical 

methods (osmotic coefficient, decrease of the melting point and increase of the boiling point of 

solutions) and by potentiometric measurements. The potentiometric method will be illustrated in 

for the activity of CdCl2.  

Exercise 2.3 

Determine the activity coefficients of CdCl2 using data from Table 2.3. To do this the following 

cell should be used: 

Pt’|Cd(Hg) 11%, (saturated)|CdCl2 m|AgCl|Ag|Pt 

 

Table 2.3. Data for the determination of activity coefficients of CdCl2. 

m /  

mol kg-1 

E / V 1( / mol kg )m −
 

Lhs of Eq. 

(2.137) / V 
 

  0.0005 0.85390 0.022361 0.5788062    0.870 

0.001 0.82997 0.031623 0.5815866 0.809 

0.002 0.80701 0.044721 0.5853370 0.734 

0.005 0.77851 0.070711 0.5921463 0.615 

0.007 0.76862 0.083666 0.5952222 0.568 

0.01 0.75846 0.1 0.5988067 0.518 

 

 

Nernst potentials of this cell and its right and left half-cells are: 
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+ −
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  (2.133) 

and 

 
( ) ( ) ( ) ( )
( ) ( )

2 2 2

32 2 2 2

Cd Cl Cd Cl Cd Cl

33

ln ln (2 ) ln ln

ln ln

a a m m m

m

   



+ − + − + −

 

= = + =

= +

  (2.134) 

where 

 ( )
1/3

2 1/3(2 ) 4m m m m = =   (2.135) 

In very diluted solutions one can use the Debye-Hückel limiting law to estimate the activity 

coefficients: 

 

( )

( ) ( )2

2 2
i i

2 3

Cd Cl

1
log 2 2 3

2

ln 4 ' 2 ' 6 ' ln

ln 2 ' | | '

log 2

z A I I m m m

A I A I A I

A I z z A I

A I



  





+ − 

 + −



= − = + =

= − + − = − =

= − =

= −

  (2.136) 

where A and A’ are constants. The salt activity coefficient may be substituted into Eq. (2.134) 

and the standard potential may be estimated by extrapolation of the straight line to zero 

concentration: 

( )

( )

3 0 0 0
cell cell cell

3 0
cell

3 3
ln 4 ln 3

2 2 2

3
ln 4 ln

2 2

RT RT RT
E m E E m E p m

F F F

RT RT
E m E

F F





+ = −  = − = −

+ − = − 

            (2.137) 

Knowing the standard potential the activity coefficients might be determined at each 

concentration m. The plot of Eq. (2.137) is shown in Fig. 2.20. 
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Fig. 2.20. Plot according to Eq. (2.137) to determine standard potential. 

Regression analysis gives 
0
cell 0.5734 ( 0.0004)VE =   with its standard deviation. The numerical 

vues are displayed in Table 2.2 calculated using f = RT/F=0.02569 V. 

2.10 Physicochemical methods of determination of the activity coefficients 

2.10.1 From osmotic coefficient 

When pure solvent and is in the contact with the electrolytic solution and the separator is a 

membrane semipermeable to solvent the equilibrium condition demands that some amount of the 

solvent is moved to the electrolyte compartment to increase pressure, called osmotic pressure, 

Fig. 2.21, and the following equation for chemical potentials of the solvent and solution might be 

written:6,23  

 
( ) ( )

( ) ( )

0
s s

0 0
s s s

, ,

, , ln

T p T p

T p T p RT a

  

  

= +

= + +
  (2.138) 

where term on the left side of Eq. (2.138) corresponds to the pure solvent and that on the right to 

the electrolytic solution, π is the osmotic pressure and as is the solvent activity in the solution. 

Taking into account that molar volume of solvent, Vs, is: 

 
0
s

sV
p


=


  (2.139) 
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Fig. 2.21. Equilibrium involved in the osmotic pressure.23 

and its integration leads to: 

 

( ) ( )0 0
s s s s

s
s

, , ln

ln

T p T p V RT a

RT
a

V

   



+ − = = −

= −
  (2.140) 

The activity of solvent equals practically to its molar fraction and: 

 ( )s s i i s iln ln ln 1a x x x M m = −  −  −     (2.141) 

where Ms is the molar mass of the solvent and the molalities of electrolytic components are: 

 
i i i

i i s i i
s s s s

~
n x n

m x M m x
n M M n

=  =   (2.142) 

For the ideal solution the osmotic pressure is: 

 s i
s

*
RT

M m
V

 =    (2.143) 
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and for the real solution it is π (which is experimentally measurable). The osmotic coefficient ϕm 

is defined as the ratio of the real and ideal osmotic pressures: 

 s
m

s i

ln

*

a

M m





= = −


  (2.144) 

or 

 s m s iln a M m= −    (2.145) 

and its total differential is: 

 s m s i s i md ln d da M m M m = − −    (2.146) 

From the Gibbs-Duhem equation one can obtain: 

 
s s i i

s s i i i i

d ln d ln 0

d ln d ln d ln 0

n a n a

n a n m n 

+ =

+ + =



 
  (2.147) 

Using number of moles per unit mass of solvent (molality – per kg of the solvent): 

 

s i i i i i
s

s i i i
s

1
d ln d

1
d ln d d ln 0

n n m m m m
M

a m m
M



= = =

+ + =

 

 
  (2.148) 

it is possible to eliminate d ln as from Eqns. (2.146) and (2.148) obtaining: 

 
m s i s i m s i s i i

i i i m m i

d d d d ln

d ln d (1 ) d

M m M m M m M m

m m m

  

  

− − = − −

= − −

   

  
  (2.149) 

and taking into account that: 

 i i i id d d ln d lnm vm m v m m vm  = = =     (2.150) 

the following equation is obtained: 

 m md ln d (1 )d ln m   = − −   (2.151) 

but 

 m m

0

d 1

m

 = −   (2.152) 

activity coefficient may be obtained by integration with increasing electrolyte concentration, m: 

 ( ) ( )m m

0

ln 1 1 d ln

m

m   = − − − −   (2.153) 

2.10.2 From changes of the boiling or freezing point 

Similarly, the osmotic coefficient may be obtained from the decrease of the freezing 

temperature, Tf, or increase of the boiling point, Tb:  

 f b
m

c i e i

T T

K m K m


 
= − =

 
  (2.154) 

where Kc is the cryoscopic and Ke ebullioscopic constant. 
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2.11 Determination of the equilibrium constants 

Potentiometric method was often applied to the determination of the equilibrium constants of 

complex formation.24-27 Using classical potentiometry one has to prepare a series of solutions 

containing the studied metallic cation with different concentration of the ligand and the metal in 

reduced form. To avoid formation of passive layers usually amalgams containing constant 

concentration of the metal are used. If preparation of stable amalgams is difficult one can use the 

polarographic method where amalgam is dynamically formed during the reduction of metal 

complex at the dropping mercury electrode. The equations for both methods are similar. It is also 

necessary to assure that the redox process is reversible and the complexation is fast. 

2.11.1 Complex formation equilibriums 

Let us assume that metal cation Mz+ forms series of complexes with the ligand L: 
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  (2.155) 

where βi are the cumulative stability constants of metal complexes. The total (analytical) 

concentration of metal ions is: 
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  (2.156) 

and the noncomplexed metal ion concentration is: 

 

i

0

i

0
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[M ]

[L]

j

z i
j

i

i
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+ =

=

=





  (2.157) 

In the absence of the ligands when metal ions are not complexed the equilibrium potential is: 

 0 ' L 0
L 0

[M ]
ln

[M/Hg]

zRT
E E

nF

+
=

= = +   (2.158) 

where metal is in the form of the amalgam. In the presence of ligands the Nernst potential is: 
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  (2.159) 

The difference of these two equilibrium potentials is described by: 

 0
L=0 L i
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ln ln [L]

[M ]

jz
iL

z
L i

RT RT
E E E

nF nF


+
=
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In the case of the polarographic half-wave potential analysis a similar equation is obtained: 

 
l,L=0L=0 L i

1/2 1/2 1/2 i
l,L 0

ln [ ]

j
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iRT RT
E E E L

nF i nF


=

− =  = − +    (2.161) 

where il, L=0 and il, L are the limiting currents in the absence and presence of ligand. The second 

term is the same as in Eq. (2.160) and the first one takes into account the changes in the diffusion 

coefficients of the complexes. Eq. (2.161) may be rearanged into: 

 
l,L=0 2

1/2 1 2 j
l,L

exp ln 1 [L] [L] ... [L] jinF
E

RT i
  

 
 + = + + + + 

  

  (2.162) 

Knowledge of the stability constants allows for calculation of the fraction of each complex, αi, 

as a function of the ligand concentration: 

 i i
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2 j 1 jM

[ML ] [ML ] [L]

[M ] [ML] [ML ] ... [ML ] 1 [L] ... [L]z
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  (2.163) 

and the average number of ligands per metal cation: 

 

2
1 2 jL

2
1 2 jM
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j

j

jc
n

c

  
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+ + +−
= =
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  (2.164) 

Examples of the plots of αi and n  versus logarithm of ligand concentration are showed in Fig. 

2.22 and 2.23 for the complexes of Mn2+ with NH3. To assure the constant concentrations of 

neutral metal a saturated Mn(Hg) amalgam was used.28 
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Fig. 2.22. Dependence of αi for 
2

3 iMn(NH ) +
 on logarithm of NH3 concentration.28 

 

Fig. 2.23. Dependence of the average coordination number of ligands n  of 
2

3 iMn(NH ) +
 on 

logarithm of NH3 concentration.28  

2.11.2 One complex in solution 

When only one complex, MLj exists in the solution Eq. (2.160) is simplified to: 

 ( )L=0 L jln 1 [L] ln ln[L]j
j

RT RT jRT
E E E

nF nF nF
  = − = +  +   (2.165) 

when the stability of the complex is large 11 [L]+  1[L] . In such a case equilibrium potential 

(or half wave potential) in the presence of ligand is a linear function of the logarithm of ligand 

concentration: 

 
L Lor 0.0592 V at 25 C

ln[ ] log[ ]

E RT E j
j

L nF L n

 
= − = − 

 
  (2.166) 

For the half wave potential similar equation is obtained: 
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− = − + = − +   (2.167) 

These equations are valid when [L]>>[Mz+] that is the complexation reaction does not change 

the total ligand concentration. An example of such process is reduction of lead ions in alkaline 

solutions where plumbite ion is formed:29 

 

2-j 2
j

2

Pb(OH) Pb + jOH

Pb 2  Pbe

+ −

+

=

+ =

  (2.168) 

The plot of the half wave potential versus log [OH-] is shown in Fig. 2.24. 

 
Fig. 2.24. Dependence of E1/2 of plumbite reduction as a function of –log[OH-].26 

The slope is: 

 

L
11/2d

84 mVdec
d log[OH ]

E −
−

=   (2.169) 

Theoretical plot for n = 2 and j = 3 equals 88 mV dec-1 which idicates that j = 3 and the 

following reaction takes place: 

 

2 2
3 2 2

2

Pb(OH) Pb + 3OH or   HPbO  H O = Pb  + 3OH

Pb 2  Pbe

− + − − + −

+

= +

+ =

  (2.170) 

Similar situation is observed when few complexes of largely different stability constants are 

formed. In such a case local straight lines in the plot E - log [L] with the slopes corresponding to 

the complex stechiometry are observed. An example is shown in Fig. 2.25 where three straight 

lines may be distinguished correspomding to the cadmium complexes with 2, 3, and 4 ligands. 
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Fig. 2.25. Plot of E1/2 of reduction of cadmium (II) versus log of imidazole concentration.26 

However, such systems with well distinguished stability constants are rare and, in practice, a 

contnuous curve is found. 

2.11.3 Determination of consecutive stability constants 

In general, when few different complexes are formed Eqs. (2.160)-(2.162) must be used. There 

are two methods of the determination of stability constants: a) graphical and b) numerical 

method. 

a) Graphical method 

This method was proposed by De Ford and Hume.27 Eq. (2.162) may be written as: 

 
l,L=0 2

0 1/2 1 2 j
l,L

(L) exp ln 1 [L] [L] ... [L] jinF
F E

RT i
  

 
=  − = + + + + 

  

  (2.171) 

and it defines function F0(L) which is a polynomial in [L]. It can be rearanged into F1(L): 
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1 1 2 j
1

(L) [L] ... [L]
[L]

jF
F    −−

= = + + +   (2.172) 

which has an intercept of β1 and the slope at low ligand concentrations of β2. One can continue 

with other functions: 
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  (2.173) 

Such a procedure was applied by De Ford and Hume to the determination of stability constants 

of the complexes of Cd(II) with thiocyantes: Cd(SCN)i
2-i. The constructed functions are 

displayed in Fig. 2.26. 
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Fig. 2.26. Dependence of functions Fi[L] versus [SCN-] for complexes Cd(SCN)i

2-i.2727 

The results indicate that complexes up to j = 4 are present in solution. The determined stability 

constants are: 1 2 3 411, 56, 6, 50   = = = = . 

b) Numerical method 

Eq. (2.171) represents a polynomial and its coefficients might be obtained using weighted 

polynomial fit to F0. Application of the error propagation method shows that the standard 

deviation of F0 is σi = f exp(nf ΔEi) σE (neglecting the error of the limiting current). This means 

that the statistical weight which should be used are wi = 1/i
2. Application of the weighted least-

squares method gives the following results: 1 = 10 (2), 2 = 52 (15), 3 = -6 (28), 4 = 56, where 

numbers in parantheses indicate the standard deviations. The results clearly indicate that the 

complex with three ligands cannot be statistically detected and the standard deviations of the 

obtained stability constants are large. Then, the modeling was repeated with three statistically 

important parameters and the obtained results were: `1 = 10 (1), 2 = 49 (4) and 4 = 53 (2). In 

principle more experimental points should be used to determine many equilibrium constants. 

It should be added that if the concentration of the ligand is not sufficient single polarographic 

wave might be separated into two coresponding to the reduction of the complexed and free metal 

ions, Fig. 2.27. 
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Fig. 2.27. Polarographic waves in the presence of insufficient complexing agent concentration: I) 

1 mM Cd2+ in 3 M NaClO4, II) 1 mM Cd2+ in 2 mM CN-, 3 M NaClO4.
26 

2.11.4 Formation of ion pairs 

Polarographic method was also applied to the determination of the ion pairs of the anoin 

radical of indantrione, R-., with metal cations in DMF in the presence of the supporting 

electrolyte (C2H5)4NClO4, (TEAP), with which there are no complexes formed:30 

 
2 2

R R

R  Ba R ...Ba

e −

− + − +

+ =

+ =

  (2.174) 

The slope dE1/2 /d log [Ba2+] = 0.86±0.25 ~ 1 which indicates 1:1 ion pair stechiometry, Fig. 

2.28. The plot of exp(f ΔE1/2) vs. [Ba2+] shows a straight line with the intercept ~1 and the slope 

Kass = (2.0±0.6)×103. It should be noted that when metal complexes are formed with metal 

cations (form ox) the potential shift due to the complex formation is in the negative direction but 

when the product (red) forms complexes the potential shift is in the positive direction, in 

agreement with the Nernst law. 

 
Fig. 2.28. Plots used for the determination of the stoichiometry and stability of ion pairs 

(indantrion-.)…Ba2+.30 
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3 Double layer thermodynamics  

Simple measurement of the double layer parameters as the surface tension, double layer 

capacitance or charge allow for determination of the surface excess and adsorption of neutral 

molecules or ions.3,8,10,31 

3.1 Gibbs adsorption isotherm 

The interfacial zone (interphase) occupies the region between two pure phases  and . In the 

interfacial zone these phases are perturbed. Somewhere in that zone there is an interface dividing 

two phases (dotted line). 

 

 

Pure phase  

 

Interfacial zone 

 

 

Pure phase  

 

The excess of the number of moles of the species i in the interfacial zone is defined as: 

 
S R

i i in n n = −   (3.1) 

where n is the number of moles, index S represents interfacial zone and R the reference zone 

which is the bulk of the pure phase. In the bulk of solution (reference zone) the electrochemical 

Gibbs free energy is a function of three parameters: temperature, T, pressure, P, and number of 

moles, 
R
in : 

 
R R R

i( , , )G G T P n=   (3.2) 

but at the surface it is also function of the surface area, A, 

 
S S S

i( , , , )G G T P A n=   (3.3) 

The total differential of these functions are: 
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iR

i

d d d
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T P n

       
= + +     

            
   (3.4) 

and 

 
S S S S
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i

d d d d d

i

G G G G
G T P A n

T P A n

          
= + + +       

                 
   (3.5) 

At constant temperature and pressure the electrochemical potential is defined as: 

 
R S

i R S
i i

G G

n n


    
= =   

       

  (3.6) 

and because of the thermodynamic equilibrium electrochemical potentials of species i at the 

surface and in the bulk of the phase are equal. 

It is possible to write the differential of the excess electrochemical Gibbs free energy: 
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where and surface tension, , is: 

 
G

A




 

=  
  

  (3.8) 

The surface tension is a measure of the energy necessary to increase surface area; it depends on 

the chemical composition of both phases. 

The excess electrochemical Gibbs free energy, G , depends on the surface area, A, and 

numbers of moles, ni, i( , )G A n 
. It is a linear homogeneous function of these parameters and 

one can write the Euler theorem: 

 i ii
i ii

G G
G A n A n

A n

 
  


 

   
= + = +  
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The total differential of this function is: 

 i i id d d d d

i i

G A A n n     = + + +    (3.10) 

Comparing Eqs. (3.7) and (3.10) leads to: 

 i id 0

i

Ad n + =   (3.11) 

Introducing the surface excess concentration, i, in mol cm-2, 

 i
i

n

A



 =   (3.12) 

gives the Gibbs adsorption isotherm: 

 i id d

i

 − =    (3.13) 

where i might be negative or positive. 

To be able to determine the surface excesses this equation must be rearranged. This will be 

shown in the next chapter. 

3.2 The electrocapillary equation 

To develop equation allowing for determination of the surface excesses and charges we will 

consider an example of aqueous KCl solution containing also neutral species M, the mercury 

working electrode and Ag|AgCl reference electrode. The mercury electrode behaves as an ideally 

polarizable electrode: 

 Cu Ag AgCl K , Cl , M Hg Cu+ −   (3.14) 

The Gibbs equation for the Hg | solution interface is: 

( ) ( ) ( )2 2

Hg
Hg Hg M M H O H OK K Cl Cl

d d d d d d de e      + + − −− =  +  +  +  +  +    (3.15) 
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In equilibrium the electrochemical potentials of electrons in metals in contact are the same, 

Hg Cu
e e = . To simplify Eq. (3.15) one can use the following relations: 

 
2 2
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H O H O M M
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Hg Hgd d 0

   
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  (3.16) 

which gives 
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  

  (3.17) 

Introducing the excess charge density on metal and in the solution: 

 

( )+

M

S M

K Cl

eF

F



 −

= − 

=  −  = −
  (3.18) 

because S M 0 + =  one can rearrange the first two terms in eq. (3.17): 
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M
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K Cl Cl

M M
C
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
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 
 

+ − −

+ − −

−

 + − +  =

= − −  − 

= − +

  (3.19) 

For the reference electrode: AgCl + e = Ag + Cl-  one can write: 

 

 
Cu ' Cu '

AgCl Ag Cl Cle ed d     − −+ = + → =   (3.20) 

Then Eq. (3.19) becomes: 
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M M
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−
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  (3.21) 

 

using relations 

 

( )

Cu Cu Cu

Cu Cu Cu Cu

d d d

d d d d

e e

e e

F

F F E

  

   
 

−

= −

− = − − = −
  (3.22) 

where E−  is the potential of the mercury electrode with respect to the Ag|AgCl electrode in the 

same solution, which is reversible to anions. Finally one can write: 

 
2 2

M
KCl M M H O H OK

d d d dd E    +−− = +  +  +       (3.23) 
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It should be noticed that not all the parameters in Eq. (3.23) are independent because one 

cannot change the chemical potentials of KCl, M, and H2O independently. They are related by 

the Gibbs-Duhem relation which, at constant T and P, is: 

 i id 0

i

X  =   (3.24) 

where Xi is the molar fraction. Applying it to our problem gives: 

 
2 2H O H O KCl KCl M Md d d 0X X X  + + =   (3.25) 

and Eq. (3.23) becomes: 

 
2 2

2 2

22
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H O H O

M
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d σ d d

σ d d

X X
dE

X X
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 

+

+

−

−

   
− = +  −  +  −  =   

   
   

= +  + 

  (3.26) 

where 
2K (H O)+  and 

2M(H O)  are the relative surface excesses with respect to water: 

 

22
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2 2
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H O

M
M(H O) M H O

H O

X

X

X

X

+ + =  − 

 =  − 

   (3.27) 

Parameters M , 
2K (H O)+ , and 

2M(H O)  might be obtained from Eq. (3.26) as: 
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    
 = − = −   

    

    
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  (3.28) 

In general, for AB salt one can write: 

 
2

M
(H O ABd d d ...E  − = +  +   (3.29) 

where E+ and E- are the potentials measured versus the reference electrode reversible to cations 

or anions, and 
2(H O)+  and 

2(H O)−  are the relative surface excesses of cations and anions. 

In diluted solutions the absolute and relative excesses are similar: 

 + 22
2

KCl
H OK (H O) K K

H O

X

X
+ + =  −      (3.30) 

however, in more concentrated solutions they are different. From thermodynamic analysis the 

absolute surface excesses cannot be determined. 

Although the thermodynamic analysis can determine relative surface excesses in the absence 

and in the presence of specific adsorption separation of the quantities of ions adsorbed at the 
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surface and in the double layer is not possible. Only using double layer models it is possible to 

obtain these parameters separately.  

3.3 Experimental determination of the double layer parameters 

The parameters might be determined from the measurements: 

1) Surface tension 

Surface tension at the mercury-solution (and other liquid electrodes and amalgams) 

interface might be measured directly using capillary electrometer, Fig. 3.1, by measuring 

the height of the mercury reservoir to the defined place in the capillary (compensation). 

The mercury pressure, p, compensates the electrocapillary surface tension for the Hg 

height, h: 

 Hg
c

2
p hd g

r


= =   (3.31) 

where rc is the radius of the capillary, dHg is the density of mercury, and g is the 

gravitational acceleration. 

 
Fig. 3.1. Electrocapillary electrometer.32 

Surface tension might also be measured from the drop time of mercury flowing from the 

capillary. At the moment when the drop falls mercury drop weight and surface tension 

forces are equal 

 

max c

max

c

2

2

mgt r

mgt

r

 




=

=
  (3.32) 

The drop time might be measured by measuring time for several drops or by computer 

measurements. An example of such measurements for 0.1 M KCl is displayed in Fig. 3.2. 
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Fig. 3.2. Electrocapillary curve measured from the drop time for 0.1 M KCl at Hg electrode.33 

The maximum of the electrocapillary curve appears at the potential of zero charge, EPZC at 

which 
M 0 = .  

In practice, the surface tension is measured by comparison with the solution for which the 

surface tension is known thus eliminating the capillary radius.  

2) Double layer capacitance determined by impedance spectroscopy 

The electrode charge might be determined by integration of the capacity curve: 

 

PZC

Mσ d

E

E

C E=    (3.33) 

and the surface tension by the integration of Lippmann Eq. (3.28): 

 

PZC PZC

M 2
PZC PZCd d

E E

E E

E C E   −= − = −    (3.34) 

3) Electrode charge determined chronocoulometrically 

When the electrode potential is changed capacitive current flows but quickly drops to zero. 

By integration this current electrode charge might be obtained. Its integration gives the 

surface tension 

 

PZC

M
PZC d

E

E

E   −= −    (3.35) 
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Fig. 3.3. Potential and current steps  and charge transients.34 

 
Fig. 3.4. Charge density-potential curves obtained from chronocoulometry (left) and from 

differential capacity curves (right) in 0.04 M KClO4 in the presence of different concentrations 

of cyclohexanol.35  

 

3.4 Experimental results for the thermodynamic double layer studies 

Examples of the surface tension, electrical charge, and cations and anions charges determined 

at mercury-solution interface for several electrolytes are displayed in Fig. 3.5. Surface tension 

represents parabolic curves with the maximum at the potential of zero charge. EPZC depends on 
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the ionic adsorption. This is illustrated in Fig. 3.6 where displacement of the PZC potential 

towards negative values increases going from F- to I-. The values of EPZC are shown in Table 3.1. 

In the absence of the specific adsorption EPZC is independent of the electrolyte concentration. 

 
M

max

0

0
ln

E

a
 =

 
= 

 
  (3.36) 

From the results in Table 3.1 it follows that only in NaF there is no specific adsorption. 

The derivative of the surface tension versus potential, Eq. (3.28) (Lippmann Equation) gives 

the electrode charge and the derivative versus electrolyte activity gives the ionic charge in the 

double layer. These curves are shown in Fig. 3.5. Closer analysis in the absence of specific 

adsorption, Fig. 3.7, reveals that at the potential of zero charge there is no ionic excess for cation 

and anions: 

 
2 2K (H O) F (H O)

0+ − =  =   (3.37) 

On the other hand, in the presence of ionic specific adsorption, at EPCN, there is an excess of 

cations and anions, e.g. for KBr 

 
2 2K (H O) Br (H O)

0 and | | 0+ −      (3.38) 
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Fig. 3.5. Example of the surface tension, electrical charge, and cations and anions charges 

determined at mercury-solution interface for several electrolytes.31 
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Fig. 3.6. Electrocapillary curves at Hg electrode in 0.9 M solutions of 1) NaF, 2) NaCl, 3) NaBr, 

4) NaI. 

Table 3.1. Potentials of zero charge in different electrolytes.36 
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Fig. 3.7. Surface excesses of K+ and F- at Hg in 0.1 M KF.8 

Fig. 3.8. Surface excesses (expressed as charges) of K+ and Br- at Hg electrode in 0.1 M KBr.8 

Moreover, with increase of the electrode positive charge the surface excess of cations also 

increases. This is related to the fact that the total anionic charge is increasing even faster and 

cations are necessary to compensate this excess. In this case the slope: 

 



78 

 

 
Br

M
1





−





  (3.39) 

at large metal charges is larger than one while in the absence of the specific adsorption it is one: 

 
F

M
1





−


=


  (3.40) 

In the case of neutral organic compound the specific adsorption takes place around the 

potential of charge null. Specific adsorption causes decrease of the surface tension. This 

phenomenon is illustrated in Fig. 3.9. 

 

Fig. 3.9. Electrocapillary curves at Hg in 0.1 M HClO4 and different concentrations of the amyl 

alcohol.10 

The total analysis in the presence of adsorption of n-butanol is presented below. The 

electrocapillary curves are shown as surface pressure, (π or ) i.e.  
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 0  = −   (3.41) 

where 0 and  are the surface tensions in the pure electrolyte and in the presence of organic 

compound, respectively. They are displayed in Fig. 3.10 as functions of the electrode potential 

and charge. 

 

Fig. 3.10. Surface pressure versus electrode charge and potential at Hg, 0.1 KF, and different 

concentrations of n-butanol. 10 

Further analysis gives the relative excesses of butanol, Fig. 3.11. 

 

 
Fig. 3.11. Surface coverage and relative surface excesses of n-butanol at Hg versus electrode 

charge and potential.   
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An example of adsorption isotherm of amyl alcohol at Hg is presented in Fig. 3.12 

 

Fig. 3.12. Adsorption isotherm of n-amyl alcohol at Hg in 0.1 M HClO4 at different electrode 

potentials. 

In the presence of specific adsorption of neutral organic compounds sharp peaks are observed 

on the differential capacitance curves obtained by the impedance method, Fig. 3.13. 

 
Fig. 3.13. Differential capacity curves at Hg in 0.1 M KNO3 in the absence and presence of n-

octanol.10 
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For solid electrodes the surface tension is not measured directly but the double layer and 

adsorption parameters are obtained by integration of the capacitance curves obtained by the 

impedance spectroscopy, Eqs. (3.33) - (3.35), see Fig. 3.14. 

 

 
Fig. 3.14. Charging and electrocapillary curves obtained at Bi electrode in 0.05 M K2SO4 in the 

presence of different concentrations of n-C4H9COOH from the capacitance curves.37 

3.5 Adsorption criteria 

1) From electrocapillary curves 

M

max

0

0
ln

E

a
 =

 
= 

 
, Emax different than that in the non-adsorbing electrolyte. Moreover, 

the maximum moves towards more positive potentials for adsorption of cations and 

towards more negative potentials for adsorption of anions (with respect to the non-

adsorbing electrolyte). 

For organic compounds decrease of the maximum is observed. 
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2) At EPCN 

2 2+(H O) (H O) 0− =  =  

3) Slope of the ionic charge versus electrode charge far from the EPCN 
ion

M
1









 

4) Formation of peaks on the capacitance curves in the presence of neutral compounds 

3.6 Adsorption isotherms 

Adsorption isotherms describe dependence of the surface versus bulk concentration. In 

equilibrium the electrochemical potentials of the species in the bulk and at the surface are equal: 

  
a b
i i =   (3.42) 

where index a denotes adsorbed and b bulk species, and 

 
0,a a 0,b b

i ii iln lnRT a RT a + = +   (3.43) 

but: 

 
0 0,a 0,b

i iG   = −   (3.44) 

and the adsorption isotherm is 

 
0
ia b / b

i i i i
G RTa a e K a−= =   (3.45) 

where the isotherm equilibrium constant is 

 

0

i exp
G

K
RT

 
 = −
 
 

  (3.46) 

The value of 0G  must be known in order to describe adsorption. Below the most often used 

isotherms in electrochemistry will be presented. 

3.6.1 Langmuir isotherm 

The Langmuir adsorption isotherm is based on several assumptions: 

a) there is no interactions between adsorbed molecules/ions 

b) surface is homogeneous i.e. all adsorption sites are equivalent 

c) adsorption arrives at saturation value at higher bulk concentrations 

 

First, let us suppose simple adsorption without electron transfer: 

 1

1
ads

k

k
A A+

−

  (3.47) 

The rates of adsorption and desorption are: 

 1 1 A 1 1(1 ) ;k C k   − −= − =   (3.48) 

where  is the surface coverage. In equilibrium: 

 
1 1

1 A 1(1 )k C k

 

 

−

−

=

− =
  (3.49) 
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and the isotherm is: 

 
1

A A A
11

k
C K C

k



 −

= =
−

  (3.50) 

or 

 
bA A

A A
A

K a 
 

 
= =

 −  
  (3.51) 

where  is the surface concentration at large bulk concentrations of A (saturation value). 

 

In the case of electrosorption there is an electron transfer during adsorption reaction. The 

simplest example is H UPD at some noble metals: 
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At equilibrium 1 1 −=  
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0 01
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


+

−

   = − − = − − =
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  (3.54) 

and in this case the equilibrium constant depends on the electrode potential. Potential E0 is often 

chosen as the potential at  = 0.5. 

 

3.6.2 Frumkin isotherm 

Frumkin isotherm assumes that there are lateral interactions between the adsorbed species and 

the adsorption Gibbs energy depends on the surface coverage: 

 
0 0

0G G r  = =  +   (3.55) 

or 

 ( )0 0
0lnRT K G G r  == − = −  +   (3.56) 
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RT RT

  =
   +  

= − = −          

  (3.57) 

The adsorption isotherm may be written as: 

 ( ) 0 Aexp /
1

r RT K C





=
−

  (3.58) 

or 

 ( ) 0 Aexp
1

g K C





=
−

  (3.59) 

where /g r RT=  is a dimensionless interaction parameter. Its sign depends on the type of 

interactions: 
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g < 0 attraction 

g > 0 repulsion 

g = 0 Langmuir isotherm. 

It is interesting to note that Frumkin isotherm reduces to Langmuir isotherm when g = 0. 

Plots of the adsorption isotherms are displayed in Fig. 3.15.  

 
Fig. 3.15. Frumkin adsorption isotherms for different values of the interaction parameter g. 

The kinetic equation for the reaction rate for the Frumkin isotherm is: 

 

 ( ) ( ) ( )0 0
1 A 1exp / 1 exp 1 / 0k r RT C k r RT      −= − − − − =     (3.60) 

or for the electrosorption reaction of H UPD: 

( ) ( ) ( ) ( ) ( )0 0
1 1H

exp 1 exp exp 1 exp 1 0k g C f k g f          + −= − − − − − − =        (3.61) 

where  is the transfer coefficient for adsorption, between 0 and 1, usually close to 0.5 and it is 

an analog of the electrochemical transfer coefficient . The electrochemical isotherm depends on 

the electrode potential and these plots are displayed in Fig. 3.16. 
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Fig. 3.16. Dependence of the surface coverage on electrode potential for the Frumkin adsorption 

isotherm for different values of the interaction parameter g. For g = 0 Langmuir isotherm is 

obtained. 

3.6.3 Temkin isotherm 

When  ~ 0.5 Frumkin isotherm is simplified to: 

 ( ) Aexp /r RT KC =   (3.62) 

This equation represents Temkin isotherm which predicts that adsorption is a linear function of 

the logarithm of the bulk concentration. It was introduced for heterogeneous surfaces with 

different adsorption sites. 

 

3.6.4 Experimental adsorption isotherms 

In practice, the adsorption isotherms are usually more complex. For example the 

electrochemical adsorption isotherm can be obtained from the voltammetric currents: 

 1
d

d
j v

E


=   (3.63) 

by integration. Comparison of the surface coverage and its derivative is displayed in Fig. 3.17. 
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Fig. 3.17. Electrochemical Frumkin isotherms and their derivatives for different parameters of 

the interaction parameter g.38 

Examples of cyclic voltammograms for polycrystalline Pt and Rh in 0.1 M H2SO4 are displayed 

in Fig. 3.18. At polycrystalline Pt two peaks are observed suggesting at least two types of 

adsorption sites while at Rh only one very sharp peak is visible. In sulfuric acid there is also 

adsorption of bisulfate, therefore the isotherms are more complex. The derivative of the surface 

coverage of H versus potential is displayed in Fig. 3.19. 

In the recent years monocrystalline surfaces were intensively studied. The geometry of the 

basal planes is displayed in Fig. 3.20. Examples of the derivative isotherms for Pt monocrystals 

in 0.5 M H2SO4 are presented in Fig. 3.21. 

Only in the case of Pt(111) in HClO4 the experimental isotherm might be explained by the 

Frumkin isotherm with g = 11.9 indicating strong repulsion between adsorbed H atoms.39 In all 

the other cases the isotherms are more complex involving different adsorption sites. 
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Fig. 3.18. Cyclic voltammograms of polycrystalline Pt and Rh in sulfuric acid. The features at 

more negative potentials correspond to the H UPD reaction.40 

 

 
Fig. 3.19. Derivative of the surface coverage of H versus potential (continuous line) at 

polycrystalline Pt in 0.5 M H2SO4.
38 

 

  



88 

 

 
Fig. 3.20. Geometry of the surfaces (100), (110), and (111) for the face-centered cubic structure.8 

 

 
Fig. 3.21. Plots of d/dE at different Pt(hkl) in HClO4 and H2SO4.

39 
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4 Models of the double layer 

Historically, several models of the double layer were proposed. 

4.1 Helmholtz model 

Helmholtz (1879) considered double layer as a simple capacitor, Fig. 4.1. 

 

 
 

Fig. 4.1. Helmholtz model of the electrical double layer; top: ions in solutions at negatively 

charged electrode, middle: localization of charges, bottom: potential drop.41 

The charge stored in a simple capacitor is: 

 0σ V
d


=   (4.1) 

where d is the distance between the capacitor plates and V is the applied voltage. From the 

charge capacitance is simply obtained: 

 0
d

σ
C

V d

 


= =   (4.2) 
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From Eq. (4.2) it follows that the capacitance should be constant. However, in practice it is 

well known that the double layer capacitance is a function of the applied potential, see e.g. Fig. 

4.2, which means that this model is too simple. 

 
Fig. 4.2. Double layer capacitance at mercury at different concentrations of NaF.36 

4.2 Gouy-Chapman model 

Gouy and Chapman (1910-1913) have developed double layer model based on statistical 

physics. The distance from the electrode surface towards solution may be divided into small 

layers called laminae of the thickness dx, Fig. 4.3.  

 
 

Fig. 4.3. View of the solution near the electrode surface as a series of laminae.8 

Each layer is in equilibrium with other layers and with the bulk of solution therefore 

electrochemical potentials of ions are the same: 
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s

i i

0 0 * s
i i i x i i iln lnRT c z F RT c z F

 

   

=

+ + = + +

  (4.3) 

where index s denotes solution. This leads to the Boltzmann equation for the distribution of ions 

in the double layer: 

 
( )s

i x* * i
i i iexp exp

z F z F
c c c

RT RT

  
 −

  = − = −    
  

  (4.4) 

It may be assumed that the potential in the bulk of solution is equal to zero 

 
s

x x   = − =   (4.5) 

In this model charges in solution are considered as point charges without dimensions,  

 

 
Fig. 4.4. Gouy-Chapman model of the double layer. The charges are distributed in the solution.41 

To obtain potential distribution in solution one should solve Poisson’s equation: 
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= −   (4.6) 

where (x) is the charge density in solution per unit volume described by the Boltzmann 

equation 
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Substitution gives Poisson-Boltzmann equation: 
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The second derivative can be rearranged into the form easy to integrate: 
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   

  (4.9) 

which gives: 
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* i

i i
0 i

d d 2
exp

d d

z F
z Fc

x RT

 

 

   
= − −   

   
   (4.10) 

The first integration gives: 

 

2
* i
i

0 i

d 2
exp

d

RT z F
c const

x RT

 



   
= + − +   

   
   (4.11) 

The integration constant can be found from the condition far from the surface: 

 
*
i

0 i

d
0 and 0

d

2
0 const

x

RT
c






= =

= +
  (4.12) 

and Eq. (4.11) becomes 

 

2
* i
i

0

d 2
exp 1

d

RT z F
c

x RT

 



    
= − −    

    
   (4.13) 

For z:z electrolyte (e.g. 1:1, 2:2, etc.) c+ = c- = c and z+ = z- = z: 

 

2

0

d 2 *
exp 1 exp 1

d

RTc zF zF

x RT RT

  



      
= − − + −      

      
  (4.14) 

but: 

 

2

2 2
22 2

e e
e 2 e e 2e e e 4 4 sinh

2 2

a a
a a

a a a a a
−

−
− −

 
 −  

− +  − + = =   
  

 
 

  (4.15) 
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then 
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d 8
sinh

d 2

z FRTc

x RT





  
= −   

   
  (4.16) 

Further integration gives: 
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0
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d 8
d

sinh
2

x

x

x
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x

zF
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



 





 
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 
 
 
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  (4.17) 

The solution is: 

 

*

0 0

tanh
2 84

ln

tanh
4
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sinh
tanh

cosh

x x

x x

zF

RT RTcRT
x

zFzF

RT

x e e
x

x e e



 

−

−

  
     = − 
   

   

−
= =

+

  (4.18) 

or 

 
( )

( )0

tanh / 4

tanh / 4

xzF RT
e

zF RT





−=   (4.19) 

where 1/ is the characteristic thickness of the diffuse layer: 

 

1/2
* 2 2

0

2c z F

RT




 
=  

 
 

  (4.20) 

For aqueous solutions at 25 C,  = 78.49, and c in M: 

 ( ) 2 17 *1/ 3.29  1  c0 in mzc −=    (4.21) 

The plot of  versus distance is displayed in Fig. 4.5. 
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Fig. 4.5. Potential profile in the diffuse layer according to Guy-Chapman for 10-2 M electrolyte 

1:1, 1/ = 30.4 Å.8 

It is obvious that at large 0 the potential drop close to the electrode is extremely fast but as it 

becomes smaller the potential drop is more gradual. For small argument (x < 0.5) tanh(x)  x and 

Eq. (4.19) becomes: 

 0
xe   −=   (4.22) 

and potential decreases exponentially with distance (for 0  50/z mV). 

 

Table 4.1. Characteristic thickness of the diffuse layer for 1:1 electrolyte in water. 

c* (M) 1/ (nm) 

 

1  0.3 

10-1    0.96 

10-2    3.04 

10-3    9.62 

10-4* 30.4 

 

The thickness of the double layer depends strongly on the electrolyte concentration and it 

decreases with increase of concentration. 

 

To obtain relation between the metal charge and potential one can use the Gauss law: 

 0

surface

d

d
q dS

x


  = =   (4.23) 

which allows to determine charge under closed surface by the integration of the electric field 

strength  , where dS  is the element of the surface with the vector perpendicular to the surface. 

For our case let us construct the Gaussian box as in Fig. 4.6. 
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Fig. 4.6. Gaussian box enclosing the charge in the diffuse layer and extending to the solution 

until d / dx = 0.8 

It is evident that the integral (4.23) is zero except at the electrode surface: 

 0 0
0 0electrode

surface

d d
d

d dx x

q S A
x x

 
 

= =

   
= =   

   
   (4.24) 

where A is the electrode surface area. The charge density in solution and in electrode, using Eq. 

(4.16), are: 

 

2

* 0 0
0σ σ 8 sinh 2 sinh

2 2

A

s Mq zF zF
RT c A

A RT RT

 


   
− = − = = =   

   
  (4.25) 

where 

 *
02A RT c=   (4.26) 

or at 25 C, when c* is in M and M  in C cm-2 

 

 
M *1/2

0σ 11.7 sinh (19.5 )c z=   (4.27) 

The differential capacitance of the double layer is obtained by differentiation of charge versus 

potential 

 
M 2 2 *

0 0
d

0

dσ 2
cosh

d 2

z F c zF
C

RT RT

 



 
= =  

 
  (4.28) 

or for Cd in F cm-2 and c* in M at 25 C  

 
*1/2

d 0228 cosh (19.5 )C zc z=   (4.29) 

The plot of Cdl versus potential is displayed in Fig. 4.7. 
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Fig. 4.7. Differential capacitances of the double layer predicted by the Gouy-Chapman theory for 

1:1 electrolyte at 25 C.8 

The minimum is observed at the potential of zero charge but the capacitance increases rapidly 

to very large values on both sides. This graph might be compared with Fig. 4.2 where sharp 

minimum is observed at low electrolyte concentrations further form the PZC capacitance curve is 

flattened. This comparison suggests that the G-C theory might be partially valid ion a limited 

potential range at low electrolyte concentrations. 

4.3 Gouy-Chapman-Stern model 

The main problem with the G-C theory is that it assumes that ions are point charges which can 

approach the electrode surface at any small distance. In fact, ions are solvated and have their 

thickness: they can approach the surface to the plane of the closest approach called outer 

Helmholtz plane, OHP, Fig. 4.8.  
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Fig. 4.8. Guy-Chapman-Stern model of the double layer. The charge in solution is located from 

the plane of the closest approach, OHP.41 

In this case Eq. (4.16) should be integrated from the OHP at the distance x2 where potential is 

2 to the bulk of solution because between x = 0 and x2 there are no ions. This also means that the 

potential drop between x = 0 and x2 is linear 

 

2 2

1/2
*

0

d 8
d
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2

x

x

RTc
x

zF

RT







 

 
= − 
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    (4.30) 

with the solution 
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( )
( )2

2

tanh / 4

tanh / 4

x xzF RT
e

zF RT





− −
=    (4.31) 

The electric field at the OHP is: 

 

2

* i 2
i
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d 2
exp 1

d x x

RT z F
c

x RT

 

=

    
= − −    

    
   (4.32) 

or for z:z electrolytes 
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=

  
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  (4.33) 

Use of Eq. (4.24) allows for the calculation of the charge density 
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2
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2
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2

x x

zF
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
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  (4.34) 

The charge in solution consists of charges of cations and anions 

 σ σ σs z F z F+ − + + − −= + =  −    (4.35) 

Knowing that the concentrations are affected by the potential, Eq. (4.4), it is possible to find 

total surface excesses of anions and cations in the diffuse layer by integration of concentrations 

Eq. (4.4) 

 ( )( )
2 2

* * i
i,d i i id exp 1 d

x x

z F
c x c x c x

RT


 
  
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    (4.36) 

To facilitate integration the following rearrangement may be used 
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but for z:z electrolytes 

 

*
i

0

*
i

d 8
sinh

d 2

d
d

8
sinh

o

RTc z F

x RT

x

RTc z F

RT

 









 
= −   

= −

 
 
 

  (4.39) 

which gives 
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  (4.40) 

Using z = -z- = z+ one gets charge of anions 
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 
−

  
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  (4.41) 

and cations 
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and the total charge 
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  (4.43) 

which is Eq. (4.34). 

In this model the total capacitance is the sum of the capacitance of the compact or Helmholtz 

layer between x = 0 and x2 and that of the diffuse layer from x2. The potential drop in the 

compact layer is liner as there are no ions in that layer and that in the diffuse layer is described 

by Eq. (4.31), Fig. 4.9. The total potential drop is described as: 

 ( )M M 2 2    − +   (4.44) 

and in the compact layer 

 

2

M 2 2
x x

d
x

dx


 

=

 
− = − 

 
  (4.45) 

The capacitance is the derivative: 

 

( )M 2M 2
M M M

d H D

dd d

d d d

1 1 1

C C C

  
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−
= +

= +

  (4.46) 

which corresponds to the connection of the capacitance of the compact layer CH and that of the 

diffuse layer, CD in series. 
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Fig. 4.9. Potential distribution in the double layer according to the G-C-S model.8 

The capacitance of the diffuse layer might be estimated form the electrode charge: 

 

M
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RT RT

  
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 
  (4.48) 

As CD goes to large values at larger potentials, Fig. 4.7, it is important only around the 

potential of zero charge when it is small, Eq. (4.46). Fig. 4.11 presents the capacitance of the 

double layer at Hg in non-adsorbing electrolyte NaF; at lower concentration a minimum around 

EPZC is visible because diffuse layer capacitance is small, at other potentials capacitance of the 

Stern layer is mainly observed. This is also illustrated in Fig. 4.10. 
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Fig. 4.10. Double layer capacitance according to: A) Helmholtz model, B) Gouy-Chapman 

model, C) Gouy-Chapman-Stern model.41 

From Eq. (4.43) it is possible to determine potential 2 using: 

 2arcsinh ln 1x x x
 

 + + 
 

  (4.49) 
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  (4.50) 

For large values of |M| this equation might be simplified: 

 
M
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M

σ 02
const ln σ ln

σ 0

RT RT
c

zF zF



 


  (4.51) 
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Fig. 4.11. Double layer capacitance of mercury in the non-adsorbing electrolyte 0.1 and 0.01 M 

NaF.42 

 

This equation indicates that the potential 2 changes with logarithm of the electrolyte 

concentration. It is of course valid only in the absence of specific adsorption. An example plot of 

2 versus electrode potential for Hg electrode in NaF is displayed in Fig. 4.12. 
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Fig. 4.12. Dependence of potential 2 versus E-EPCN at Hg in different concentrations of NaF in 

aqueous solution.43 

4.4 Parsons-Zobel plots 

Parsons-Zobel plots permit determination of the capacitance of the compact layer. The 

reciprocal of the total capacitance of the double layer, Eq. (4.46) is the sum of the reciprocal 

capacitances of the compact and diffuse layers. The capacitance of the diffuse layer depends on 

the electrolyte concentration while that of the compact layer is concentration independent. 

Plotting inverse of the total capacitance against that calculated of the diffuse layer at constant 
M  is a straight line with the intercept of H1 / C . Such an analysis can be performed in the 

absence of the specific adsorption. An example for the Hg – NaF aqueous solution interface is 

displayed in Fig. 4.13. 
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Fig. 4.13. Parsons-Zobel plots for Hg|NaFaq interface at different electrode charge densities. 

 

4.5 Gouy-Chapman-Stern-Graham model 

Graham modified the G-C-S model in the presence of specific adsorption. The additional 

charge due to specific adsorption is localized at the inner Helmholtz plane, Fig. 4.14. In this case 

the double layer potential is determined by the sum of charges of M and the charge at the inner 

Helmholtz plane, 1. This might cause formation of minima (maxima) on the potential-distance 

plots, Fig. 4.15. 

 

Exercise 4.1. 

Calculate charge of the specifically adsorbed of Cl- at Hg in 0.1 M HCl at 25oC when  

M = 4.0 C cm-2,  Cl- = -7.5 C cm-2. 

 

First, the total charge of H+ is: 
M s

H Cl

d M -2 -2

H ClH
( 4 7.5) μCcm 3.5 μCcm

   

   

+ −

+ −+

= − = − −

= = − − = − + =
  

H+ is not adsorbed and it is located only in the diffuse layer and the charge balance is: 

( )M d 1 d

H Cl Cl
   

+ − −
= − + +  where index d denotes diffuse layer and 1 inner Helmholtz 

plane (specific adsorption). Presence of H+ is determined only by the potential 2. It can be 

calculated from Eq. (4.42): 
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      
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 
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 
 
 

= −

  

 
Fig. 4.14. Gouy-Chapman-Stern-Graham model of the double layer in the presence of specific 

adsorption.41 
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Fig. 4.15. Calculated potential profiles in then double layer in 0.3 M NaCl. At positive potentials 

the profile has a sharp minimum because chloride is specifically adsorbed.8 

 

The amount of Cl- in the diffuse layer is also determined by 2. From Eq. (4.41) one gets: 

d 6 2 22

Cl
exp 1 1.50 10 C cm 1.50 μC cm

2

zf
A




−
− − −  

= − − =  =  
  

  

and the amount of Cl- adsorbed is determined from the charge balance: 

( )

1 d

Cl Cl Cl

1 d -2 -2

ClCl Cl
7.5 1.5 μCcm 9.0 μCcm

  

  

− − −

−− −

= +

= − = − − = −

  

It can be noticed that when the metal charge is positive (4.0 C cm-2) there amount of 

adsorbed Cl- is large, -9.0 C cm-2 and charge 
M 1

Cl
 

−
+   is negative -5.0 C cm-2 and the 

potential 2 is also negative. In fact, to be able to use Eq. (4.50) one should use the effective 

electrode charge: 
M 1 2

Cl
5.0 μF cm 

−
−+ = −  instead of M . The final results of the double 

layer analysis are: 
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Cl Cl Cl

2

4.0 μF cm       3.5 μF cm

7.5 μF cm 1.5 μF cm 9.0 μF cm

0.0435 V

 
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

+

− − −

− −

− − −

= =

= − = = −

= −

  

 

Examples of the analysis of the adsorption at Hg electrode are displayed in Fig. 4.16 and 4.17. 

 
Fig. 4.16. Specific adsorption of Cl- at Hg as a function of the electrode charge at different 

concentrations. 
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Fig. 4.17. Charge of the specifically adsorbed Cl- at Hg as a function of the logarithm of the salt 

activity at different electrode charges. 

 

 



109 

5 Fundamentals of the electrode kinetics 

 

5.1 Potential dependence of the electrode kinetics 

Let us suppose an electrode reaction  

 
f

b

Ox + ne Red
k

k

⎯⎯→⎯⎯   (5.1) 

at the standard electrode potential 
0E E=  and at the same concentration of red and ox species. In 

the theory of the activated complex standard Gibbs energy is plotted versus reaction coordinate, 

Fig. 5.1. 

 

 





G
0

reaction coordinate

Ox + neRed

 
Fig. 5.1. Representation of the reaction free energy versus reaction coordinate. 

Under these conditions the activation energy of the cathodic and anodic process are the same: 

 0,c 0,a
4

G G
  =  =   (5.2) 

where  is so called reorganization energy. 

When 
0E E  the cathodic and anodic activation free energies are different, that of the 

reduction process includes free energy of electrons which depends on the electrode potential 

 ( )0
eG nF E E = − −   (5.3) 

Gibbs energies under these conditions are shown in Fig. 5.2. When potential becomes more 

negative the reactant (Ox+ne) system parabola moves upward and the activation energy of the 
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reduction process decreases while when the potential becomes more positive the activation 

energy of reduction increases. 

G
0

reaction coordinate

1

2

3

 
Fig. 5.2. Gibbs energy versus reaction coordinate for the redox reaction at different potentials. 

From simple geometric consideration it is evident that only a part  of eG  decreases the 

activation energy of the reduction: 

 c 0,c 0,c ( )o
eG G G G nF E E    =  −  =  − −   (5.4) 

and 1- increases the activation energy of oxidation: 

 a 0,a 0,a(1 ) (1 ) ( )o
eG G G G nF E E    =  + −  =  + − −   (5.5) 

When the free energy curves of reactant and product are the ideal parabolas of the same shape 

(but only shifted) the parameter  is exactly 1/2. This parameter is called transfer (or symmetry) 

coefficient. Its effect is shown in Fig. 5.3. 
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Fig. 5.3.Effect of the electrode potential on the Gibbs energy of activation.8 
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The rate constant of the chemical reaction is described as: 

 
/G RTkT

k e
h


−=   (5.6) 

where  is the transmission coefficient and for adiabatic processes it is close to 1. The reduction 

reaction rate constant, kf, may be written as: 

 

( ) ( ) ( )

( )

0

0
f 0,

0 0
f

exp / exp / exp

exp

c c

k

kT kT nF
k G RT G RT E E

h h RT

k k nf E E





   
= − = − − −  

 = − −
  

  (5.7) 

and for the oxidation reaction 

 ( ) ( )0 0
b exp 1k k nf E E = − −

  
  (5.8) 

Eqns. (5.7) and (5.8) show that the reaction rate of the electrochemical reactions is potential 

dependent. The units of heterogeneous rate constant are cm s-1. 

From the geometric considerations, Fig. 5.3: 

 
tan /

tan (1 ) /

FE x

FE x

 

 

=

= −
  (5.9) 

and 

 
tan

tan tan




 
=

+
  (5.10) 

and when  = ,  = 0.5. 

Changes in symmetry of the free energy curves affects transfer coefficient, Fig. 5.4. 

. 

 
 

Fig. 5.4. Influence of the symmetry of free energy curves on the transfer coefficient.8 

There are two types of reactions: inner-sphere and outer-sphere electron transfer. In the outer-

sphere reaction the substrate and the product do not differ much and do not interact specifically 

with the electrode (e.g. Ru(NH3)6
3+/2+). In the inner sphere reaction there is a strong interaction of 

the substrate, product or the intermediate with the electrode (reduction of O2, H2 evolution, 

reactions involving ligand bridge). Schematically, the latter process is shown in Fig. 5.5. 
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Fig. 5.5. Schematic representation of the outer-sphere and inner-sphere electron transfer to/from 

metal complexes.8 

Theory (Marcus, Hush, Levich, Dogonadze,…) considers outer-sphere electron transfer in 

which reactants and products do not change their configuration (or change very little). Moreover, 

because of the Franck-Condon principle nuclear position of the reactants do not change during 

the act of electron transfer. This means that reactant must change its configuration and the 

electron transfer takes place when the curves of the standard free energy of the substrate and 

product are identical, Fig. 5.6. 

Theory also considers adiabatic processes, in which probability of electron transfer when the 

reactants are in the active complex configuration is close to one and the energy splitting is large, 

Fig. 5.7. This means that each substrate reaching the active state passes to products. 

 

 
Fig. 5.6. Free energy curves of the ox and red forms; electron transfer takes place when the 

reaction coordinates reach q
+
+ .8 
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Fig. 5.7. Splitting of the energy curves for a adiabatic and nonadiabatic processes.8 

According to Marcus theory the activation Gibbs energy is described as: 

 

2
0 red ox

red ox 0
0
#

( )( )

4 2 2 4

nF E E w ww w nF E E
G





 − + −+ −   = + + +   (5.11) 

wox and wred are the energies of bringing the ox and red forms to the reaction site: 

 

ox
ox 2

red
red 2 ox 2( )

w z F

w z F z n F



 

=

= = −
  (5.12) 

and  is the reorganization energy composed of the inner and outer parts: 

 o i  = +   (5.13) 

o is related to the changes in the solvent polarization outside the reactants (it is assumed that 

solvent is a dielectric continuum): 

 2
o

e op s

1 1 1 1 1
( )

2
ne

a R D D


  
= − −   

  

  (5.14) 

where a is the radius of the molecule, Re is twice the distance of the molecule to the electrode, 

Dop and Ds are the optical (measured at very high frequencies) and static dielectric constants of 

the solvent. The inner i is related to the internal changes in the reacting molecule necessary to 

reach the activated complex: 

 
2

i j O,j R,j

j

1
( )

2
k q q = −   (5.15) 

where the sum is running over all vibration modes (assuming harmonic oscillator model), kj is 

the force constant and qj are the displacements in the normal mode coordinates. It is assumed the 

main contribution to the activation energy arises from the outer reorganization energy. 

The free energy of activation is composed of the potential independent (chemical, ch) and 

potential dependent (electrochemical, el) parts: 
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 0 0
# ch # el

oG G G =  +    (5.16) 

where the chemical part is: 

 
0

ch #
4

G


 =   (5.17) 

and the heterogeneous rate constant: 

 0
f P,O n el #exp( / )k K G RT = −   (5.18) 

where P,OK  is the precursor equilibrium rate constant i.e. ratio of the concentration of the 

reagents in the precursor state at the electrode to that in the bulk solution, n  is the nuclear 

frequency factor related to the bond vibrations, and el 1   the transmission coefficient. 

The most important consequence of the Marcus theory is the dependence of the transfer 

coefficient on potential: 

 

0
#
0

0 0
# 21 1 ( )

2 2

G

G

G F E E

F E









=



 − −
= = +



  (5.19) 

which suggests that the transfer coefficient should be 0.5 and potential dependent. It should be 

stressed here that the potential dependence can be observed only for fast reactions when  is 

small, unfortunately in a very narrow potential window. An example of such relation is presented 

in Fig. 5.8.44,45,46 

 
Fig. 5.8. Dependence of the transfer coefficient and the log of the rate constant of nitromesitilene 

in DMF on potential.44 

5.2 Influence of the double layer on the electrode kinetics; Frumkin relation 

Potential in the OHP of the double layer influences the kinetics of electron transfer reactions.47 

Let us consider steps involved in this reaction: 

 
f

b

'O R '
k

k

z zne z z n⎯⎯→
⎯⎯+ = −   (5.20) 

I) Oz in the bulk of solution plus n electrons in the electrode 

 
0 0 0 0 0,M M
I O el O

s
eG n zF n nF     = + = + + −   (5.21) 
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II) Oz at the OHP 

 
0 0 0,M M
II O 2 eG zF n nF   = + + −   (5.22) 

III) transition state 

 
0G   (5.23) 

IV) Rz' at the OHP 

 
0 0
IV R 2'G z F = +   (5.24) 

V) Rz' in the bulk of solution 

 
0 0
V R s'G z F = +   (5.25) 

The activation energy for reduction reaction is: 

 
0 0 0

IG G G  = −   (5.26) 

and for oxidation reaction: 

 
0 0 0

VG G G  = −   (5.27) 

The potential dependent part of the free energy the of activated complex and the stage II is a 

part of the difference of stages IV and II 

 
( ) ( ) ( ) ( )

( )

0 0 0 0
II IV II

M M
2 2 2

e e e e
G G G G

z F zF nF nF



      


 − = − =
  

 = − + = −
 

  (5.28) 

This is relation clearly visible from Fig. 5.9.  

The activation energy of reduction, Eq. (5.26), is composed of the chemical and 

electrochemical parts and may be written as: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0 0 0 0 0
I I

ch e ch e e

0 0 0 0 0
II II I

ch e e e e

0 M s
2 2

ch

oG G G G G G G G

G G G G G

G nF zF    

     

 



 = − =  +  =  + − =

   =  + − + − =
      

=  + − + −

  (5.29) 

Similarly, for the oxidation reaction one gets: 

 ( ) ( ) ( ) ( )0 0 M s
2 2

ch
1G G nF z       =  − − − + −   (5.30) 

It is usually supposed that s = 0. 
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Fig. 5.9. Separation of the free energy into chemical and electrical components.8 

The relations displayed above lead to the rate constants: 

 ( )0 M
f t,f 2 2expk k nf zf    = − − −

  
  (5.31) 

 ( )0 M
b t,b 2exp exp (1 )k k n z f nf    = − −    

  (5.32) 

where only 0
t,fk  and 0

t,bk  are potential independent rate constant at zero potential versus the 

reference electrode used. Introduction of the standard potential 

 ( )M 0 0E E E E = = − +   (5.33) 

 

( ) ( ) ( )

( ) ( ) ( )

0
t

0 0 0
f t,f 2

0 0 0 0
t 2

exp exp exp

exp exp exp

k

k k nfE n z f nf E E

k n z f nf E E k nf E E

   

   

 = − − − − =     

   = − − − = − −         

  (5.34) 
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Only 0
t,fk  and 0

tk  are potential independent rate constants at E = 0 and E = E0, respectively, 

and k0 depends on potential because 2 is potential dependent (it also depends on the ionic 

strength of the solution). Similar relation is obtained for the oxidation reaction: 

( ) ( ) ( ) ( ) ( )
0

0 0 0 0
b t 2exp exp 1 exp 1

k

k k n z f nf E E k nf E E      = − − − = − −         
 (5.35) 

Sometimes the anodic transfer coefficient is written as  = 1 - : 

 ( )0 0
b exp   k k nf E E = −

  
  (5.36) 

Similar relations might be obtained for currents and exchange current densities: 

 ( ) ( )
0

0 0
f O t 2c (0, ) exp exp

k

i i nF t k n z f nf E E   = = − − −     
  (5.37) 

 ( )
( )* 10 *

0 t 2 ROexpi nF k n z f c c
  

−
= −     (5.38) 

In order to analyze kinetic curves in the presence of the double layer effects one may carry out 

so called corrected Tafel plots: 

 

0 0
f 2 t 2

0 0
2 0 t 2

ln ln ( )

ln ln( (0, ) ) ( )

k zf k nf E E

i zf nFAc t k nf E E

  

  

+ = − − −

+ = − − −
  (5.39) 

which should be linear. 

The Frumkin correction factors, exp[(n-z)f2, might be quite important, Table 5.1 and 5.2. 

Experimental example for the reduction of S2O8
2- in the presence of different concentration of 

the supporting electrolyte is displayed in Fig. 5.10. Large minimum is obtained at low 

concentrations of the supporting electrolyte where 2 is important. With the increase of the 

concentration (ionic force) the absolute value of 2 decreases and the double layer effect 

decreases. In fact, after correction for the double layer the corrected Tafel plots are linear. 
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Table 5.1. Frumkin correction factors, exp[(n-z)f2, in 0.1 M NaF; EPCN = -0.472 V/NHE,  = 

0.5.8 
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Table 5.2. Experimental results showing double layer effects. 

 

A) Zn2+ + 2e = Zn(Hg) - Mg(ClO4)2 

 

Supporting 

electrolyte (M) 
2 

(mV) 

io 

(mA/cm2) 

io,t 

(mA/cm2) 

 

0.025 -63.0 12 0.4 

0.05 -56.8   9 0.43 

0.125 -46.3   4.7 0.37 

0.25 -41.1   2.7 0.38 

 

B) Reduction of aromatic compounds at Hg, DMF, 0.5 M Bu4NClO4 

 

Compound 
E1/2 

(V/ECS) 
 

-2 

(mV) 

ko 

(cm/s) 

0
tk

 
(cm/s) 

benzonitrile -2.17 0.64 83 0.61  4.9 

anthracene -1.82 0.55 76 5.0 27.0 

p-dinitro 

benzene 

-0.55 0.61 36 0.9  2.2 

 

 

 
Fig. 5.10. Left: i - E curves for the reduction of 10-3 M S2O8

2- in the presence of 1) 0, 2) 0.004, 

3) 0.05, 4) 0.5 M Na2SO4; Right: corrected Tafel curves.48 

 

Exercise 5.1. 

Calculate and trace: 

1) ln kf versus potential 

2) ln kf corrected for the double layer effects 

for the irreversible reduction : 

   A2- + 2e = 2 B2- 

in 0.1 M NaF. Determine the transfer coefficient and the rate constant corrected for the double 

layer effects assuming: EPCN = -0.4700 V vs. SCE using the following data: 
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 E (V vs. ECS)     ln kf   / V 

 

  -0.35    -7.652   0.0344 

  -0.45    -8.142   0.0067 

  -0.55    -8.723  -0.0210 

  -0.65    -8.805  -0.0437 

  -0.75    -8.309  -0.0606 

  -0.85    -7.375  -0.0731 

  -0.95    -6.172  -0.0829 

  -1.05    -4.780  -0.0908 

  -1.15    -3.278  -0.0976 

 

These data should be recalculated using Eq. (5.39): 

 

    E/V     ln kf    2/V   E-EPCN/V E-EPZC-2/V  ln kf+zf 2 

-0.3500 -7.652 0.0344 0.1200 0.0856 -10.33 

-0.4500 -8.142 0.0067 0.0200 0.0133 -8.66 

-0.5500 -8.723 -0.0210 -0.0800 -0.0590 -7.09 

-0.6500 -8.805 -0.0437 -0.1800 -0.1363 -5.40 

-0.7500 -8.309 -0.0606 -0.2800 -0.2194 -3.59 

-0.8500 -7.375 -0.0731 -0.3800 -0.3069 -1.68 

-0.9500 -6.172 -0.0829 -0.4800 -0.3971 0.29 

-1.0500 -4.780 -0.0908 -0.5800 -0.4892 2.30 

-1.1500 -3.278 -0.0976 -0.6800 -0.5824 4.33 

 

Fig. 5.11 presents plots of ln kf versus E-EPCN and the corrected Tafel plot ln kf+zf2 versus 

E-EPCN-2. It is evident that after correction for the double layer effect plot is linear. 

Analysis of the corrected data gives transfer coefficient  = 0.28 and the rate constant at 

potential of zero charge (the standard potential of this reaction is not known) 
0
fk =2.2510-4 

cm s-1.  
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Fig. 5.11. Plot of 1) ln kf versus E-EPCN and 2) ln kf+zf2 versus E-EPCN-2 for Exercise 5.1. 

 

Importance of the correction of the standard rate constants for the double layer effects are 

illustrated in Fig. 5.12 where experimental and corrected for the double layer effect rate 

constants of the reduction of Cd2+ versus donor number of the solvent are plotted. It is obvious 

that without the correction no systematic dependence is found. 

 

 

Fig. 5.12. Dependence of the standard and corrected standard rate constant of the reduction of 

Cd2+ in different organic solvents.49 
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6 Formal kinetics of electrode reactions  

The electrode reactions are different from the chemical reactions in the fact that their kinetics 

depends also on the electrode potential. Below, current-potential relations will be presented for 

the reversible and irreversible processes. 

6.1 Reversible electrode processes 

Reversible process in electrochemistry means that the redox reaction is in equilibrium and the 

concentrations may be described by the Nernst law. This also means that the slowest process is 

the mass transfer (as the redox reaction is in equilibrium). The current is described by: 

 

 i nFAJ=   (6.1) 

where n is the number of electrons exchanged in the process, A is the electrode surface area, and 

J is the flux, in mol cm-2 s-1, is proportional to the concentration gradient at the electrode surface: 

 
0x

c
J D

x =

 
=  

 
  (6.2) 

and the current becomes: 

 
0x

c
i nFAD

x =

 
=  

 
  (6.3) 

where D is the diffusion coefficient in cm2 s-1. In the further text the reduction current will be 

considered as positive and that of oxidation as negative. 

Nernst proposed that the concentration gradient can be considered as linear inside the so called 

Nernst diffusion layer of thickness . In stationary (steady-state) conditions, when / 0c t  = , 

the diffusion layer thickness and the current are also stationary. Stationary conditions in the 

presence of mass transfer may be obtained in the hydrodynamic conditions (rotating disk 

electrode, wall jet electrode) or on ultramicroelectrodes. The concentration profiles at different 

potentials are displayed in Fig. 6.1. 

0 1 2
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c
(x

)/
c
*

x / 
 

Fig. 6.1. Dependence of the dimensionless concentration on the dimensionless distance from the 

electrode surface. 
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When the potential becomes more negative, the surface concentration of ox decreases in 

agreement with the Nernst low. 

Although in reality the concentration gradients are not strictly linear the equations involving  

are valid. Using Nernst diffusion layer theory one can write: 

 
0

* ( 0)

x

c c c x

x =

 − = 
= 

 
  (6.4) 

and 

 
* ( 0)

nFAD
i c c x


 = − =
 

  (6.5) 

Let us consider few examples for different reactions. 

6.1.1 Metal oxidation 

a) Let us consider metal M oxidation in solution containing metal ions at concentration c*: 

 M -  = Mzze +   (6.6) 

The Nernst equation for this system is: 

 
0

M
ln ( 0)

z

RT
E E a x

zF +
= + =   (6.7) 

and in the absence of the current: 

 
0 *

eq M
ln z

RT
E E a

zF
+= +   (6.8) 

The difference between the electrode potential in the presence of current and that at 

equilibrium is called overpotential; in this case it is so called mass transfer overpotential D: 

 M
D *

M

( 0)
ln

z

z

c x
RT

zF c


+

+

=
=   (6.9) 

When the potential goes to very negative values the surface concentration of metal ions goes to 

zero and current reaches the maximal value called limiting current, il: 

 
*

Mzl
zFAD

i c


+=    (6.10) 

and Eq. (6.5) may be rearranged: 

 
 * ( 0) ( 0)

* ( 0)
( 0)

* *

l

l l

zFAD zFAD
i c c x i c x

zFAD c c x
i i c x i

c c

 



= − = = − =

=
− = = =

  (6.11) 

which leads to: 

 

( )

D

D

( 0)
exp

*

1 exp

l

l

l

c x i i zF

c i RT

i
zf

i





= −  
= =  

 

= −

  (6.12) 

Plot of Eq. (6.12) is presented in Fig. 6.2. When the number of electrons increases the curves 

become steeper. Of course, in practice, anodic current cannot increase to infinity because of 
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precipitation in concentrated solutions or changes in reaction mechanism. The logarithmic plots 

are displayed in Fig. 6.3. It should be noticed that there are no linear parts (except the limiting 

current). 
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Fig. 6.2. Current versus mass transfer overpotential for the metal dissolution reaction for number 

of electrons exchanged 1 and 2. 
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Fig. 6.3. Logarithmic plot of the data in Fig. 6.2. 
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b) Let us now consider the case where there is no Mz+ in the bulk of solution. In this case one 

does not have the equilibrium potential and current-potential relation mut be considered. Taking 

into account Eqs. (6.7) and (6.11) wityh c* = 0 leads to the following equation: 

 ( )0'( 0) exp
zFAD zFAD zF

i c x E E
RT 

 
= − = = − − 

 
  (6.13) 

The plot of the current and its logarithm on potential are displayed in  
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Fig. 6.4. Plot of the curren and its logarithm on electrode potential of the metal dissolution when 

c* = 0. 

 

6.1.2 Heterogeneous redox reaction with ox form in the solution 

Let us consider reversible heterogeneous redox reaction in which only ox form is initially in 

solution, i.e. 
*
Rc =0: 

 O +   Rne   (6.14) 

In this case one can write the following equation using the ox form 

 
*O O
O O lim O

O O

(0) (0)
nFAD nFAD

i c c i c
 

 = − = −
 

  (6.15) 

or red form 

 
*R R
R R R

R R

(0) (0)
nFAD nFAD

i c c c
 

 = − − =
 

  (6.16) 

The surface concentrations might be obtained from these equations and substituted to the 

Nernst equation 

 ( ) O R
O lim R

O R

(0) (0)c i i c i
nFAD nFAD

 
= − =   (6.17) 

0' 0'O O lim lim
1/2

R OR

(0)
ln ln ln ln

(0)

RRT c RT D RT i i RT i i
E E E E

nF nF D nF i nF ic





− −
= + = + + = +   (6.18) 

where 

 
0' O

1/2
R O

ln RRT D
E E

nF D




= +   (6.19) 
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is so called reversible half-wave potential. Eq. (6.19) might also be shown in the other form 

 
( )1/2

1

1 expl

i

i nf E E
=

+ −  
  (6.20) 

Plots according to Eq. (6.18) allows for determination of the number of electrons exchanged in 

the redox reaction. Plots for one and two electron transfer reaction are shown in Fig. 6.5. 

Logarithmic plot (c) allows for the determination of the number of electrons exchanged in the 

process and the limiting current allows for the determination of the diffusion coefficient if the 

bulk concentration, thickness of the diffusion layer, , and the electrode surface area are known. 

 

Fig. 6.5. a) Dependence of dimensionless current on potential, b) dependence of the logarithm of 

dimensionless current on potential, c) logarithmic analysis of current for the one and two 

electron reversible process, only ox form initially in solution, 
* *
O R0, 0c c = . 

6.1.3 Heterogeneous redox reaction with ox and red forms in the solution 

Let us assume now the heterogeneous reversible electrode process with the nonzero bulk 

concentrations of ox and red, 
* *
O R0 and 0c c  . Current might be determined using ox and 

red forms: 
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*O O
O O l,c O

O O

*R R
R R l,a R

R R

(0) (0)

(0) (0)

nFAD nFAD
i c c i c

nFAD nFAD
i c c i c

 

 

 = − = −
 

 = − − = +
 

  (6.21) 

where anodic and cathodic limiting currents are, in general, different. Surface concentrations are 

easily obtained from Eq. (6.21): 

 ( ) ( )O R
O lim R l,a

O R

(0) (0)c i i c i i
nFAD nFAD

 
= − = −   (6.22) 

and substitution into the Nernst equation gives: 

 

l,c0 ' 0 'O O

l,aR R O

l,c
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l,a

(0)
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(0)
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R
i iRT c RT D RT

E E E
nF nF nF i ic D

i iRT
E E

nF i i





−
= + = + +

−

−
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−

  (6.23) 

or for the current-potential dependence 

 

 

 

l,a
1/2

l,c

l,c 1/2

1 exp ( )

1 exp ( )

i
nf E E

ii

i nf E E

− −

=
+ −

  (6.24) 

 

 
Fig. 6.6. Plot of the dimensionless (i/il,c) current and its logarithm versus potential for the one 

electron reversible redox reaction with both ox and red forms in the bulk of solution. 

It should be noticed that the half-wave potential is observed at: 

 l,c l,a

2

i i
i

+
=   (6.25) 

It might also be noticed that the logarithm of current vs. potential curves for all the above 

discussed cases of reversible processes are nonlinear. 
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6.2 Quasi reversible and irreversible heterogeneous electrode reactions 

6.2.1 Heterogeneous redox reaction with ox and red forms in the solution 

The rates of reduction (forward, f) and oxidation (backward, b) heterogeneous reactions are 

described by the following equations: 

 
( )

( )

f
f f O

b
b b R

0,

0,

i
v k c t

nFA

i
v k c t

nFA

= =

= =

  (6.26) 

The net rate is: 

 ( ) ( )f b f O b R0,  0,  
i

v v v k C t k C t
nFA

= − = − =   (6.27) 

or 

 ( ) ( )f b f O b R0,  0,i i i nFA k C t k C t= − = −     (6.28) 

This is a fundamental current-potential equation in electrode kinetics. At the equilibrium an 

equilibrium potential is obtained: 

 

( ) ( )

( ) ( ) ( ) ( )

( )
*

0O O
eq *

R

f O b R

0 0’ 0 0’
eq O

R

eq R

0

( )

(0, )
ex

0,  0,

exp 0,  exp

p
(0

1 0

, )

,

k C t k C t

k nf E E c t k nf

i

c

c t c
n

E

f E E
c c

t

t

E 



=

   − − = − −


=

 = − =
  

     
  (6.29) 

It is evident that at the conditions of equilibrium the Nernst law is obtained from the kinetic 

current-potential equation. At the equilibrium conditions the observable current is zero but there 

are cathodic and anodic currents flowing; they are equal to the exchange current, i0: 

 
( )

a c 0

0 * 0
0 O eq

0,

exp

i i i i

i nFA k c nf E E


= = =

 = − −
  

  (6.30) 

In equilibrium one can use Nernst equation, after rearrangement it is: 

 ( )
*

0 O
eq *

R

exp
c

nf E E
c





−

  
 − − =      

 

  (6.31) 

and the exchange current density is: 

 
( )* 10 *

0 ROi nFA k c c
 −

=   (6.32) 

It is directly proportional to the standard rate constant and to the bulk concentrations to the 

power 1- and , respectively. Knowledge of i0 allows for the determination of k0 while its 

dependence on bulk concentrations allows for the determination of transfer coefficients. 

The current-potential relation, Eq. (6.28) can be rearranged into current-overpotential 

equation: 
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( ) ( )

( ) ( ) ( ) ( ) ( ) 
( ) ( )

( )

( ) ( ) ( )
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f O b R

0 0' 0 '
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0' 0 '
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0 * 1 * 1* *
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 
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= − =  
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    − − − −
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 
 

  (6.33) 
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 
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− − − −   
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  (6.34) 

but 

 ( ) ( )
(1 )

* *
0' 0'O O

eq eq* *
R R

exp exp (1 )
c c

nf E E nf E E
c c

 

 

− −
   

   = − = − − −            
   

  (6.35) 

 

Introducing overpotential eqE E = −  one gets the current-overpotential equation 

 
( )

( )
( )

( )O R
0 * *

O R

0, 0,
exp exp 1

c t c t
i i nf nf

c c
   

  
= − − −   

  

  (6.36) 

A plot of this equation is presented in Fig. 6.7. 

 
 

Fig. 6.7. Current overpotential relation for:  = 0.5, il,c = -il,a = il, i0/il = 0.2. Dotted line are the 

component currents ic and ia.8 

In order to be able to plot such equation one should calculate the concentration ratios using Eq. 

(6.22): 
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( ) ( )l,c l,aO R
* *

l,c l,c l,a l,aO R

0, 0,
1 and 1

i i i ic t c ti i

i i i ic c

− −
= = − = = −   (6.37) 

substitution gives: 
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1 1

1

or

nf nf

nf nf

nf nf

nf nf

nf nf

i i i
e e

i ii

e e
i

e e

i i i

i e e

i ii
e e

i i

   

   

   

   

   

− −

− −

− −

− −

− −

   
= − − −      

   

−
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+ +

−
=

+ +

  (6.38) 

Eq. (6.38) allows for plotting current-overpotential curves. Examples of such plots for 

reversible and quasi-reversible/irreversible processes are displayed in Fig. 6.8. 

 
Fig. 6.8. Dependence of the dimensionless current i/il,c and its logarithm on overpotential for the 

reversible (a) and slower processes: (b) i0/il,c = 0.05 and (c) 0.005;  = 0.5. 

It is interesting to see what will happen when the exchange current density increases and the 

redox reaction becomes more reversible. From Eq. (6.36) for fast kinetics one gets: 

 
( ) ( ) (1 )

O R
* *

0 O R

0, 0,
0

nf nfc t e c t ei

i c c

   − −

= − →   (6.39) 

or 
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From the Nernst equation: 
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( )0'

eq
*
O
*
R

nf E Ec
e

c

−
=   (6.41) 

after substitution to Eq. (6.40) the following equation is obtained: 

 
( )

( )
( ) ( )

( )

0'
0'O O

R R

0, 0,
   or   ln

0, 0,

nf E Ec t c tRT
e E E

c t nF c t

−
= = +   (6.42) 

which indicates that for the fast (reversible) redox reaction surface concentrations follow the 

Nernst equation. 

At low overpotentials when |nf| << 1 Eq. (6.36) may be written as: 
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  (6.43) 

which gives 
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i
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i R R R





 
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 

= − + +

  (6.44) 

The values of the charge transfer resistance, Rct, and mass transfer resistances of the cathodic and 

anodic processes are defined as (at very mall overpotentials): 

 ct mt,c mt,a
0 l,c l,a

1 1 1RT RT RT
R R R

nF i nF i nF i
= = =   (6.45) 

Around the equilibrium potential the total resistance of the redox process consists of the 

charge transfer and mass transfer resistances. 

6.2.2 Heterogeneous redox reaction with ox form in the solution 

In this case Eq. (6.36) reduces to (totally irreversible process): 

 ( ) ( )
0* ( )O R

f b f O b R O * *
O O

(0) (0)
0,  0, nf E E

f
C C

i i i nFA k C t k C t nFAk C e
C C

−
 

= − = − = −    
  

(6.46) 

which can be rearranged to: 
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whwre 
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 (6.48) 

Dependence of the current on potential for different values of D/ks is displayed in Fig. 6.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.9. Dependence of the normalized current on potential for quasi-reversible reduction of 

oxidized form Ox for different values of the parameter D/ks. 

For totally irreversible reaction: 
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which can be rearranged to: 
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Comparing with the reversible case, Eq. (6.20) and (6.23), it is evident that the difference is 

the presence of the transfer coefficient  in the slope and the presence of the half-wave potential 

which has kinetic significance while for the reversible case it has a thermodynamic significance. 

The corresponding plots are displayed in Fig. 6.10.  
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Fig. 6.10. Plot of the dimensionless current, logarithm of current, and logarithmic analysis for the 

reversible (continuous line) and irreversible (dashed line) reduction process. 

In general, the half-wave potential of the irreversible process is more negative than that for the 

reversible process and the logarithmic slope dE/d log[(il,c-i)/i] is larger, for  = 0.5 it is 118.3/n 

mV that is two times larger than that for the reversible process 59.16/n mV at 25 C. 

6.2.3 Metal oxidation 

Let us consider metal M oxidation in solution containing metal ions at concentration c*, Eq. 

(6.6). Under these conditions Eq. (6.36) may be written as: 

 

(1 )0
0 *

0
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nf nfc
i i e e
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c i
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  (6.53) 
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and 
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  (6.54) 

To illustrate this behavior let us consider an example where i0/ilim = 0.025 and z = n =1 or 2. 

Examples of simulations are shown below. 

 

 

 
 

Fig. 6.11. Plot of the dimensionless current, its logarithm and dimensionless concentrations on 

overpotential assuming i0/ilim = 0.025 and z = n =1 or 2. 

 

6.3 Butler-Volmer equation 

When the currents are very small and the bulk concentrations large the surface concentrations 

are practically equal to the bulk concentrations: 

 
* *

O O R R(0) and   (0)c c c c    (6.55) 

and Eq. (6.36) simplifies to: 

 ( )   0 exp exp (1 )i i nf nf   = − − −    (6.56) 
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This is so called Butler-Volmer equation. The plot of currents versus overpotentials are 

displayed in Fig. 6.12.  

 
Fig. 6.12. Current-overpotential plots in Butler-Volmer conditions for three exchange current 

densities j0: (a) 10-3 A cm-2, (b) 10-6 A cm-2, (c) 10-9 A cm-2, for one electron process with  = 0.5 

at 25 C.8 

The effect of the transfer coefficients is shown in Fig. 6.13. 

 
Fig. 6.13. Effect of the transfer coefficient on the current overpotential curves for j0 = 10-6A cm-2, 

other parameters as in Fig. 6.12.8 

It is evident that when the cathodic transfer coefficient, , is larger the cathodic current 

increases more rapidly with overpotential while in such conditions anodic transfer coefficient 

1- is smaller and anodic current increases more slowly. Only for symmetric process when  = 

0.5 both currents are symmetrical. 

It should also be noticed, that at low overpotentials: |nf| << 1, ex  1 + x, and Eq. (6.56) 

reduces to: 
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 0( )i i nf= −   (6.57) 

that is a liner relation between current and overpotential exists. This relation allows for a very 

simple determination of the exchange current density. The charge transfer resistance at zero 

overpotential is as defined earlier: 

 ct
0 0

d 1

d

RT
R

i nfi nFi


= − = =   (6.58) 

and it is inversely proportional to the exchange current density. 

6.4 Tafel relation 

Butler-Volmer equation might be simplified when |nf| >> 1 that is for the cathodic reaction, 

 < 0 : exp (-nf) >> exp [(1-)nf] or for anodic reaction  > 0  when: 

exp (-nf) >> exp [(1-)nf]. These conditions correspond to the totally irreversible reaction, 

when oxidation or reduction might be completely neglected. For the cathodic reaction one may 

obtain: 

 0 exp( )i i f = −   (6.59) 

which produces linear logarithmic plots: 

 0ln ln

log

RT RT
i i

nF nF

a b i


 



= −

= +

  (6.60) 

where 

 0
2.3 2.3 0.0592

log V at 25 C
RT RT

a i b
nF nF n  

= = − = −    (6.61) 

This is so called Tafel relation. It allows for the determination of the transfer coefficient and 

the exchange current density. Such a plot is shown in Fig. 6.14. 

 
Fig. 6.14. Tafel plots for anodic and cathodic branches of the current-overpotential curve for 

j0 = 10-6 A cm-2, other parameters as in Fig. 6.12.8 

Tafel relation is linear with the error of 1% when: 
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(1 ) 0.118

0.01  that is when V
nf

nf
nf

e
e

ne

 


 


−

−
=     (6.62) 

or with 5% error when: 

 
0.077

V
n

    (6.63) 

Examples of the experimental Tafel curves are shown in Fig. 6.15 and 6.16. 

 
Fig. 6.15. Tafel ploys for the reduction of Mn(IV) to Mn(III) at Pt in 7.5. M H2SO4. The dashed 

line corresponds to  = 0.24.50  

 
Fig. 6.16. Anodic and cathodic Tafel curves for Tl3+/Tl2+ reaction at various concentrations of 

Tl+ at Pt in 0.05 M H2SO4 with stirring.51 
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Another example of the reduction/evolution of oxygen in acid solution  

 2 2O  + 4 H 4 2 H Oe+ + =   (6.64) 

is shown in Fig. 6.17. Reaction was carried out at p(O2) = 1 atm and the condition of stationarity 

was that dE/dt < 1 mV/10 min. The obtained results were log j0 = -9.89, j0 = 1.310-9 A cm-2,  = 

0.64 and 1- = 0.47. 

 

 
Fig. 6.17. Tafel curves for the anodic and cathodic reaction of oxygen reaction at Pt in 1 M 

H2SO4.
52 

It is obvious, that the sum of the experimental anodic and cathodic transfer coefficients exceed 

slightly the value of one, but this is an experimental result. At lower overpotentials some 

deviation from linearity (despite the fact that the overpotential is sufficiently large) is observed, 

probably because the steady-state conditions were not met. On the cathodic part, at larger 

overpotentials deviation due to the oxygen transport in solution is observed while for water 

oxidation no such effect is visible. 

6.5 Study of the mechanism of the electrode processes 

Usually, heterogeneous redox reactions involve transfer of more than one electrons and 

involve other chemical species from the solution. They might be studied by determination of the 

number of electrons, general transfer coefficients and reaction orders.  

6.5.1 Determination of the number of electrons 

Of course, the first step should be the analysis of reaction product by chemical analysis of 

products of electrode reaction after complete electrolysis. This procedure also allows for the 

coulometric determination of the numbers of electrons exchanged in the reaction. For example 

reduction of acetophenone may proceed by exchange of one electron leading to the dimer of or 

two electrons leading to the alcohol, Fig. 6.18. As the experimental number of electrons in 

aqueous solution is one, the product is the dimer (pinacol). 

O2 + 4 H
+
 + 4 e = 2 H2O 

2
1 atmOp = , 1 M H2SO4, / 1mV / 10 mindE dt   

 

( ) ( )0 exp expi i nf nf    = − −   

 

log j0 = -9.89,   j0 = 1.3  10
-9

 A cm
-2

 

0.64 =   0.47 =  

 



140 

 
Fig. 6.18. Two possible mechanisms of the reduction of acetophenone.64 

6.5.2 Analysis of the general transfer coefficients 

It is quite rare that more than one electron is exchanged in one step. For more complex 

processes involving several steps the observed apparent transfer coefficient is different from that 

of the individual reactions.1,3,32 Let us consider heterogeneous redox reaction 

 nO   Rne+ =   (6.65) 

This process may proceed by a series of one electron processes: 

 

1
f

1
b

1O R
k

k

e ⎯⎯→
⎯⎯+   (6.66) 

 

2
f

2
b

1 2R R
k

k

e ⎯⎯⎯→
⎯⎯⎯+   (6.67) 

until reaction i which is the rate determining step: 

 

i
f

i
b

i 1 iR R
k

k

e ⎯⎯→
− ⎯⎯+   (6.68) 

followed by subsequent steps until the last one: 

 

n
f

n
b

n 1 nR R
k

k

e ⎯⎯⎯→
− ⎯⎯⎯+   (6.69) 

If the step i is the slowest one can assume that all other are in equilibrium: 

 
1 1
f bi i=   (6.70) 
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 ( ) ( )
1

1 1
f O 1 b R 1exp expFk a f Fk a f   − =   (6.71) 

where 1 and 1 are the cathodic and anodic transfer coefficients of reaction 1, Eq. (6.66), and 

Oa  and 
1Ra  are the surface concentration of O and R1. From Eq. (6.71) the concentration of R1 

might be calculated: 

 ( )
1R 1 O 1 1expa K a f  = − +     (6.72) 

where the equilibrium constant K1 is: 

 
1 1

1 f b/K k k=   (6.73) 

Similarly, other concentrations might be eliminated: 

 
( )

( )

2 1R R 2 2 2

1 2 O 1 2 1 2

exp

exp

a a K f

K K a f

  

    

= − + =  

= − + + +  

  (6.74) 

 ( )
i-1R O 1 2 1 1 2 i 1 1 i 1expia a K K K f     − − −= − + + + + + +     (6.75) 

Because for the elementary steps  +  = 1, Eq. (6.75) may be rewritten as: 

 ( )
i-1R 1 2 i-1 O exp 1a K K K a i f= − −     (6.76) 

For the rate determining step: 

 

( )  

( )  

R
s

i
c 1 2 i-1 f O i

R
s O i

exp 1 exp

exp 1 exp

k

i FK K K k a i f f

F k a i f f

  

  

= − − − =  

= − − −  

  (6.77) 

The total cathodic current is: it,c = n ic. Similarly, one can write for the anodic reaction 

assuming that the slowest anodic step is j: 

 

 

( ) ( )

0
s

n

i
a Rn n n-1 j b j

0
R s j

exp ( ) exp

exp exp

k

i F a K K K k n j f f

F a k n j f f

  

  

 = − − = 

= −  

  (6.78) 

For the total currents one can write Tafel relations: 

 
t,c 0 α

t.a 0 β

( )

( )

 

 

i i exp an f

i i exp n f



 

= −

− =
  (6.79) 

Their slopes are: 

 
α i

β j

1n i

n n j

 

 

= − +

= − +
  (6.80) 

or assuming that the transfer coefficients are all equal to 0.5: 

 
( )

α

β

 0.5

   0.5

n i

n n j





= −

= − +
  (6.81) 

Determination of the transfer coefficient allows to decide which reaction is the rate 

determining step, r.d.s. 
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Exercise 6.1. 

As an example let us assume a three electron reaction: 

 O + 3e = R 

The possible transfer coeffictions assuming different cathodic and anodic r.d.s. 

1) O + e = R1  assuming as the r.d.s. for the cathodic reaction 

  n = 0.5  n =  2.5  R1 - e = O r.d.s. for the anodic reaction 

            1.5  R2 - e = R1 

            0.5  R3 - e = R2 

b) R1 + e = R2 r.d.s. 

  n = 1.5  n =  2.5  R1 - e = O r.d.s. for the anodic reaction 

        1.5  R2 - e = R1 

        0.5  R3 - e = R2 

c) R2 = e = R  r.d.s. 

  n = 2.5  n =  2.5  R1 - e = O r.d.s. for the anodic reaction 

        1.5  R2 - e = R1 

        0.5  R3 - e = R2 

When the same step is rate determining in both directions n + n = n. 

Another important parameter is the stoichiometric number, v, which indicate number of times 

the rate determining reaction must proceed to obtain the product. Under such conditions Eq. 

(6.80) must be modified. Assuming additionally that r electrons are exchanged in the r.d.s. the 

following equations are obtained: 

 
α i

β j

1

 

i
n r

v

n j
n r

v

 

 

−
= +

−
= +

  (6.82) 

Exercise 6.2. 

Calculate the transfer coefficients for the hydrogen evolution reaction in acid media. 

 22H 2 He+ + =   (6.83) 

This is a two electron reaction and it can proceed by Volmer-Heyrovsky or Volmer-Tafel 

mechanism. For the Volmer-Heyrovsky mechanism: 

 

2

H M MH

MH H H M

e

e

+

+

+ + =

+ + = +
  (6.84) 

where M is the electrocatalytic metal. In this case n = 2 and v = 1. If the first electron transfer is 

the r.d.s.: 

 α
1 1

0.5 0.5
1

n
−

= + =   (6.85) 

and for the Heyrovsky r.d.s.: 

 α
2 1

0.5 1.5
1

n
−

= + =   (6.86) 

For the Volmer-Tafel mechanism: 
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( )

2

H M MH 2

2MH 2M H

e+ + + = 

= +

  (6.87) 

n = 2 and v = 2. When the Volmer step is the r.d.s.: 

 α
1 1

0.5 0.5
2

n
−

= + =   (6.88) 

but when the Tafel reaction is the r.d.s. and using notation in Eq. (6.72) one gets: 

 ( ) ( )
1R 1 O 1 1 1 H

exp expa K a f K a f   += − + = −     (6.89) 

and the r.d.s. is chemical: 

 ( )2
2 2
MH 1

H
2 2 exp 2i Fa FK a f= = −   (6.90) 

and the apparent transfer coefficient is 2. 

6.5.3 Reaction orders 

In the determination of the mechanism of electrode reactions it is important to know reaction 

orders.1,32 They are derivatives of the logarithm of current versus log of concentration of species 

in solution at a constant electrode potential: 

 

i j

c
R,j

j ,

log

log
c c E

i
z

c


 
= 

  

  (6.91) 

 

i j

a
O,j

j ,

log

log
c c E

i
z

c


 
= 

  

  (6.92) 

where ic and ia are the cathodic and anodic currents and zR,j and zO,j are the cathodic and anodic 

reaction orders. These derivatives may be obtained in the Tafel zone where reactions are totally 

irreversible. They allow writing the dependence of current on concentrations. 

In the case of faster reactions one cannot neglect the backward reaction and the dependence of 

the exchange current on concentrations must be used but the exchange current is determined at a 

constant overpotential (equal to zero)  

 

i ji j

0
eq

R,j
j j

log

log ln
c cc c

Ei
z nf

c c




   
= −   

     

  (6.93) 

 

i ji j

0
eq

O,j
j j

log

log ln
c cc c

Ei
z nf

c c




   
= +   

     

  (6.94) 

Assuming that the dependence of the equilibrium potential on concentration is: 

 
eq

j
j

d 1

dln

E
P

c nf
=   (6.95) 

(see Exercise 6.5. below) relations (6.93) and (6.94) become: 
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i j

0

R,j j
j

log

log
c c

i
z P

c




 
= − 

  

  (6.96) 

 

i j

0

O,j j
j

log

log
c c

i
z P

c




 
= + 

  

  (6.97) 

To better understand these concepts few examples will be shown. 

 

Exercise 6.3. 

Reaction Ni(II)/Ni(Hg) was studied in the presence of 0.05 to 4.0 M azides N3
-.32,53 It was 

found that in the whole concentration range the anodic reaction order was: 

 
3

3

a
O,N

N

log
1

log

i
z

c
−

−


= =


  (6.98) 

and the cathodic reaction order for 
3N

0.5 Mc −    

 
3

3

c
R,N

N

log
0

log

i
z

c
−

−


= =


  (6.99) 

but for 
3N

2 Mc −   

 
3R,N

3z − = −   (6.100) 

while order versus concentration of Ni(II) R,Ni(II) 1z = . 

From the complexation equilibrium constant it is known that at 
3N

2 Mc −   the predominant 

complex is 
2

3 4Ni(N )− −
 and in more diluted solutions when 

3N
0.5 Mc −   the predominant 

complex is 3NiN+
. This means that at lower concentrations of azides the electrode reaction is: 

 3 3NiN 2  Ni(Hg) + Ne+ −+ →   (6.101) 

and at higher concentrations: 

 

2
3 4 3 3

3 3

Ni(N )  NiN 3 N

NiN 2  Ni(Hg) + Ne

− − − −

+ −

+

+ →
  (6.102) 

while the anodic process proceeds as: 

 3 3Ni(Hg) 2  N NiNe − +− + →   (6.103) 

This indicates that the electroactive species is 3NiN+
. The cathodic current is described as: 

 3
3 3 4 3

1 3
c eqNiN Ni(N ) N

~ exp( ) exp( )i c n fE K c c n fE  + − − −
− −− = −   (6.104) 

where Keq is the equilibrium constant od the complexation reaction and anodic current 

 
3

a Ni(Hg) βN
~ exp( n )i c c fE−   (6.105)  
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Exercise 6.4. 

For the oxidation of the cadmium amalgam in cyanides:32  

 
2
4Cd(CN) 2 Cd(Hg) 4CNe− −+ +   (6.106) 

the following reactions orders were obtained: 

 

O,Cd(Hg)

R,CN CN

R,CN CN

1

2 for 0.05M

3 for 0.05M

z

z c

z c

− −

− −

=

 

 

  (6.107) 

This indicates that at lower concentration of cyanides the electroactive species is 2Cd(CN)  

that is current is proportional to the concentration of this species: 

 

2
4 2

2

Cd(CN) Cd(CN) 2 CN

Cd(CN) 2 Cd(Hg)+2 CNe

− −

−

+

+
  (6.108) 

and at higher concentrations it is 3Cd(CN)−
  

 

2
4 3

3

Cd(CN) Cd(CN) CN

Cd(CN) 2 Cd(Hg)  3CNe

− − −

− −

+

+ +
  (6.109) 

Exercise 6.5. 

For the reaction of reduction of zinc in alkaline solution:32,54 

 
2
4Zn(OH) 2 Zn(Hg) + 4 OHe− −+   (6.110) 

the following derivatives were obtained: 

 
2
4

0 0 0

Zn(Hg)Zn(OH) OH

log log log
0.5 0.5 0

log log log

i i i

c c c− −

  
  =

  
  (6.111) 

and  = 0.5. 

In order to use Eq. (6.96)-(6.97) parameters Pj must be obtained from the Nernst equation for 

reaction (6.110): 

 
2
4

2
4

0'
eq Zn(Hg)Zn(OH) OH

Zn(OH) 2 Zn(Hg) + 4 OH

1 1 4
ln ln ln

2 2 2

e

E E a c c
f f f

− −

− −+

= + − −
  (6.112) 

from which 2
4Zn(OH)

1P − = , Zn(Hg) 1P = − , and 
OH

4P − = − . Then the re action orders are: 

 2 2
4 42

4

0
R,Zn(OH) Zn(OH)

Zn(OH)

log
0.5 0.5 1 1.0

log

i
z P

c
− −

−


= + = +  =


  (6.113) 

 0
R,OH OH

OH

log
0 0.5( 4) 2

log

i
z P

c
− −

−


= + = + − = −


  (6.114) 

 0
O,Zn(Hg) Zn(Hg)

Zn(Hg)

log
0.5 0.5( 1) 1

log

i
z P

c



= − = − − =


  (6.115) 
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This suggests a mechanism in which the electroactive species is Zn(OH)2: 

 22 4

1 2
c Zn(OH) eq Zn(OH) OH

~ exp( 0.5 ) exp( 0.5 )i c fE K c c fE− −
− −− = −   (6.116) 

where Keq is the equilibrium constant of dissociation of reaction (6.117). The following 

mechanism is proposed: 

 
2
4 2Zn(OH) Zn(OH)  2 OH− −= +   (6.117) 

 2Zn(OH) 2 Zn(Hg) + 2OHe −+ =   (6.118) 

Exercise 6.6. 

The final and the most surprising reaction is reduction of zinc cyanide complex:1  

 
2
4Zn(CN) 2 Zn(Hg) 4CNe− −+ = +   (6.119) 

for which the following reaction orders were obtained: 

 2
4

R,Zn(CN) R,CN R,OH
1 4 2z z z− − −= + = − = +   (6.120) 

which suggests participation of OH- ions in the reaction mechanism. These results can be 

explained assuming the following mechanism: 

 

2
4 2

2

2 2 4
2 4

1 2 2 4
2 eq 4

Zn(CN) 2OH Zn(OH) 4 CN

Zn(OH) 2  Zn(Hg) + 2 OH

~ [Zn(OH) ] ~ [Zn(CN) ][OH ] [CN ]

[Zn(OH) ] [Zn(CN) ][OH ] [CN ]

e

i

K

− − −

−

− − − −

− − − − −

+ = +

+ =

=

  (6.121) 

which shows that the electroactive species in this case is also Zn(OH)2. 

Analysis presented above indicates analysis of the transfer coefficients and reaction orders 

helps with the determination of the mechanism of redox reactions. 

 

The stationary methods presented in this chapter can be applied to slower electrochemical 

reactions where Tafel ranges or exchange current densities can be found. In the further chapter 

individual techniques will be described. 
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7 Effect of the solution resistance and surface roughness 

7.1 Uncompensated solution resistance 

Current flowing through the solution causes additional potential drop, IR, which affects the 

results because of difference between the applied and the real electrode potential. It must be 

eliminated, minimized or taken into account. These effects might be very large. For example, 

when current of 0.5 A is flowing through the solution having resistance of 0.3 , the potential 

drop is: E = 0.5 A  0.3  = 0.15 V. This means that the real potential of the working electrode 

is different by 150 mV! To decrease these effects potentiostats are used. They are able to 

compensate partially the solution resistance leaving the uncompensated resistance between the 

reference and the working electrode. That is why the reference electrode is usually connected by 

the Luggin capillary, whose tip is located very close to the electrode surface, Fig. 7.1. 

 
Fig. 7.1. Schematic representation of a Luggin capillary; WE working electrode, RE reference 

electrode.55 

Let us consider few cases of different geometry. 

1) Planar electrodes 

If two parallel planar electrodes are in the solution the uncompensated resistance between the 

electrodes is: 

 u
x

R
A

=   (7.1) 

where x is the distance between them, A is the surface area, and  is the solution specific 

conductance, see Fig. 7.2. 

  

1) Capillaire de Luggin 

 
 

2) Compensation électronique de IRu (positive feedback), jusqu’à 70-80% 

3) ultramicroéléctrodes 

 

Determination de iRu 

1)  Spectroscopie d’impédance 

2)  Interruption du courant 

3)  Application des ondes carrées, courbes de relaxation 
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Fig. 7.2. Solution resistance between two parallel electrodes; iRs is the uncompensated resistance 

between the Luggin capillary and the working electrode, iRcell is the total resistance between the 

working and counter electrodes. The part iRcell - iRs is compensated by the potentiostat.55  

2) Spherical electrode 

Uncompensated resistance around the spherical electrode depends strongly on the distance 

from the electrode surface: 

 u
0 0

1

4

x
R

r x r 
=

+
  (7.2) 

 

u
0

u

u,
0 u

1

4

0 0

2

x R
r

x R

R
x r R

 



→  →

→ →

= =

  (7.3) 

When distance of the Luggin capillary from the electrode goes to infinity the resistance goes to 

a constant. At the distance equal to the electrode radius it is already 50% of the maximal 

resistance, Fig. 7.3. 

3) Disk electrode 

For disk electrode, at larger distances, x→, the solution resistance is: 

 u
0

1

4
R

r
=   (7.4) 
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Fig. 7.3. Dependence of the relative uncompensated resistance Ru/Rinf vs. dimensionless distance 

x/r0 at a spherical electrode.55 

4) Cylindrical electrode 

For cylindrical electrode the solution resistance follows the equation: 

 0 0
u

0 0

ln 1 ln
r x r x

R
r r 

   
= +    

   
  (7.5) 

and never reaches the constant value.  

Comparison of the resistance at different geometries is shown in Fig. 7.4. Comparison of the 

surface area normalized and total solution resistances for the spherical electrode is displayed in 

Fig. 7.5. With the decrease in electrode dimensions the total solution resistance increases but the 

relative per surface area decreases. 

 

Compensation or minimization of Ru is carried out by: 

1) Use of the Luggin capillary located close to the electrode surface 

2) Electronic compensation of the solution resistance by application of the positive feedback. 

This operation is possible in certain potentiostats but only 70-80% of the total 

uncompensated resistance might be eliminated. At higher compensations the potentiostat 

becomes unstable and starts to oscillate. 

3) Use of the ultramicroelectrodes. The potential drop around the ultramicroelectrode 

(spherical, disk) depends in the electrode dimension. For such electrodes the 

uncompensated resistance depends on 1/r0 and the current is proportional to the surface 

area 4  r0
2 and the potential drop is proportional to: 

 
2 0

u 0
0

1
~ 4

4

r
iR r

r


  
=   (7.6) 

and the uncompensated resistance decreases with the dimensions of the electrode. The 

cell time constant RuCd decreases with the decrease of the electrode radius: 
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 ( )
0

2 0 0 d
u d 0 d

0

1

4 4

r C
R C r C

r
 

 

 
= = = 

 
  (7.7) 

where 
0
dC  is the specific electrode capacitance (per cm2). 

 

 
Fig. 7.4. Uncompensated solution resistance in  cm2 and the corresponding potential drop at the 

current density of 0.4 mA cm-2 as a function of the distance from the electrode surface, 

calculated assuming  = 0.01 -1 cm-2 and the electrode radius 0.05 cm.55 
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Fig. 7.5. Total solution resistance at the spherical electrode for different radii indicated.55 

The uncompensated solution resistance should be determined in order to estimate its influence 

on the total potential difference. It can be determined using: 

1) Electrochemical impedance spectroscopy. The resistance found at high frequencies 

corresponds to the uncompensated solution resistance.56 

2) Current interruption. When current is interrupted very fast the iRu drop becomes 

immediately zero and the obtained potential is that without iRu. Then the potential relaxes 

kinetically to the equilibrium value. This is illustrated in Fig. 7.6. This methos is very good 

for high currents. 



152 

0.0 2.0x10
-5

0.7

0.8

0.9

 

 

E
 /
 V

t / s

iR
u

 
Fig. 7.6. Current interruption technique for the determination of the solution resistance. 

3) Application of the square wave potential. Square-wave is applied in the double layer zone 

and the charging current relaxation curves are registered. Charging current decreases 

exponentially with time and the time constant depends on the uncompensated solution 

resistance. The positive feedback in the potentiostat might be applied to decrease the 

relaxation time without losing the stability of the system (before the oscillations appear), 

Fig. 7.7. 

 
 

 

E

t

 

 

i

t

 
Fig. 7.7. Current relaxation due to the square-wave potential step program in the double layer 

zone; continuous line – slow relaxation, dashed line --- after partial compensation of the solution 

resistance. 
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7.2 Electrode surface area 

The macroscopic i.e. geometric electrode dimensions are different from the real surface area 

because of some micro roughness. Very well polished electrodes might have surface roughness 

of 1.3-1.7, as the real surface area is larger than the geometric one. Of course there are porous 

electrodes which might have much larger surface roughness. The real surface area might be 

estimated by determination of the electrode capacitance using e.g. electrochemical impedance 

spectroscopy or cyclic voltammetry. Division of the experimental electrode capacitance, dC  (in 

F), by the specific capacitance of a given electrode material, 
0
dC  (in Fcm-2), gives the surface 

roughness parameter. The question is: what surface area should be used in the electrochemical 

techniques in which the limiting or peak current are measured, Fig. 7.8. 

 
Fig. 7.8. Electrode surface and the enclosure formed by projecting the boundary outward in 

parallel with surface normal. The cross-section is the geometric surface area.8 

At long times the diffusion layer thickness, , is much larger that the surface roughness and the 

diffusing species do not “feel” any effects of the surface roughness, Fig. 7.9, and the geometric 

surface area should be used. However, at very short times the diffusion layer thickness might be 

comparable with the surface roughness and the real surface area should be used. For 

electrocatalytic proceses the real surface area should also be used. 

 

 
Fig. 7.9. Diffusion fields at (a) long and (b) short times. Dotted lined show surfaces of equal 

concentration in the diffusion layer. Vectors show concentration gradients driving the flux 

toward the electrode surface.8 
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8 Transfer processes 

 

There are several processes where matter, electric charge or heat is transferred.7,57,58 

8.1 Diffusion 

The driving force of the diffusion is the gradient of the chemical potential. Diffusion wants to 

eliminate such gradients. It is an irreversible process in which entropy is increasing. This driving 

force of the species i in the direction x is defined as: 

  
N

mol
  (8.1) 

and the sign of force and gradient are different because the mass transfer takes place in the 

direction opposite to the gradient, Fig. 8.1. 

0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

 

 

c
(x

)/
c
*

x / 

mass transfer

gradient > 0

 
Fig. 8.1. Directions of the gradient and mass transfer. 

As the chemical potential is defined as: 

   (8.2) 

the rate of the mass transfer (in m s-1 or cm s-1) is: 

  i
i,x i i,x i

d

d
v u F u

x


= = −   (8.3) 

where ui is the rate of mass transfer under the unit force (in mol m s-1N-1 = m2 mol s-1 J-1). The 

flux of the substance i in the direction x is: 

 i,x i i,x 2

mol

cm  s
J c v

 
=  

 
  (8.4) 

The flux is defined as the number of moles crossing 1 cm2 in one second: 

 i,x
1 d

d

N
J

A t
=   (8.5) 

where A is the surface area and N is the number of moles. Substitution leads to: 

i
i,x

d

d
F

x


= −

0
i i i ilnRT c  = +
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( )i ii
i,x i i,x i i i i

i i

i i
i i i

i

i i i i
i i

i i

i i i
i i

i

dd

d d

d d

d d

d d d

d d d

d ln d d
1

d ln d d

iD

cRT
J c v c u u c

x c x

c RT
u RT u c

x x

c RT c c
u RT u

x c x

c c
u RT D

c x x















= = − = =

= − − =

= − − =

 
= − + = 

 

  (8.6) 

and shows that the mass transfer flux is directly proportional to the concentration gradient. The 

diffusion coefficient expressed in cm2 s-1 and characterizes the rate of diffusion. In the diluted 

solutions when d lni / d ln ci  0 it becomes: 

 i iD u RT   (8.7) 

In aqueous solutions typical value of the diffusion coefficient is 
5 2 1

i ~10 cm sD − −
. Finally the 

flux may be written as: 

 i
i,x i

1 d d

d d

N c
J D

A t x
= = −   (8.8) 

which is a form of the first Fick’s law: 

 i i
i

d d

d d

N c
D A

t x
= −   (8.9) 

The second Fick’s law describes changes of concentration in time. Let us consider a box in 

solution of the thickness dx and the surface area A, the flux which enters is J1 and that which 

leaves is J2, Fig. 8.2. 

 

J1 J2

A

x x x+d  
 

Fig. 8.2. Definition of the box in the solution for developing of the second Fick’s law. 

The flux entering the box is: 

 1
d

d

c
J D

x
= −   (8.10) 
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and that leaving the box, assuming that the concentration gradient can be linearized at the small 

distance dx: 

 
2

2 2

d d d d
d

d d d d

c c c
J D c x D D dx

x x x x

 
= − + = − − 

 
  (8.11) 

Then the difference of fluxes is: 

 
2

1 2 2

d
d d

d

C
J J J D x

x
− = − =   (8.12) 

or 

 
2

2

J C
D

x x

 
= −

 
  (8.13) 

Changes of the number of moles in the box of the volume V = A dx is: 

 ( )1 2
d d d

d d d
d d d

N J J
J J A A J A x V

t x x
= − = −  = − = −   (8.14) 

or 

 d
N J

V
t x

 
= −

 
 (8.15) 

 

c

N J

t V x

   
= − 

   
 (8.16) 

which gives the Fick’s second law: 

 
c J

t x

 
= −

 
  (8.17) 

or after substitution Eq. (8.10) 

 
2

2

( , ) ( , )c x t c x t
D

t x

 
=

 
  (8.18) 

This equation allows to determine c(x,t) if the initial and boundary conditions are known. 

8.2 Ionic current 

To consider an additional influence of the electric field on the movement of ions the 

electrochemical potential should be used: 

 
0

i i i ilnRT a z F  = + +   (8.19) 

The flux may be calculated as above: 

 

i,x i i,x

i i
i,x i i i

i,x i i,x i i i i

ln

J c v

a
v u u z F RT

x x x

C
J c v c u z F D

x x

 



=

   
= − = − + 

   

 
= = − −

 

  (8.20) 

The flux is composed of two terms, one due to the potential gradient, so called migration, and 

one due to the concentration gradient. The migration term is: 
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 i,x i i iJ u c z F
x


= −


  (8.21) 

During the passage of the electric current through the solution ions are moved by diffusion and 

by migration. In the electroanalytical techniques we try to eliminate completely the migration 

current by addition of the supporting electrolyte. In this case the transference number of our 

studied ion decreases after addition of large excess of the supporting electrolyte. This effect is 

illustrated below where the polarographic limiting current of 9.510-4 M Pb2+ (as Pb(NO3)2) was 

studied in the presence of different concentrations of the supporting electrolyte KNO3. 

 

Table 8.1. Polarographic limiting currents of 9.510-4 M Pb2+ in the presence of different 

concentrations of KNO3. 

 

 [KNO3] / M il / A 

 

 0    17.6 

 10-4   16.2 

 10-3   12.0 

 5 10-3     9.8 

 0.1      8.45 

 1.0      8.45 

 

When 2+ + 2+3KNO Pb K Pb
,c c t t   and effect of migration is eliminated. In practice the 

excess of the supporting electrolyte should be at least 50 times. 

 

8.3 Convection 

Convection is the mass transfer under the influence of the external force, e.g. mixing of 

solution, using rotating disk or wall-jet electrode, bubbling with gas, density gradient, etc. The 

flux is proportional to the velocity of solution: 

 i,x iJ c v=   (8.22) 

and 

 
i,x i

J c
v

x x

 
=

 
  (8.23) 

but 

 
i,xi

Jc

t x


= −

 
  (8.24) 

then one obtains the Fick’s equation in the presence of diffusion and convection in one direction: 

 
2

2

c C c
D v

t xx

  
= −

 
  (8.25) 
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8.4 Heat transfer 

Another example of transfer processes is heat transfer. The heat flux is defined as: 

 i,x
T

J
x




=


  (8.26) 

where T is the temperature and  is the coefficient characteristic for the conducting medium. 

Fick equations in different geometric conditions were first solved for heat transfer and later 

adopted for electrochemical systems. Solution of the second Fick law is usually carried out using 

Laplace transform. This technique will be presented in the next chapter. 

8.5 Laplace transform and its applications to the solution of the differential equations 

8.5.1 Definition and simple applications 

Laplace transform is the integral transform of the function of parameter t (for example time) 

into the function of a new parameter s (called frequency).  

  ( ) ( ), ( ), ( )f t F s f s L f t   (8.27) 

This transform may be used to change differential equations into simple algebraic equation in 

the Laplace space, solving them, and then transforming them again into the equations of the 

parameter t. 

 

Differential eqn. (t)  

 

solution (t) 1

L

L−

⎯⎯⎯→

⎯⎯⎯
 

Algebraic eqn. (s)  

 

solution (s) 

 

Laplace space




 

 

The Laplace transform is defined as: 

 

0

( ) ( ) stf s f t e dt


−=    (8.28) 

Not all functions might be transformed. Such a function must fulfill certain restrictions: 

 

1) f(t)  0  t < 0 

2) f(t) must have a finite number if discontinuities 

3) f(t) must be of the exponential order i.e. there must exist two positive constants   0 and 

M  0 for which |f(t)| < M et for all values of t. For example, exp(x2) is not of the exponential 

order but exp(x) is. 

 

The Laplace transform is linear: 

  1 2 1 2( ) ( ) ( ) ( )L af t bf t af s bf s+ = +   (8.29) 

Few examples below will help better understand this technique. 

 

Exercise 8.1.  

Find Laplace transform of a simple step function, Eq. (8.30) and Fig. 8.3: 
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0 0

( ) ( )
1 0

t
f t t

t



= = 


  (8.30) 

 

 
Fig. 8.3. Heaviside step function. 

Application of the definition of the Laplace transform gives: 

  
0 0

1
( ) 1

st
st e

L t e dt
s s



 −
−= = − =  (8.31) 

The obtained function depends only on the parameter s because the integration over t is carried 

out between zero and infinity. 

 

Exercise 8.2. 

Find Laplace transform of the exponential function. 

 ( )
( )

( )

0 0

e 1
e e e e

a s t
at at st a s tL dt dt

oa s s a

  −
− − 

= = =
− −

=    (8.32) 

The form of the function in the Laplace space is simpler than in the time space. 

 

Exercise 8.3. 

Find Laplace transform of the first derivative. Intrgtation by parts gives 

 

  ( )
0 0

0

( ) ( ) ( ) ( )
0

(0 ) ( ) ( ) (0 )

st st st

st

L f t e f t dt e f t e f t dt

f s e f t dt sf s f

 
− − −


+ − +


 = = − =

= − + = −

 



  (8.33) 

where integration by parts is defined as: 

 uv dx uv u vdx = −    (8.34) 

It is obvious that the derivative in time space is equivalent to the multiplication of the function 

by s in the Laplace space. 

Similarly formula for the second derivative: 

   2 '''( ) ( ) (0 ) (0 )L f t s f s sf f+ += − −   (8.35) 

and for the integration might be found: 
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  
0

1 ( )
( ) ( )

t
f s

L f d L f t
s s

 
  

= = 
  
   (8.36) 

Integration in time space is replaced by division by s in the Laplace space. 

 

8.5.2 Convolution integral 

After finding solution in the Laplace space an inverse transformation is carried out. Usually, 

one uses tables included in books.59,60 Few examples are shown in the Appendix. However, in 

certain cases the inverse function cannot be found. Usually, it is possible to represent function in 

the Laplace space as a product of two simpler functions for which the inverse Laplace transforms 

are known. In such cases the product of two functions in the Laplace space is equal to the 

transform of the convolution of these functions: 

  1 2 1 2( ) ( ) ( ) ( )f s f s L f t f t =    (8.37) 

and the inverse function equals convolution of these functions  

 1 1 1
1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )L f s f s L f s L f s f t f t− − −      =  =         (8.38) 

where symbol “*” denotes the convolution integral: 

 1 2 1 2 2 1

0 0

( ) ( ) ( ) ( ) ( ) ( )

t t

f t f t f f t d f f t d      = − = −    (8.39) 

This theorem will be used in voltammetry. 

8.5.3 Solution of the partial differential equations (p.d.e.) 

Laplace transform may be used to change partial differential equations into ordinary 

differential equations: 

 

 

Partial differential 

equation (t) 

 

solution (t) 

 

1

L

L−

⎯⎯⎯→

⎯⎯⎯
 

 

Ordinary 

differential eqn. (s) 

 

solution (s) 

 

Laplace space







 

 

  

 

This method will be used in solving second Fick equation for different electrochemical 

methods. Few more examples of application of the Laplace transform is shown below. 

 

Exercise 8.4. 

Solve differential equation of the first order chemical kinetics: 

 0
d ( )

with (0)
d

y t
ky y y

t
= − =  (8.40) 

Application of the Laplace transform to this equation gives: 

 (0)sy y ky− = −   (8.41) 
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The solution in the Laplace space is: 

 
1

(0)y y
s k

=
+

  (8.42) 

and using the inverse transform gives: 

 0
kty y e−=   (8.43) 

Exercise 8.5. 

Solve then second order ordinary differential equation: 

 
2

2
2

d
0

d

y
a y b

x
− + =  (8.44) 

Application of the Laplace transform leads to the algebraic equation: 

 
2 2(0) (0) 0

b
s y sy y a y

s
− − − + =   (8.45) 

To solve it for y  the result should be represented as simple fractions: 

 

2

2 2

2 2 2 2

2 2

2 2

2 2

(0) (0)
(0) (0)

( )( )

( ) ( ) ( )

( )

( ) ( )

( )

b
y sy

s y sy bsy
s s a s as a

A B C A s as B s as C s a

s a s a s s s a

s A B C s aA aB Ca

s s a

− + +
+ + −

= = =
− +−

− + + + −
= + + = =

+ − −

+ + + − + −
=

−

  (8.46) 

with 

 

2

(0)

'(0)

A B C y

aA aB y

Ca b

 + + =


− + =


− = −

  (8.47) 

or 

 

2

2

2

(0) '(0)

2 2 2

(0) '(0)

2 2 2

b
C

a

y y b
A

a a

y y b
B

a a


=




= − −



= + −


  (8.48) 

The final solution in the Laplace space is: 

 
A B C

y
s a s a s

= + +
+ −

  (8.49) 

or in the time space: 

 
2

ax ax b
y Ae Be

a

−= + +   (8.50) 

Exercise 8.6. 
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Solve the following equation: 

 ( )"  ( ) 0           y t k y t+ =   (8.51) 

with the following conditions: ( ) ( )0  ; ' 0y a y b= = . 

Application of the Laplace transform gives: 

 

2

2

2 2 2

( ) (0) '(0) ( ) 0

( ) (0) 0

1
( )

s y s sy y ky s

s y s as b ky

as b s
y s a b

s k s k s k

− − + =

− − + =

+
= = +

+ + +

  (8.52) 

Knowing that: 

    
2 2 2 2

sin( ) ; cos( )
a s

L at L at
s a s a

= =
+ +

  (8.53) 

solution in time space is: 

 ( ) ( )( ) cos sin
b

y t a kt kt
k

= +   (8.54) 

Exercise 8.7. 

Solve differential equation: 

 ( ) ( )"  –    0   with       0   , ' 0   y ky y a y b= = =   (8.55) 

The solution is obtained in a similar way: 

 ( ) ( )

( )

2 2 2

cosh sinh

exp( ) exp
2 22 2

as b s b
y a

s k s k s k

b
y a kt kt

k

a b a b
y kt kt

k k

+
= = +

− − −

= +

   
= + + − −   

   

  (8.56) 

This technique will be applied to the solution of p.d.e. for different electrochemical techniques. 
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9 Chronoamperometry and chronocoulometry  

9.1 Chronoamperometry in linear semi-infinite diffusion conditions 

Chronoamperometry is the simplest electroanalytical technique in which potential is stepped 

from one value to another.7,8,61 Let us assume the simplest heterogeneous redox reaction at the 

electrode surface: 

 O +  = Rne    (9.1) 

Let us also assume that only ox species are initially in the solution. Usually, the initial 

potential is in the range where no current is observed. Few cases will be considered below. 

9.1.1 Conditions of the diffusion limited current 

In this case the potential is stepped from the zone where there is no reaction and 
*

O O(0)c c=  to 

more negative potentials where O(0) 0c =  that is in the conditions of the limiting current, see 

Fig. 9.1-9.2. 

 

 
Fig. 9.1. Potential step from E1 to E2 indicated on the steady-state polarization curve. 

 
Fig. 9.2. Potential step (a), concentration profile (b), and current (c) in chronoamperometry.8 

The potential E2 applied must be more negative than the half-wave potential to assure that 

c(0)~0. When E2 - E1/2 = E = -0.15 V the ratio of the ox and red at the electrode surface is: 
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[O]/[R] = 310-3 and when E = -0.20 V [O]/[R] = 410-4 that is only 0.04% of the form ox is 

left. Because according to the Nernst equation surface concentration is never zero one should 

assure that c0(x=0)<<c0*. 

To obtain concentration profile and current it is necessary to solve the second Fick equation 

for ox only: 

 
2

O O
O 2

c c
D

t x

 
=

 
  (9.2) 

with the following initial and boundary conditions: 

 

*
O

O

*
O O

0 ( ,0)

0 0 (0, ) 0

( , )

t c x c

t x c t

x c t c

= =

 = =

→   =

  (9.3) 

Usually, the parameters in Eq. (9.2) are transformed into the dimensionless form by 

substitution: 

 O

O

( , )

*

c x t x t
a y T

c D 
= = =   (9.4) 

where  is the characteristic time, e.g. time of the application of E2 (it does not matter what value 

is used, it will disappear in the solution). Then, Eq. (9.2) is rearranged into: 

 

2

O 2
O

2 2

2 2
O

2

2

1

1

1

a a a a y a
D

t x y x yDx

a a

Dx y

a a

t y







     
= = =

    

 
=

 

 
=

 

  (9.5) 

and, finally: 

 

2

2

a a

T y

 
=

 
  (9.6) 

with the conditions: 

 

( )

( )

 0                    ,0  1

 0     0        0, 0

( , ) 1

T a y

T y a T

y a T

= =

 = =

→   =

  (9.7) 

Let us apply Laplace transform to the p.d.e. and to the conditions: 

  ( , ) ( , )L a y T a y s=   (9.8) 

 

2

2

d ( , )
( , ) ( ,0)

d

a y s
sa y s a y

y
− =   (9.9) 

with ( ),0   1a y = . The transformed equation in the Laplace space is: 
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2

2

d
1 0

d

a
sa

y
− + =   (9.10) 

 

( )

( ) ( )

 0                    ,0  1 ( ,0) 0

 0     0        0, 0 0, 0

1
( , ) 1 ( , )

T a y a y

T y a T a s

y a T a s
s

= = =

 = = =

→   =  =

  (9.11) 

Solution of Eq. (9.10), according to Exercise 8.5 is: 

 
1

( , ) s y s ya y s Ae Be
s

−= + +   (9.12) 

but as for y→, 
1

( , )a s
s

 =  the value of B must be equal to zero (B=0) because concentration 

cannot increase to infinity, and a simpler equation is obtained: 

 
1

( , ) s ya y s Ae
s

−= +   (9.13) 

Using conditions at the surface parameter A may be obtained: 

 
1 1

(0, ) 0a s A A
s s

= + = = −   (9.14) 

and the solution is: 

 
1 1

( , ) s ya y s e
s s

−= −   (9.15) 

Using Table in Appendix allows the inverse transformation of the dimensionless 

concentration:  

 ( , ) 1 erfc
2

y
a y T

T

 
= −  

 
  (9.16) 

where erfc is the complementary error function defined as: 

 ( ) ( )erfc   1  erfx x= −   (9.17) 

and the error function erf is the normalized integral of the exponential x2 function: 

 ( )2

0

2
erf( ) exp

x

x u du


= −   (9.18) 

Comparison of the exponential exp(-x2) and its integral erf(x) functions is displayed in Fig. 9.3. 
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Fig. 9.3. Plot of exp(-x2) and erf(x) functions. 

Erf function is normalized and quickly reaches value of one: 

erf(0) = 0 

erf(1) = 0.843 

erf(2) = 0.995 

erf(2.5) = 0.9996 

erf(3) = 0.99998 

and for larger arguments it is practically equal to zero. 

Eqn. (9.16) becomes: 

 ( , ) 1 erfc 1 1 erf erf
2 2 2

y y y
a y T

T T T

     
= − = − + =     

     
  (9.19) 

and return to the initial parameters gives: 

 
*

O O
O

( , ) erf
2

x
c x t c

D t

 
=  

 
 

  (9.20) 

To find the current it is easier to differentiate the dimensionless concentration in the Laplace 

domain, Eq. (9.15): 

 
( )

( )
0, 1 1a s

s
y s s


= − − =


  (9.21) 

and after the inverse transformation: 

 
( )0, 1a T

y T


=


  (9.22) 

or: 

 
*

O O

O

(0, )C t C

x D t


=


  (9.23) 

and keeping in mind that the flux is: i/nFA the current is : 
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 O
O

(0, )
( )l

c t
i t nFAD

x


=


  (9.24) 

the Cottrell equation is obtained for the limiting current in chronoamperometry: 

 
1/2 *
O O( )l

nFAD c
i t

t
=   (9.25) 

This current is never constant and is slowly decreasing with time.  

The concentration profiles for ox and red species are shown in Fig. 9.4. 

 

 
Fig. 9.4. Concentration profiles for chronoamperometry in semi-infinite linear diffusion 

condition at different times assuming DO = 10-5 cm2 s-1. 

Dependence of current vs. time, current vs. 1/ t  and i t  vs. time is shown in Fig. 9.5. 
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Fig. 9.5. Dependence of chronoamperometric limiting current, il, vs. time, vs. t-1/2, and li t . 

In the theory of the diffusion Nernst layer it is assumed that the concentration gradient is linear 

and it can be expressed as: 

 
* *

O(0, ) (0, )c t c c t c

x  

 −
= =


  (9.26) 

which allows for the determination of the diffusion layer thickness for chromoamperometry: 

 OD t =   (9.27) 

Its thickness is increasing with time as the diffusion progresses towards solution. One can 

estimate that the maximal distance to which diffusion arrives is when erf(u) becomes 1. This 

might be, in practice, for erf(3): 

 
O

max
max O

O

erf 1 erf(3) 1
2

3 6
2

x

D t

x
x D t

D t

 
=  

 
 

= =

  (9.28) 

Table 9.1 shows the Nernst diffusion layer and the maximal distance at which the 

concentration is perturbed by diffusion in chronoamperometry. It shows that after 10 s the Nernst 

layer thickness reaches 0.18 mm. 
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Table 9.1. Dependence of the thickness of the Nernst diffusion layer and the maximal distance at 

which the concentration is perturbed by diffusion in chronoamperometry for DO = 10-5 cm2  s-1. 

t/s /cm xmax/cm 

0.1 1.8 10-3 6 10-3 

1 5.6 10-3 1.9 10-2 

10 1.8 10-2 6 10-2 

 

Linear semi-infinite assumes that the diffusion proceeds in one direction only. However, at the 

electrode edges diffusion might arrive from other directions as well, Fig. 9.6. 

 
 

Fig. 9.6. Diffusion to the planar electrode displaying nonlinear diffusion at the edges.62 

These edge effects might be negligible when the thickness of the diffusion layer is much 

smaller than the dimensions of the electrode, that is for a disk electrode  << r0. The ideal one 

directional diffusion might be observed for the diffusion to the electrode in a tube, Fig. 9.7. 

 

Electrode

Solution

 
 

Fig. 9.7. Linear diffusion to the electrode in a tube. 

9.1.2 Chronoamperometry with reversible redox process 

Let us suppose that then redox reaction is reversible: 

 O    R  reversiblene+   (9.29) 

that is the surface concentrations follow the Nernst law. The potential is stepped from the range 

where there is no reaction to the range below the limiting current, Fig. 9.8. 

 

 
Fig. 9.8. Potential step from E1 to E2 in chronoamperometry. 
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In this case the Fick diffusion equation must be solved for both ox and red forms: 

 

2
O O

O 2

2
R R

R 2

c c
D

t x

c c
D

t x

 
=

 

 
=

 

  (9.30) 

with the following initial and boundary conditions: 

( )

*
O O R

*
O O R

O

R

O R
O R

0 0

0 0

(0, )
0 exp Nernst law (reversible process)

(0, )

(0, ) (0, )
0 continuity of fluxes

o

t c c c

t x c c c

c t nF
x E E

c t RT

c t c t
D D

x x



= = =

 →  → →

 
= = − 

 

 
+ =

 

     (9.31) 

There are two boundary (surface) conditions, first is the Nernst law and the second the 

continuity of fluxes which indicates that ox is changed into red at the electrode surface. Using 

standard substitutions the p.d.e. are changed into dimensionless form: 

 

O R
* *
O O

O

RO

c c
a b

c c

x t D
y T

DD




= =

= = =

  (9.32) 

 

2

2

2

2 2

2

1

0 ( ,0) 1 ( ,0) 0

0 ( , ) 1 ( , ) 0

(0, ) ( )
0 exp

(0, )

(0, ) 1 (0, )
0

o

a a

T y

b b

T y

T a y b y

T y a T b T

a T nF E E
y v

b T RT

a T b t

y y







  
=

 


  =
 


= = =


 →   =  =
  − = = =  
   


 
+ =  

  (9.33) 

This problem is easily solved by applying the Laplace transform: 

 

2 2

2 2 2

d 1 d
( ,0) ( ,0)

d d

a b
sa a y sb b y

y y
− = − =   (9.34) 

or 

 

2 2
2

2 2

d d
1 0 0

d d

a b
sa s b

y y
− + = − =   (9.35) 
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which has solution (after using conditions at y → ): 

 

1
( , )

( , )

s y

s y

a y s Ae
s

b y s Be 

−

−


= +




=

  (9.36) 

To obtain parameters A and B the surface conditions must be used; the Nernst equation: 

 

(0, ) (0, )

1

a s v b s

A vB
s

=

+ =
  (9.37) 

and the continuity of fluxes: 

 

2

2

(0, ) 1 (0, )
0

1
0

a s b s

y y

sA s B






 
+ =

 

− − =

  (9.38) 

and  

 
1 1 1

1 1

B
A

A B
s v s v





 

= −

= − =
+ +

  (9.39) 

The solutions in the Laplace domain are: 

 

1 1 1
( , )

1

1
( , )

1

s y

s y

a y s e
s v s

b y s e
s v









−

−

 
= − + 

+ 

=
+

  (9.40) 

and in the time domain: 

 
*

O O
O

*
R O

O

1
( , ) 1 erfc

1 2

( , ) erfc
1 2

1
( , ) 1 erfc

1 2

( , ) erfc
1 2

y
a y T

v T

y
b y T

v T

x
c x t c

v D t

x
c x t c

v D t













 
= −  +  

 
=  +  

  
= −  

 +   

 
=  

 +  

  (9.41) 

When DO = DR,  = 1, and  

 ( ) ( ),  ,   1a y T b y T+ =   (9.42) 

or 

 
*

O R O( , ) ( , )c x t c x t c+ =   (9.43) 
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In general, when DO  DR,   1, and 

 
( )11

(0, ) (0, ) 1
1 1 1

v
a T b T

v v v



  

+
+ = − + =

+ + +
  (9.44) 

but 

 
(0, )

(0, )

a T
v

b T
=   (9.45) 

which gives 

 ( ) ( )

*
O O R R O O

(0, )
1

(0, )
(0, ) (0, )

(0, )
1

(0, )

(0, )

0,   1  0,   

,

0

(0 )

a T b

a T

b T
a T b T

a T

b T

D c t D c t c

T

D







 
+ 

 + =

+

 

+ =

= + −   (9.46) 

which is an equivalent of Eq. (9.43) for unequal diffusion coefficients. Let us calculate the 

current: 

 

O

*
O O

O

* 1/2
O O

(0, )

(0, ) (0, )

(0, )

c t
i nFAD

x

c t c a T

x yD

nFAc D a T
i

y






=



 
=

 


=



  (9.47) 

but 

 
*

O O
O

*
R O

O

(0, ) 1 1

1

(0, ) 1 1

1

1
( , ) 1 erfc

1 2

( , ) erfc
1 2

a s

y vs

a T

y vT

x
c x t c

v D t

x
c x t c

v D t












=

 +


=

 +

  
= −  

 +   

 
=  

 +  

  (9.48) 

and the current is: 

 
1/2 *
O O 1

( )
1

nFAD c
i t

vt 
=

+
  (9.49) 

When v = 0, that is at very negative potentials, Eq.(9.49) becomes: 

 
1/2 *
O O( )l

nFAD c
i t

t
=   (9.50) 

which is the Cottrell equation for the limiting current. Eq. (9.49) might be rearranged to: 
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 ( )0' R
1/2

O

1

1
exp ln exp

l li i i
i v

v i

D
v nf E E nf E E

nf D






−
= =

+

  
= − − = −     

   

  (9.51) 

and the final forms are: 

 

( )

1/2

0 R

O

1/2

( ) ( )
ln ln

( )

( ) 1

( ) 1 exp

l

E

l

RT D RT i t i t
E E

nF D nF i t

i t

i t nf E E

−
= + +

=
+ −  

  (9.52) 

where E1/2 is the half-wave potential. Other useful formulas might be found using Eq. (9.51) 

 

* *
O O O

*
R O

1/2
*O O
O O*

O

1/2
R

R

1 ( )
(0, ) 1 1

1 ( )

( )
(0, )

( )

(0, )
( ) 1 ( ) (0, )

( ) (0, )

l

l

l

i t
c t c c

v i t

i t
c t c

i t

c t nFAD
i t i t c c t

tc

nFAD
i t c t

t









  
= − = −  

+   

=

 
 = − = − 
  

 

=

  (9.53) 

Equations developed above resemble those developed for the reversible process in the 

stationary technique with exception that the currents are time dependent and the above equations 

are valid for a fixed time. 

9.2 Semi-infinite spherical diffusion 

9.2.1 Diffusion equation 

The Fick equation for spherical diffusion is different from that for the linear diffusion. To 

develop it let us look at Fig. 9.9 where the electrode radius is r0 and consider the fluxes at the 

distance r and r+dr. The flux at r is 

 
2d 4 dr

r

c
N r D t

r


 
=  

 
  (9.54) 

and at r+dr 

 ( )
2

d 4 d dr dr
r dr

c
N r r D t

r
+

+

 
= +  

 
  (9.55) 

The concentrations at very short distances may be linearized: 
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 d
r dr r

c c c
r

r r r r+

        
= +     

        
  (9.56) 

r0

r

dr

 
Fig. 9.9. Spherical diffusion. 

that is: 

 

( )

( ) ( )

2
2

d 2

2 2 2
2 32 2

2 2 2

d 4 d d d

4 d 2 d d 2 d d

r r
r

c c
N r r D t r

r r

c c c c c c
D t r r r r r r r r

r r rr r r





+

    
= + + =          

            
= + + + + +                        

  (9.57) 

Terms with (dr)2 and (dr)3 are much smaller than those with (dr): 

 
2

2 2
2

d 4 d 2 d dr dr
c c c

N D t r r r r r
r r r

+

       
= + +               

  (9.58) 

Changes of the concentration in the thin layer dr are: 

 d
2

d d
d

4 d

r r rN N
c

r r

+ −
=   (9.59) 

or 

 d
2

d d

4 d d

r r rc N N

t r r t

+ −
=


  (9.60) 

and after substitution 

 
2

2

2c c c
D

t r rr

   
= + 

   

  (9.61) 

This is an equivalent of the simple diffusion equation in the spherical conditions. It is obvious 

that there is an additional term (2/r)(c/r). This is so called radial diffusion term. 

9.2.2 Chronoamperometry in spherical diffusion conditions 

Let us assume that the potential E2 is in the range of the limiting current. First, let us use the 

standard substitutions to obtain dimensionless parameters: 
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 O
*

OO

, ,
c r t

a R T
Dc 

= = =   (9.62) 

which leads to: 

 
2

2

2a a a

T R RR

  
= +

 
  (9.63) 

with the following conditions: 

 

T = 0     a(R,0) = 1 

T > 0  R = R0  a(R0,T) = 0 

  R →   a(,T) = 1 

Eq. (9.63) might be rearranged into a simpler form (9.6) by the substitution: 

 u aR=   (9.64) 

This leads to the following equations: 

 
2 2 2

2 2 2

2 2

2 2

2

2

1

1

2

1 2

1 1 2 2

u a a u
R

T T T R T
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a R a
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u a a a a a
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a u a

R R RR R
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   

    
= + = − 

    

     
= + + = +

    

  
= −

 

   
= − +

  

  (9.65) 

from which a simpler for is obtained with the following conditions: 

 

2

2

0

0 ( ,0) ( ,0)

0 ( , ) 0

( , )

o

u u

T R

T u R a R R R

T R R u R T

R u T R

  
=

 


= = =
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
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  (9.66) 

Application of the Laplace transform gives: 

 

2

2

2

2

d
( ,0)

d

d
0

d

u
su u R

R

u
su R

R

− =

− + =

  (9.67) 

with the solution: 

 
sR sRR

u Ae Be
s

−= + +   (9.68) 
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Parameter B must be zero form the initial conditions. Parameter A may be obtained from the 

boundary condition: 

 

( )
0

0

0
0

0

, 0
sR

sR

R
u R s Ae

s

R
A e

s

−
= + =

= −

  (9.69) 

The solution for u is: 

 ( )
( )

0,

s R RoR R
u R s e

s s

− −

= −   (9.70) 

To calculate the current it is first necessary to calculate the derivative versus distance at the 

surface: 

 01u R

R s s


= −


  (9.71) 

or in the time domain 

 01
u R

R T


= −


  (9.72) 

or 

 

0
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0

1

1 1

1 1

a R
R

R T

a

R R T

a

r r Dt








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


= −




= −



  (9.73) 

which allows calculation of current 

 

*
*

plan
0 0

1 1
( ) ( )

nFADc
i t nFADc i t

r rDt

 
= + = + 

 
  (9.74) 

The current at the spherical electrode consists of two parts, one which is identical with the 

current at the planar electrode of the same surface area and the other one which is time 

independent and corresponds to the radial diffusion. To linearize Eq. (9.74) one can plot: 

 
1/2 * *

1/2

0

( )
nFAD C nFADC

it t t A B t
r

= + = +   (9.75) 

which represents a straight line from which parameters A and B might be determined. The 

corresponding plots are displayed in Fig. 9.10.  
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Fig. 9.10. Plots of i vs. time and linearized plot it1/2 vs. t1/2. 

Spherical electrode can be considered as planar when the linear diffusion term is much larger 

than the spherical term: 

 
0 0

1 1 1
   or

a

r rDt Dt 
 =   (9.76) 

For example for D = 10-5 cm2 s-1 and r0 = 0.05 cm = 0.5 mm below one percent error a =100 

(1%) may be observed at short times t < 8 ms, but 5% error for a = 20 (5%) is observed for times 

up to t < 0.2 s. 

9.3 Semi-infinite cylindrical diffusion in the conditions of limiting current 

Cylindrical diffusion is observed in diffusion towards a wire, carbon fiber, etc. of the radius r0 

and the length h.63 

 

r0

r

dr

 
Fig. 9.11. Cylindrical diffusion. 

To develop the diffusion equation one should consider fluxes at r and r+dr, similarly as in the 

case of spherical diffusion: 

 

( )

r
r

r+dr
r+dr

d 2 d

d 2 d d

c
N r h D t

r

c
N h r r D t

r





 
=  

 

 
= +  
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  (9.77) 

together with Eq. (9.56). Substitution gives: 
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2 2
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N h D t r r r r r
r r r r


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  (9.78) 

 r+dr r r+dr rd d d d
d

2 d 2 d d

N N c N N
c

r h r t r h r t 

−  −
= =


  (9.79) 

gives the final equation for diffusion in cylindrical geometry: 

 
2

2

1c c c
D

t r rr

   
= + 

   

  (9.80) 

It is similar to that for the spherical diffusion, Eq. (9.61), except the factor of 2 in the second 

term. However, this factor has greater consequences as Eq. (9.80) cannot be changed into simple 

Fick equation by substitution. To solve it let us use the following substitutions: 

 
2

00

, ,
*

c Dt r
a T R

c rr
= = =   (9.81) 

which leads to the dimensionless equation: 
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  (9.82) 

To solve it let us apply the Laplace transform: 
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2

2

d 1 d
1
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d 1 d
1 0
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a a
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R RR

a a
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R RR
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  (9.83) 

Let us introduce the substitution: 

 
1

u a
s

= −   (9.84) 

which gives: 

 
2

2

d 1 d
0

dd

u u
su

R RR
+ − =   (9.85) 

This is a Bessel equation and its solution is given in terms of the modified Bessel functions of 

the first and second kind and zero order: I0 and K0: 

 ( ) ( )0 0u AI sR BK sR= +   (9.86) 

where: 
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Bessel functions are included in Excel, their plots are shown in Fig. 9.12: 

When R → , 0( )I sR →   and A = 0: 

 
( )

( )

0

0
1

u BK sR

a BK sR
s

=

= +

  (9.88) 

Constant B may be obtained from the surface condition 

 
Fig. 9.12. Bessel functions I0 and K0. 
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  (9.89) 

and the solution in the Laplace domain is: 

 0

0

1 1 [ ]

[ ]

K sR
a

s s K s
= −   (9.90) 

To calculate the current the concentration gradient must be first found: 
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1 d (a )
, ( )
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K s K sda K x
s aK x

dR s K s sK s=

= − = − =   (9.91) 

where K1 is the modified Bessel function of the second kind and first order, Fig. 9.13. 



180 

 
Fig. 9.13. Bessel functions K0 and K1. 

General solution in time domain is given as: 

 

2

2 2
0 00

d 4 e 1
d

d ( ) ( )

Tua
u

R u J u Y u

 −

=
+

   (9.92) 

where J0 and Y0 are the Bessel functions of the first and second kind and zero order, Fig. 9.14 

 

 
Fig. 9.14. Bessel functions J0 and Y0. 

Solution can be represented as series for small values of the parameter T (i.e. short times, large 

r0) 

 
1

d 1 1 1
...

d 2 4R

a T

R T =

  
= − + −  
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  (9.93) 

or large T: 
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where  = 0.5772. The limiting current may be shown for small T: 
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or for large T: 
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At short times it approaches simple Cottrell equation while for longer times it is decreasing 

more slowly, Fig. 9.15. Current on the cylindrical electrode decreases more slowly than that on 

the planar electrode. 

 

 
Fig. 9.15. Dependence of the current on the planar and cylindrical electrodes versus time. 

9.4 Ultramicroelectrodes 

Ultramicroelectrodes are electrodes of very small dimensions on which the effects of the 

diffusional mass transfer might be neglected. Below, current at different geometries are 

compared. 

9.4.1 Spherical electrode 

The current at spherical electrode, surface area A = 4r0
2, is: 
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  (9.97) 

that is when the linear diffusion effects might be neglected: 
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*

04li nFDr c=   (9.98) 

This is a time independent constant current when radial diffusion is much faster than the linear. 

For a hemispherical electrode it is two times smaller: 

 
*

02li nFDr c=   (9.99) 

9.4.2 Disk electrode 

Diffusion to the disk electrode is two dimensional: 
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  (9.100) 

where r is the radial coordinate and z is the direction perpendicular to the surface. However, the 

stationary current is: 

 
*

04li nFDr c=   (9.101) 

9.5 Chronocoulometry 

Instead of measuring the current one can also measure the charge passed during the electrode 

process. On planar electrode it is: 
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   (9.102) 

and on the spherical electrode: 

 
1/2 * *

0

2
( )

nFAD c t nFADc
Q t t

r
= +   (9.103) 

Contrary to the chronoamperometry where current decreases with time the charge increases 

with time. 

9.6 Capacitive current in chronoamperometry and chronocoulometry 

9.6.1 Chronoamperometry 

In all transient techniques charging current due to the recharging of the double layer 

capacitance flows in the circuit and limits all these techniques at low concentrations and short 

times. Let us assume that in the double layer zone (in the absence of the redox reaction) the 

electrode might be represented as the solution resistance, Rs, in series with the electrode 

capacitance, C. The total potential difference is the sum of the potential drop on the solution 

resistance and on the capacitance:  
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This equation might be solved to determine current versus time using the Laplace transform 

keeping in mind that: 
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  (9.107) 

Inverse Laplace transform gives current: 
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(t) e
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i
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−

=   (9.108) 

It should be noticed that the capacitive current decreases exponentially while the faradaic 

~t -1/2, that is more slowly. Comparison is displayed in Fig. 9.16. It is visible that at short times 

capacitive current is larger than the faradaic while at longer times capacitive current decreases to 

zero. Such decrease depends strongly on the solution resistance and for small Rs it decreases very 

quickly. 

 
Fig. 9.16. Dependence of the capacitive and faradaic currents in chronoamperometry. 
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9.6.2 Chronocoulometry 

Capacitive charge in chronocoulometry may be calculated by integration of the current, Eq. 

(9.108) 
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  (9.109) 

The capacitive charge increases with time and reaches a constant value EC, Fig. 9.17. It is 

interesting to note that the dependence on the square root of time for faradaic current is linear 

while for the capacitive current it is always nonlinear. 

 
Fig. 9.17. Dependence of the faradaic (diffusion) and capacitive charge on time and on t1/2. 

The total charge in chronocoulometry consists of three parts: charge due to the faradaic 

reaction, Qf, capacitive charge due to charging of the electrode double layer, Qdl, and charge due 

to reduction (or oxidation) of the species already adsorbed on the electrode surface, Qads: 

 f dl adsQ Q Q Q= + +   (9.110) 

Chronocoulometry allows for the separation of these three charges. Illustration of this 

procedure is displayed in Fig. 9.18. In the supporting electrolyte the observed charge is only due 

to recharging of the electrode double layer (1). In the presence of the heterogeneous redox 

process (2) plot of the charge versus t1/2 gives and the intercept double layer charge and the 

straight line with the slope from Eq. (9.102). Finally, the presence of adsorption (3) there is an 

additional charge at the origin due to the immediate reduction of adsorbed species.  

Application of this procedure to the determination of the adsorption of the neutral chromium 

complex Cr[(NCS)3(H2O)3] is illustrated in Fig. 9.19. Series of chronocoulometric experiments 

at different concentrations of the complexes was carried out. As the complex concentration 

increases the slope and the intercept of the straight lines of charge vs. t1/2 increase as well. The 

plot of the adsorbed charge versus concentration gives the adsorption isotherm. 

Another practical example is shown in Fig. 9.20 where the double layer and mass transfer 

parameters are simply determined.  
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Fig. 9.18. Chronocoulometric curves 1) in the supporting electrolyte only, 2) in the presence of 

the redox reaction without adsorption, and 3) in the presence of redox reaction and adsorption.64 

 
Fig. 9.19. Determination of the adsorption isotherm of Cr[(NCS)3(H2O)3] at mercury by 

chronocoulometry.64 
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Fig. 9.20. Plot of charge vs. t1/2 for 0.95 mM 1,4-dicyanobenzen in benzonitrile in 0.1 M tertra-n-

butylammonium fluoroborate at Pt disk electrode; potential step from 0 to -1.63 V versus quasi 

reference electrode.8 

The main problem with chronoamperometry is that the current drops by orders of magnitude 

with time. If larger current scale is chosen the initial current is correctly measured but after some 

time it becomes very small and might be buried in the background noise. On the other hand, 

when high sensitivity is chosen the initial current saturates the chosen current scale and the 

further measurements might be affected. 

The advantages of the chronocoulometry are: 

a) the measured signal increases with time 

b) integration reduces the random noise (average of the random noise is zero) 

c) allows for the separation of the double layer and adsorption charges. 

9.7 Double potential step chronoamperometry and chronocoulometry 

9.7.1 Double potential step chronoamperometry 

In this technique the potential is stepped from the double layer zone, Ei, to the range when it is 

diffusion limited, Ef, and then to another potential, Er, which often is the same as Ei. This 

potential program is illustrated in Fig. 9.21. 
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Fig. 9.21. Potential program in the double potential step chronoamperometry. 

Let us assume here that initially only ox form is in the solution and that Er = Ei, that is the 

potential is stepped first to the cathodic limiting current ( O(0) 0c = ) zone and then to the anodic 

limiting current zone ( R(0) 0c = ). The problem is described as: 
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As usual, the standard substitutions are used: 
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and the following problem is obtained: 
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  (9.115) 

Applying Laplace transform to the Fick equations and using the condition at y→ leads to: 
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To obtain constants A and B surface conditions must be used: 
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For T< 1, t <  the solution is as for the simple chronoamperometry in the conditions of 

diffusion current, Eq. (9.50), that is Cottrell equation.  For T > 1, t >   one gets: 

 3
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1 ( , )
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s yT b y s C e

b s C
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=
  (9.118) 

To obtain (0, )b s  one can use direct Laplace transform of b(0,t). Its behavior is displayed in 

Fig. 9.22. 
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Fig. 9.22. Dependence of b(0,T) on dimensionless time T. 
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The current in the second potential step is: 
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The ratio of the backward to forward currents is: 
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and if the currents are measured after t =  and t = 2: 
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For Eq. (9.126) it is obvious that the backward current is always smaller than the forward 

current, Fig. 9.23. Dependence of the concentration on time for the first step was displayed in 
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Fig. 9.23. For the second potential step the concentrations are shown in Fig. 9.24. It is interesting 

to note that a concentration peak of red form and a minimum on the concentration of ox appear. 

 

 
 

Fig. 9.23. Dependence of the limiting current on time in the double potential step 

chronoamperometry. 

  



191 

 
 

 
Fig. 9.24. Dependence of cR and cO on distance at different times for the second potential step in 

the double potential step chronoamperometry. 

9.7.2 Double potential step chronocoulometry 

Integration of the charges in double potential step chronoamperometry shows new features. 

For t <   the result is as in Eq. (9.102). For t > , Eq. (9.124) should be integrated: 
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It is interesting to note that dependence of Qf on t1/2 and Qb on  have the same slope 

magnitude but with the different sign. It is illustrated in Fig. 9.25. 

 

 

 
Fig. 9.25. Dependence of the total charge on time and cathodic and anodic charges on t1/2 and . 

Conditions as in Fig. 9.20.8 

The ratio of the backward at t = 2τ to forward charge at t = τ is: 
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which is much larger than the corresponding ratio of currents (0.2929). 

9.8 Quasi reversible reaction in chronoamperometry 

9.8.1 Theory 

Let us assume that there is a quasi-reversible reaction in simple chronoamperometry with the 

form ox only in the bulk of solution: 
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This problem is described by the following equations: 
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with the following initial and boundary conditions: 
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The surface conditions consist of the continuity of fluxes and the kinetic flux (instead of the 

Nernst equation). Standard substitutions lead to: 
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Solution in the Laplace domain is: 
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Using the surface conditions the constants may be obtained: 

 1 2 2 12

1
0sC s C C C 


− − = = −   (9.136) 

 

1 1 2 1 1
O O

1
O O

1 1

1

f b f b

f f b

R

H

sC k C k C k C k C
s sD D

k k k
C s

sD D D

 





      
− = + − = + +      

      

  
  
  − = + +
  
  

  

  (9.137) 

 

1 f
O

2 f
R

1 1

1 1

C k
D s s H

C k
D s s H









= −
+

=
+

  (9.138) 

 
( )

( )

f
O

f
R

1 1 1
( , )

1 1
( , )

s y

s y

a y s k e
s D s s H

b y s k e
D s s H











−

−

 
= −  

+ 

 
=  

+ 

  (9.139) 

 
* 1/2

O (0, )
( )

nFAc D a s
i t

y


=


  (9.140) 

 

( )

( ) ( )

( ) ( )

f
O

2 1/2 1/2
f

O

2 1/2
f

O

(0, ) 1 1

(0, )
exp erf

exp erf

a s
k

y D s s H

a t
k H T H T

y D

k H t Ht
D






 



 
=  

 + 

 
= = 

  

 
=  

 

  (9.141) 

 
* 2 1/2

f( ) exp ( ) erfc ( )i t nFAc k H t Ht=   (9.142) 

It is interesting to note that the current does not depend directly on the diffusion coefficient. 

The function exp(x2) erfc(x) is slowly decreasing, Fig. 9.26. 
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Fig. 9.26. Dependence of exp(x2) erfc(x) vs. x. 

Few values of this function are displayed below 

 

x    exp(x2) erfc(x) 

0.5   0.616 

1    0.428 

1.5   0.322 

2    0.255 

3    0.179 

 

Eq. (9.142) might be further rearranged to make the analysis simpler. Let us introduce a new 

parameter  = Ht1/2. 

 

( ) ( )

( )

0' 0'(1 )
f b s O

RO R O

0'f O

RO

1 exp

nf E E nf E Ek k k D
H e e

DD D D

k D
H nf E E

DD

 − − − − 
 = + = +
  

   = + −     

  (9.143) 

but 

 ( ) 0' 0'O O
1/2 1/2

R R

ln ; exp
RT D D

E E nf E E
nF D D

= − = −   (9.144) 

and 

 ( ) f
1/2

O

1 exp
k

H nf E E
D

= + −     (9.145) 

 
* 2

f( )   exp ( ) erfc ( )i t nFAc k  =   (9.146) 

Dividing by the limiting current: 
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1/2O

1/2 2
1/2

( )

1 exp( )
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( ) 1 exp

( )
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( )

l

l

l

nFAD c
i t

t

nf E Ei t k
t

i t nf E ED

i t
nf E E

i t



  

   

=

+ −  =
+ −  

+ − =  

  (9.147) 

The reversible current is: 

 
( )rev

1/2

( )
( )

1 exp

li t
i t

nf E E
=

+ −  
  (9.148) 

then 

 ( ) ( )1/2 2

rev

( )
( ) exp erfc

( )

i t
F

i t
    = =   (9.149) 

Plot of F() versus potential is illustrated in Fig. 9.27. 

 
Fig. 9.27. Plot of function F(), Eq. (9.149) vs. .8 

Plots of the dimensionless current vs. potential in chronoamperometry for different values of 

the kinetic parameter ks are shown in Fig. 9.28. 
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Fig. 9.28. Plot od i(t)/il(t) = F() versus potential assuming  = 0.5,  = 1 s, DO = DR = 10-5 

cm2 s-1 and the standard rate constants ks: 10 (reversible), 10-3, 10-5, and 10-7 (totally irreversible) 

cm s-1.8 

Comparing the reversible case (in this case for ks = 10 cm s-1) with quasi-reversible and totally 

reversible cases indicates that irreversibility causes shift of the experimental half-wave potential 

towards more negative values. The process becomes totally irreversible when the reversible 

current at the potential if the chronoamperometric wave is equal to the limiting current. 

 

9.8.2 Determination of the kinetic parameters 

The totally irreversible process is the process for which the backward reaction kinetics might 

be completely neglected, kf >> kb and the reversible process at this potentials is in the limiting 

current conditions. Under these conditions functions H and  are simplified: 

 f

O

0b
t k

k
D

 = =   (9.150) 

and Eq. (9.149) reduces to: 

 
( )

( )
( ) ( )1/2 2exp erfc

l

i

i

t

t
   =   (9.151) 

From the ratio of the observed current to the limiting current (determined at the same time) 

parameter  is obtained, from which the forward rate constant is calculated, Eq. (9.150). 

In the case of quasi-reversible or totally irreversible process the following steps should be 

followed: 

1) Determination of the chronoamperometric curves i(t) at different potentials and 

determination of i(t)-E curves at different times 

2) Determination of the reversible half-wave potentials from the potentiometric 

measurements or chronoamperometric curves at longer times where the equilibrium at the 

surface might be reached 
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3) Determination of the diffusion coefficient from the limiting current 

4) Calculation of the function F(), Eq. (9.149) 

5) Determination of the parameter , graphically from Fig. 9.27, or solving the nonlinear 

equation 

6) Plot of ( ) 
1 f

1/2
O

ln 1 exp ln
k

nf E E
t D

 − 
+ − =   

 
 versus E 

7) Determination of kf(E), the transfer coefficient as: fln k
nf

E



= −


, and the standard rate 

constant at E = E0’. 

An example of the application of the chronoamperometric analysis is shown in Fig. 9.29 for 

the oxidation of Cd amalgamate. From the straight line the standard rate constant and the transfer 

coefficient were determined. 

 

 

 
Fig. 9.29. Dependence of the rate constant of oxidation of cadmium amalgamate, Cd(Hg), on 

potential in 1 M tetraethylammonium perchlorate in DMSO obtained from chronoamperometric 

experiment at t = 8 ms.65 

9.9 Rates of the electrochemical processes 

To determine the reaction reversibility one should compare the rate of the charge transfer and 

the mass transfer. The system is reversible if the slowest step is the mass transfer and the system 

is irreversible when the slowest step is electron transfer. When the rates of these two processes 

are comparable the system is quasi-reversible, Fig. 9.30. 
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Ve

VmtVmt

Virreversible reversible

quasireversible

 
Fig. 9.30. Comparison of the rate of the electron transfer, Ve, and the mass transfer, Vmt. 

The rate of the mass transfer, Vmt, in cm s-1, is determined from the limiting current: 

 

*
mt

mt *

l

l

i nFAc V

i D
V

nFAc 

=

= =
  (9.152) 

and from the Cottrell equation the rate of mass transfer in chronoamperometry is: 

 mt
D

V
t

=   (9.153) 

Using this equation one can consider the system reversibility: 

 

 

reversible    f

mt

10
k

V
  

irreversible    f

mt

0.1
k

V
  

quasi-reversible   f

mt

0.1 10
k

V
   

Assuming that D = 10-5 cm2 s-1 the mass transfer rate is: 

 
3

mt
1.8 10 cm

s

D
V

t t

−
= =   (9.154) 

The process is irreversible when kf  10-1 mtV  or for different times: 

 = 1 s     kf < 1.810-4 cm s-1  

 = 0.1 s     kf < 5.710-4 cm s-1 

 = 0.01 s    kf < 1.810-3 cm s-1 

Chronoamperometric technique allows determination of the electrode kinetics in these rate 

constant ranges depending on the experiment time. 

 

Chronoamperometry and chronocoulometry might be used to determine the diffusion 

coefficient; in the case of reversible processes number of electrons might be determined while 

for quasi-reversible and irreversible processes rate constants and transfer coefficients may be 

determined. Double potential step chronoamperometry and chronocoulometry are often used to 

determine the kinetics of chemical reactions proceeding after the electrode process and 

consuming the form red.66-69 Example of such reaction might be benzidine rearrangement 

reaction appearing after reduction of azobenzene to hydrazobenzene.66,68,69  
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9.10 Chronoamperometry with convolution 

Method of analysis of the experimental data may be improved (and simplified) by the 

transformation of the experimental data. Eq. (9.142) may be written as: 

 
( )

( )

* 2
f

2
o

( ) exp erfc( )

( )   exp  erfc ( )

i t nFA c k H t H t

i t i H t H t

=

=

  (9.155) 

where *
o fi nFA c k=  is a constant. One can apply semi-integration70,71 that is the following 

operation: 

 
( )

1/2

1/2 1/2
0

d 1 ( )
( ) ( ) d

(1 / 2)d

t
i u

i t I t u
t t u

−

−
= =

 −
   (9.156) 

which gives a simple linear equation: 

 o( )    · ( )i t i H I t= −   (9.157) 

The kinetic parameters might be obtained from the intercept and the slope of this equation. 

Semi-integration is simply carried out numerically.72 The example of application to the 

determination of the kinetic parameters is shown in Fig. 9.31. 

 
Fig. 9.31. Dependence of the chronoamperometric current on the convoluted current for the 

reduction of Cd2+ in 0.5 M TBAP in DMSO at a constant potential.73 
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9.11 Diffusion in the finite space 

In the above examples we have considered semi-infinite diffusion. However, sometimes finite 

length diffusion should be considered. Let us assume, for example, a Pd foil. On one side 

negative potential is applied and hydrogen is reduced and enters the foil while on the other side 

positive potential is applied to assure that hydrogen is immediately oxidized. This leads to the 

transfer of hydrogen from one side to the other. Initially, a transient current is observed and at 

sufficiently long times a linear concentration gradient inside foil is obtained leading to a steady-

state current. Another example is hydrogen diffusion in Pd layer deposited on non-absorbing 

metal (Au, Pd). In this case current decreases to zero as the layer is saturated with hydrogen.  

These problems are more complex as only numerical solutions exit.74 They have been treated 

in the heat transfer. 

Let us assume that a is the dimensionless concentration and the foil thickness is l. Let us also 

assume that the species enter the layer deposited on non-permeating metal. This problem is 

formulated below: 

 

2

2

2

x Dt
y T

l l

a a

T y

= =

 
=

 

  (9.158) 

with the following conditions: 

 0

0 0

0 0

1 0

T a

T y a a

a
y

y

 =

 = =


= =



  (9.159) 

Solution of Eq. (9.158) is always in the form: 

 1 2e es y s ya C C−= +   (9.160) 

and conditions allow for the determination of the constants: 

 

0
1 2

1 2

2 20 0
2 1 1 2 1

0 0
1 2

0

1 e e 0

e e

e e

e e e e

s s

s s

s s

s s s s

a
y a C C

s

da
y sC sC

dy

a a
C C C C C

s s

a a
C C

s s

−

− −

−

− −

= = = +

= = − + =

= = − = −

= =

+ +

  (9.161) 

and the solution in the Laplace domain is: 
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( )

( )

( )

(1 ) (1 )
0 0

0
0

cosh 1e e

coshe e

tanh

s y s y

s s

y

s ya a
a

s s s

sda
a

dy s

− − −

−

=

   −+   = =
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= −

  (9.162) 

Although the solution in the Laplace domain was easily obtained it is not possible to simply 

make an inverse transformation. Another method which uses properties of the Laplace transform 

is used. When the solution in the Laplace domain is expressed as division of two functions: 

 
( )

( )

f s
a

g s
=   (9.163) 

the solution in the time domain is in the form of a series: 

 

1

( )
( ) e

'( )
i

n
s ti

ii

f s
a t

g s
=

=    (9.164) 

where si are the zeros of the denominator g(s). Eq. (9.162) for a  might be written as: 

 

( )

( ) ( )

( ) cosh

'( ) cosh sinh
2

g s s s

s
g s s s

=

= +

  (9.165) 

Zeros of ( )( ) coshg s s s=  are: 

 
1 0

cosh( ) 0

s

s

=

=
  (9.166) 

As ( )cosh( ) cosz iz=  the zeros are: 

 
( ) ( )

2 22 1 2 1

2 4

n i n
s s

 + +
= = −   (9.167) 

For g’(s): 
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  (9.168) 

and g’(si) are: 
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1
2 1 1 2 11

'( ) 1
2 2 4

n
n
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= − =   (9.169) 

Finally the solution in time domain is given as an infinite series: 
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   (9.170) 
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To obtain the derivative with respect to distance necessary to calculate the current one can 

express it as a semi-infinite series: 

 

( )

( )

( )
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  (9.171) 

The inverse Laplace transform is: 

 

2

1 4
e 1

e 2

kk s
T k n

s T

− −
−

 
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d
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y T

 −

=
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   (9.173) 

 

Such calculations are usually carried out using digital simulations. 

 

9.12 Chemical reactions in chronoamperometry 

Kinetics of chemical reactions preceding or following the electron transfer step can be studied 

using electrochemical methods. Below, determination of the kinetics of some reactions will be 

presented. 

9.12.1 Preceding chemical reaction, CE 

Few examples of the preceding chemical reactions are presented below: 

 
Fig. 9.32. Few examples of the chemical reaction preceding the electron transfer step. 

This problem is in general defined as: 
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f

b

Y O O R
k

k

ne+   (9.174) 

where Y is electro-inactive form. When the equilibrium of chemical reaction is shifted towards 

Y, K << 1, O form must be produced by the chemical reaction. If the rate constant kf → 0 only ox 

which is already in the solution is reduced. When kf → ∞ all form Y is transformed rapidly to O 

and the observed current corresponds to the total concentration of A + O, id. 

The above problem might be described by the following differential equations after 

introduction of the non-dimensional concentrations: 

 
* *O Y f
O Y

bO

*
* *

c c x k a
a z y c c c K

c c k zD
= = = = + = =   (9.175) 
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 
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  (9.176) 

Using new substitutions: 

 f b b(1 )u z a b a Kz k k k K= + = − = + = +   (9.177) 

new equations are obtained: 
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b b
b

t y

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  (9.178) 

with the following initial and boundary conditions: 
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  (9.179) 

 

Applying the Laplace transform the following equations are obtained: 
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  (9.180) 

The constants are obtained using the boundary conditions: 
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  (9.181) 
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  (9.183) 

taking into account that 
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  (9.184) 

then 
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This equation is valid for 0, 0, 1A K   . When  → 0, A → 0, and 

 
d 1
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d 1 1

u K K
a

y K Kt
= =

+ +
  (9.186) 

and only the concentration of electroactive species existing in solution is reduced without 

influence of the chemical reaction. On the other hand when K<<1, 

b f b f/ , ,k k K A k A k K   = +     and assuming that ( )erf 1A t+   the following 

expression is obtained at the electrode surface: 

 
d d

exp( )erfc
d d

u a
A At At

y y
= =   (9.187) 

and the ratio of kinetically limited to mass transfer limited current (when the reaction is infinitely 

fast) is: 
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i t
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i t
=   (9.188) 

This equation allows for determination of the kinetics of the preceding chemical reaction. It is 

formally identical to Eq. (9.149) for slow electrode kinetics. 

 

9.12.2 Following chemical reaction, EC 

First order reaction occurring after the electron transfer decreases concentration of red form: 

 
f

O R

R Y
k

ne+

⎯⎯→
  (9.189) 

and might be studied by the double potential step method. This reaction decreases the oxidation 

current. An example of such process is reduction of Co(III) complex with ethylendiamine, where 

the complex of Co(II) is unstable: 
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Co(en) Co(en) (H O)  enH
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e+ +

+ +
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  (9.190) 

or reduction of azobenzene with subsequent benzidine rearrangement: 

 

 
 

Fig. 9.33. Benzidine rearrangement. 

Reaction system, Eq. (9.189), is described by the following equations: 
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where  
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with  
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90Applying the Laplace transform the following equations are obtained in the Laplace space: 
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with the solution: 
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Using the boundary conditions the constants are: 

 1 3
1 1

C C
s s s k

= − =
+

  (9.196) 

from which the surface concentration of red at times t   is:75 
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where 1F1(a,b,x) is the confluent hypergeometric function and I0(x) is the modified Bessel 

function. In the original paper, ref. 75 the authors used the confluent hypergeometric function. 

To obtain the Laplace transform of the surface concentration of red-form after the second 

potential step it must be integrated: 
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and 
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Inverse transformation gives: 
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Eq. (9.200) is similar to Eq. (9.124) but in the absence of the following reaction function  = 1. 

The plot of anodic and cathodic currents in the absence and presence of the following reaction is 

displayed in Fig. 9.34. 
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Fig. 9.34. Typical cathodic-anodic current-time curve for the system without (dashed line) and 

with (continuous line) following reaction in double potential step chronoamperometry.75 

Finally, the ratio of the backward to forward current is: 

 b

f

,
i t t

k
i t

 
 



− − 
= − 

 
  (9.202) 

These curves determined at different ( ) /t  −  are shown below, Fig. 9.35. It can be noticed that 

if t = 2τ this correspond to (t-τ)/τ = 1. 
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Fig. 9.35. Theoretical working curves for the determination of the kinetics in double potential 

step chronoamperometry with the following reaction.75 

Reilley and coworkers have also presented such a theory for the double potential step 

chronocoulometry.76,77 They obtained the following equation for the ratio of the backward charge 

at t = 2τ and the forward charge at t = τ: 

 b
1

f

1 ( ,2 , ) 2
Q

k
Q

 = +  −   (9.203) 

where 

 

 
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1 1 1 1 1 1 1

1

0

1 3
( ) , 1, 1, , ( )

2 2
( , , )

!(2 1)

j

k t

j

k t F j j k F j k t

k t e
j j

  




−

=

   
− + + + −   

    =
+

   (9.204) 

When k1 = 0,  = 1 and the charge ratio becomes as in Eq. (9.128). The authors also developed 

equation for the following reaction in the presence of adsorption of the reactants. 

Holub and Weber78,79 modified this method and obtained simplified solution. Ohsaka et al.80 

extended theory to the reversible follow-up reaction. 
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In the case of the second order dimerization reaction only numerical solution exists. Olmstead 

and Nicholson81 presented tables permitting determination of the kinetics of subsequent 

dimerization reactions. 

9.12.3 ECE mechanism 

ECE process is the system in which the product of the first electrochemical step (E) is 

followed by the chemical reaction (C) which produces a new ox form which can be immediately 

further reduced (E), i.e. standard potential of the second step is more positive than that of the first 

one: 

 
f

b

1

2

O R E

R O ' C

O ' R ' E

k

k

n e

n e

+ =

⎯⎯→⎯⎯

+ =

  (9.205) 

There are other possibilities where O’ can be oxidized at different potentials or when the redox 

potential of the couple O’/R’ is more negative than that of O/R. However, here we will consider 

only the first possibility. 

A practical example of such process is the reduction of o-nitrophenol82 

 f
2

o-nitrophenol + 4 H 4  o-hydroxy-phenylhydroxylamine (B)

B  H O  o-quinoneimine (C)

C + 2 H+ + 2  o-hydroxy-aniline

k

e

e

+ + =

− ⎯⎯→

=

  (9.206) 

or p-nitrosophenol 

   (9.207) 

 

In such cases the product of electrode reaction creates new ox form which is immediately 

reduced leading to the increase of the reduction current. Assuming that the chemical reaction is 

irreversible and using the substitutions:83 

 O R O'
* * *
O O O

, ,
c c c

a b c
c c c

= = =   (9.208) 

This electrode process is described by the following equations: 
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2 2 2

2 2 2
, ,

0 0
1 0

0

0 0 0, 0

d d
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d d

a a b b c c
kb kb

t t ty y y

t y
a b c

t y

t y a c

a b

y y

     
= = − = +

    

=  
= = =

 → 

 = = =

+ =

  (9.209) 

These equations might be simplified using substitution: 

 u b c= +   (9.210) 

Then the new equations are: 

 

2 2 2

2 2 2

0 0

, ,

d d d d d
0,

d d d d d

a a b b u u
kb

t t ty y y

u b c a c
y

y y y y y

u b

     
= = − =

    

= = + = − +

=

  (9.211) 

The solution in the Laplace domain is: 

 2

2

1 1 s y

s k y

s y

a e
s s

b C e

u C e

−

− +

−

= −

=

=

  (9.212) 

Constants are determined form the surface conditions: 

 

2

2

0 0 1

1

d 1
,

d

1 1 1 1
,

1 1 1 1
,

d 1 d d

d d d

s k y

s y

a b
C s k

y ys

C b e
s s k s s k

u b C

C u e
s s k s s k

u b c

y y ys k

− +

−


= = − +



= =
+ +

= =

= =
+ +

= − = +
+

  (9.213) 

 
dc 1 1

dy s k s
= − +

+
  (9.214) 

and the current in the presence of reaction is proportional to the sum of gradients of a and c: 

 k 1 2 1 2 2
d d 1 1 1

~
d d

a c
i n n n n n

y y s s s k
+ = + −

+
  (9.215) 

and after inversion 
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 1 2 2
k ~

ktn n n e
i

t t 

−+
−   (9.216) 

The observed current changes between that corresponding to n1 electrons for slow kinetics to 

n1+n2 electrons for fast kinetics. Division of the kinetic current by that obtained for the diffusion 

limited current in the case without chemical reaction gives: 

 k 1 2 2

d 1 1

kti n n n
e

i n n

−+
= −   (9.217) 

when n1 = n2,  

 k

d

2 kti
e

i

−= −   (9.218) 

Alberts and Shain83 have also considered a case of reversible chemical reaction and applied 

their theory to the determination of the kinetics of reduction of p-nitrosophenol. 

 

9.12.4 Disproportionation 

Disproportionation is the reaction in which substrate of a redox reaction is regenerated. It leads 

to the increase of observed current. In general, one can distinguish the first order, DISP1, and the 

second order, DISP2, mechanisms. In fact, when the potential of the second step, O’/R’, is much 

more positive than that of the first step, O/R, is the ECE mechanism. The following reaction 

mechanism might be written: 

 1A   B Ee+ =   (9.219) 

 1
1B C C

k
⎯⎯→   (9.220) 

 2C +  = D Ee   (9.221) 

 2
2B + C A + D C

k
⎯⎯→   (9.222) 

Adding reactions (9.220) and (9.222) gives: 

 2 B  A + D→   (9.223) 

in which the form A (ox) is regenerated. ECE mechanism is E1C1E2, the first order DISP1 

mechanism is E1C1C2 with C1 as the rate determining step, and the second order DISP2 

mechanism is E1C1C2 with C2 as the rate determining step. 

If the slowest step is reaction (9.220) and (9.222) is fast the kinetics is of the first order, 

DISP1, and when reaction (9.220) is fast and (9.222) is slow the kinetics is of the second order, 

DISP2. 

Let us consider the mechanism DISP1. Its solution is shown in Exercise 21. The obtained 

equation is: 

 
12

k 1

d 1

4 1 e

2

k t
i k t

i k t

−
− +

=   (9.224) 

This equation is different from that for the ECE mechanism and both mechanisms might be 

distinguished at larger values of the kinetics parameter kt, see Fig. 9.36. 
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Fig. 9.36. Dependence of the ratio of the kinetic to diffusion limited currents, ik/id versus 

logarithm, of the kinetic parameter kt for the ECE (continuous line), Eq. (9.218), and DISP1 

(dashed line), Eq. (9.224). 

In the case of DISP2 mechanism the kinetics is of the second order and depends on the 

concentration. In this case only numerical solution exists.84 

9.12.5 Catalytic process 

In the catalytic process the red-ox reaction product is regenerated in reaction with other 

product in solution, Z, (which is electro-inactive at this potential): 

 
A B

B Z A X
k

ne+ =

+ → +

  (9.225) 

Solution of this problem is shown in Exercise 22, for Z Bc c : 

 k

d

e erfkti
kt kt

i
−= +   (9.226) 

where parameter k includes the concentration of the catalyst Z. 
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10 Chronopotentiometry 

10.1 Reversible redox reaction 

Chronopotentiometry is the technique where current step is applied and the electrode potential 

followed as a function of time, Fig. 10.1. 

 

 
Fig. 10.1. Current pulse and potential response in chronopotentiometry.8 

To solve this problem one should consider two Fick diffusion equations with the following 

conditions: 
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  (10.1) 

Using standard substitutions: 

 

( ) ( )* *
O O R O

O R
O

, / , , / c ,

, / , /

a c y t c b c y t

x
y D D T t

D
 



= =

= = =
  (10.2) 

the following problem is obtained: 
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  (10.3) 

Laplace transform gives: 
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d
,0 0

d

d
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a
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b
sb

y


− + =

− =

  (10.4) 

and the solution in the Laplace space is: 

 

1s y

s y

a Ae
s

b Be 

−

−

= +

=

  (10.5) 

The current is proportional to the concentration gradient: 

 0 0y y

a b
s A s B

y y

B A

= =

 
= − = − 

 

= − 

  (10.6) 

The transform of the gradient: 

 
a a I

I
y y s

 
= =

 
  (10.7) 

therefore: 

 

3/2 3/2/ /

a I
sA

y s

A I s B I s


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

= − = 

  (10.8) 

and the solution in the Laplace space is: 

 
3/2

3/2

1 s y

s y

I
a e

s s

I
b e

s



−

−

= −

=

  (10.9) 

The surface concentrations are: 
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  (10.10) 

The inverse transform gives: 
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  (10.11) 

During the application of the constant current the concentration gradient at the surface stays 

constant but the surface concentration decreases and at one point in time it reaches zero. At this 

moment potential must abruptly change to the next possible process as the constant current must 

circulate. This time is called transition time, : 

 ( )O 0, 0c t t = =   (10.12) 

and the general equation obtained from Eq. (10.11) is called Sand equation: 

 

1/2 1/2 *
1/2 O

2

nFAD c
i


 =   (10.13) 

It is evident that the relation between time and concentration is not linear. For the reversible 

process the Nernst equation might be used: 
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  (10.14) 

and the potential-time relation is: 

 
0' R
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O

ln ln 1 ln 1
RT D RT RT

E E E
nF D nF t nF t

    
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   
  (10.15) 

The half-wave potential is obtained when: 

 1/2 / 1 1 / 4E E t t = − = =   (10.16) 

that is at ¼ of the transition time. A typical chronopotentiogram is shown in Fig. 10.2. 
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Fig. 10.2. Theoretical chronopotentiogram for the reversible redox process.8 

General solution for the concentration from Eq. (10.9) is: 
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  (10.17) 

or 

 

( ) 1/2 2
1/2O

*
O O OO

1/2 2
1/2R

*
R R RO

,
1 exp erfc

4 2 2

( , )
exp erfc

4 2 2

c x t t x x x

D t D t D tc

c x t t x x x

D t D t D tc




 


      
= − − −              

      
= − −              

  (10.18) 

The surface concentrations are: 
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O O

(0, ) (0, )
1

c t t c t t

c c

   
= − =    
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  (10.19) 

Dependence of the concentrations on distance for different times is displayed in Fig. 10.3. It 

can be noticed that the concentration gradients at the surface stay constant as the applied current 

is constant.  
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Fig. 10.3. Concentration profiles in chronopotentiometry at various t/ indicated on the curves.8 

 

10.2 Two species O1 and O2 in the solution 

Let us supposed that two different ox species O1 and O2 are in solution and their half-wave 

potentials are sufficiently different that no overlap is observed: 

 
1 1 1

2 2 2

O R

O R

n e

n

+ =

+ =
  (10.20) 

The Sand equation in this case is: 

 ( ) ( )
1/2

1/21/2 * 1/2 *
1 1 1 2 2 2 1 2

2

FA
n D c n D c i


 + = +   (10.21) 

and if concentrations, diffusion coefficients and number of electrons for these two species are 

identical 
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1/2 * 1/2 *

1 1 1 2 2 2 2 13n D c n D c  = =   (10.22) 

the second transition time is three times longer than the first one. This is connected with the 

nonlinearity of the Sand equation. Example of the chronopotentiogram of two species is shown 

in Fig. 10.4. 

 
Fig. 10.4. Chronopotentiogram of the mixture Pb(II) and Cd(II) at mercury electrode.85 

In the particular case when the reduced form is further reduced at more negative potentials 

(stepwise reduction): 

 
1 1
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n e
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+ =
  (10.23) 

the ration of the transition times is: 
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2n n
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
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 
= +  

 
  (10.24) 

that is when 1 2n n=  : 

 2 1/ 3  =   (10.25) 

This means that the second transition time is three times longer than the first one. 

 

As example oxygen reduction might be presented. It proceeds by two reactions: 

 

2
2 2 2

2
2 2

1) O H O

2) H O 2OH

e

e −

+ ⎯⎯→

⎯⎯→

  (10.26) 

The chronopotentiogram is presented in Fig. 10.5. 
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Fig. 10.5. Chronopotentiogram of (left) O2, two two electron steps, 2/1 = 3; (right) reduction of 

U(VI) in two steps, first one electron, second two electrons, 2/1 = 8.86 

10.3 Chronopotentiometry with current reversal 

The analog of the double potential step chronoamperometry is chronopotentiometry with 

current reversal. In this technique after certain time equal or lower to the transition time the 

direction of current is inversed and the potential followed, Fig. 10.6. 

 
Fig. 10.6. Current reversal and cyclic chronopotentiometry.8 

To find the equation corresponding to this technique let us consider that the direction of 

current is reversed after time t1  1. Equations and general solutions are as in simple 

chronopotentiometry but the surface conditions are different. The concentration gradient is: 
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  (10.27) 

and its Laplace transform: 
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The solution for b in the Laplace space is: 
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  (10.29) 

The inverse Laplace transform might be carried out knowing than: 

 

( )

( )

1
1

1
1 1

1

0 0
ks

ks

e
L t t

s

t te
L t t

s





 

−
−

−−
−

 
=   

 
 

  −
=  

   

  (10.30) 

where gamma Euler function is: ( ) ( )3/ 2 (1/ 2 1) 1/ 2 1/ 2 / 2 =  + =  = , (1 / 2)  = , the 

solution for b ( = 2/3): 
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  (10.31) 

The value of the surface concentration of b(0,t) becomes zero when the transition time is 

reached, b(0,t) = 0 , t = 2: 
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The ratio of the oxidation transition time to the reduction time is always 1/3 independent of the 

concentrations, diffusion coefficients, and the electrode kinetics assuming that the reaction is not 

totally irreversible. 

In general if the forward and backward currents are different and their ratio is: 
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  (10.33) 
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For example, when the oxidation current is two times smaller than the reduction current,  = 

0.5, the transition time ratio is 0.8 and it is much easier to determine than in the case of  = 1. 

An example of the application of the chronopotentiometry with current reversal is shown in 

Fig. 10.7. 

 
Fig. 10.7. Chronopotentiogram with current reversal for Fe3+/2+ couple.64 

 
Fig. 10.8. Chronopotentiogram of oxidation/reduction of diphenylpicrylhydrazyl 1.04 mM in 0.1 

M NaClO4 at Pt electrode.87 

10.4 Irreversible process 

The influence of the reversibility of the chronopotentiometric curves was discussed in detail in 

Galus’ book.7 In the case of totally irreversible reaction the potential-time relation is: 
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  (10.34) 

which is an analog of Eq. (10.15) for irreversible process. 

Although chronopotentiometry is not a very good as an analytical technique it has been used in 

the determination of the mechanisms and kinetics of electrode processes. In many cases 

analytical solutions can be found and this technique is not limited to low concentrations as other 

techniques. 

 

10.5 Chemical reactions 

Chronopotentiometry was used to determine kinetics of homogeneous chemical reactions 

preceding or following the electron transfer. Few examples will be shown below. 

10.5.1 Preceding chemical reaction, CE 

This problem is in general defined as: 

 
f

b

Y O O R
k

k

ne+   (10.35) 

As the equilibrium of chemical reaction is shifted towards Y, K << 1, ox form must be 

produced by the chemical reaction. If the rate constant kf = 0 only ox which is already in the 

solution is reduced. When kf → ∞ all form Y is transformed rapidly to O and the transition time 

corresponds to the total concentration of Y + O, d.  

This problem might be solved using the following substitutions (cA=cO): 

 A Y A Y f
f b* * *

b

, , ,
c c c c k

u z K K k k
kc c c


+

= = − = = +   (10.36) 

where c* is the total analytical concentration of Y and O in the bulk of solution. The system is 

described by the partial differential equations: 
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 = =

= =

  (10.37) 

Solution in the Laplace domain is: 

 1 2
1

,s y s yu C e z C e
s

− − += + =   (10.38) 

Using the boundary condition one obtains: 
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  (10.39) 
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1
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I I
u s z s

s s ss 
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+
  (10.40) 

but 

 
1

z Ku
a

K

+
=

+
  (10.41) 

then 

 
3/2

1
(0, )

1

K I I
a s

K sKs s s

 
= − + − + + 

  (10.42) 

The transition time is obtained when a(0,τ) = 0: 
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  (10.43) 

In the case of a very fast kinetics only the first term is left, which is the Sand Eq. (10.13). 

When τ > 4, erf 1 =   and a simplified version of the equation is obtained: 

 
1/2 1/2

rev
2

i i i
K


 


= −   (10.44) 

where τrev corresponds to the very fast kinetics. 

The plot of i1/2 versus i is shown in Fig. 10.9. Such an analysis allows for the determination of 

the kinetic parameters from the slope. 
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Fig. 10.9. Variation of i1/2 with I for various values of (kf +kb), in s-1, calculated for K = 0.1, 

cO
* = 0.11 mM.88 

  

10.5.2 ECE mechanism 

ECE process is the system in which the product of the first electrochemical step (E) is 

followed by the chemical reaction (C) which produces a new ox form which can be immediately 

further reduced (E), i.e. standard potential of the second step is more positive than that of the first 

one: 

 
1

1

1

2

O R E

R O ' C

O ' R ' E

k

k

n e

n e

−

+ =

⎯⎯⎯→⎯⎯⎯

+ =

  (10.45) 

There are other possibilities where O’ can be oxidized at these potentials or when the redox 

potential of the couple O’/R’ is more negative than that of O/R. However, here we will consider 

only the first possibility, for other see ref. 7. 

The system is described by the differential equations:89 
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  (10.46) 

Introducing a new variable u = b + c the system is described as: 

 

2 2 2

2 2 2

1 2 2

, ,

0 0
1 0

0

0 0

d d
0

d d

d d
( )

d d

a a b b u u
kb

t t ty y y

t y
a b u

t y

t y u b

a b

y y

a u
I n n n

y y

     
= = − =

    

=  
= = =

 → 

 = =

+ =

= + +

  (10.47) 

Solution in the Laplace domain is: 

 1 2 3
1

, ,s y s k y s ya C e b C e u C e
s

− − + −= + = =   (10.48) 

and using the boundary conditions: 
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  (10.49) 

After inverse transformation the surface concentration becomes zero a(0,τ) = 0 at the transition 

time which gives a rather complex equation: 
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  (10.50) 

where  is the transition time observed for k1 → ,  is the ratio: 
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1 2

n

n n
=

+
   (10.51) 

and function  is: 

 ( )2

0

( ) exp d

x

x u u =    (10.52) 

At low current densities Eq. (10.50) reduces to: 

 1/2 1/2

14
i i i

k


 
= −  

 


     (10.53) 

Using this theory the kinetics of the chemical reaction in the reduction of o-nitrophenol was 

determined, see Fig. 10.10. Independence of the results of the o-nitrophenol concentration 

confirms that the reaction is of the first order. 

 
Fig. 10.10. Variation of log(i1/2/c*) with log(1/2) for reduction of o-nitrophenol at pH = 6.2 and 

different concentrations of o-nitrophenol.82 

10.5.3 Disproportionation reaction 

Disproportionation reaction regenerates the ox form and increases the measured signal. An 

example is the disproportionation of U(V) during reduction of U(VI) (UO2
2+): 

 f

b

U(VI) U(V)

2U(V) U(VI) + U(IV)
k

k

e+ =

⎯⎯→⎯⎯
  (10.54) 

For such a process the following equation was developed:90 
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F D
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 
  (10.55) 

which can also be rearranged into: 
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where id is the value corresponding to the two electron reduction of ox (very fast 

disproportionation reaction). The plot of Eq. (10.55) in application to U(VI) reduction is shown 

in Fig. 10.11. 

 
Fig. 10.11. Dependence of i1/2 versus i2/3 for the reduction of 9.63 mM UO2

2+ in perchloric acid 

solutions: 1) 0.1 M, 2) 0.5 M, 3) 2 M. The value of kf/[H
+] = 4.3×102 M-2 s-1 is constant as H+ 

ions are involved in the disproportionation reaction: 2UO2
+ + H+ → UO2

2+ + UOOH+.32 

10.5.4 Following reaction, EC 

Reaction occurring after the electron transfer decreases concentration of red form: 

 
f

O R

R Y
k

ne+

⎯⎯→
  (10.57) 

and might be studied by the method with current reversal. This reaction decreases the oxidation 

transition time. The above system is described by the following differential equations (see also 

EC process in chronoamperometry): 
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  
  (10.58) 

with the following conditions: 91,92 
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The solutions in the Laplace domain are: 
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After time t1 the direction of current is changed and the anodic transition time is obtained: 
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  (10.61) 

At the anodic transition time the surface concentration of b (form red) becomes zero: 
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which gives: 
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  (10.63) 

When the cathodic and anodic currents are identical Eq. (10.63) becomes: 
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  (10.64) 

The working curve of 2/t1 versus kinetic parameter kft1 allowing determination of the kinetics 

is presented in Fig. 10.12. It can be simulated using Excel, see Exercise 29. 
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Fig. 10.12. Working curve allowing determination of the first order following reaction in 

chronopotentiometry with current reversal.91  

Chronopotentiometry with the second order chemical reaction was also studied in the 

literature.93 It was applied in the reduction of phthalimide, RH, in DMF: 
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.
2

RH RH

2RH RH R
k

e −

− − −

+ =

⎯⎯→ +
  (10.65) 

where neither RH2
- nor R- are active in this potential range. Comparison of the theoretical and 

experimental curves 2/t1 is displayed in Fig. 10.13, where  is: 

 
3/2

f 1

O

2k it

nFA D



=   (10.66) 

 
Fig. 10.13. Working curve second order reaction following electron transfer and the 

experimental points for phthalimide reduction in DMF for t1 = 0.22 s.93 
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11 Linear sweep voltammetry 

Linear sweep voltammetry (LSV) is probably the most popular electrochemical technique 

despite the fact that the mathematical foundations are quite complex.94 Because of that it is used 

very often only qualitatively. In this technique the potential sweep with the constant sweep rate, 

v, is applied to the stationary electrode. For the nernstian (i.e. reversible) electrode process a 

three dimensional representation i-E-t may be shown, Fig. 11.1. 

 
Fig. 11.1. (a) The i-E-t surface for a nernstian reaction. (b) Linear potential sweep across this 

surface.95 

Linear sweep voltammetry crosses this surface diagonally, Fig. 11.1. The potential program, 

current response and concentration profiles for ox, A, and red, A.-, forms are displayed in Fig. 

11.2. 

 
Fig. 11.2. Applied potential (a), current response (b), and concentration profiles of ox, A, and 

red, A.-, forms (at potentials beyond the peak potential).8  

The sweep rates change from 1 mV s-1 (or less for reactions in solid materials: hydrogen 

absorption/desorption, batteries) to 106 V s-1 (or more) at ultramicroelectrodes. To obtain current 

response the Fick diffusion equations must be solved. They will be presented for nernstian and 

kinetically limited processes below. 
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11.1 Reversible red-ox reaction in semi-infinite linear diffusion 

Let us assume a reversible redox reaction: 

 O Rne+   (11.1) 

with the linear potential sweep: 

 i( )E t E vt= −   (11.2) 

11.1.1 Planar electrode 

To solve this problem the Fick’s diffusion equations for ox and red must be solved: 
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with the following conditions: 
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Let us assume that DO = DR = D and use the new dimensionless parameters: 
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The equations with their conditions become: 

 

( ) ( )

2 2

2 2

0 0
1 0

0

0 0

exp o

a a b b

T Ty y

T y
a b

T y

a b a b
y

y y y y

a nF
E E

b RT



   
= =

  

=  
= =

 →  

   
= + =  = = −

   

= − = − 

  (11.6) 

where  is the dimensionless current function and  is the dimensionless potential. The 

dimensionless potential can be written as: 
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The conditions become: 
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The transformation to the Laplace space gives: 
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From the condition at y → , C2 and C4 are both zero. From the conditions at y = 0 one gets: 
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The solution in the Laplace space is: 
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The surface concentrations in time space follow the Nernst equation. However, direct 

transform into time space is not possible as the dimensionless current function  is not known. 

However, we can use the convolution theorem: 
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Keeping in mind that: 
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the surface concentrations become: 
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Substitution into the Nernst equation gives: 
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Using T = u +  this equation becomes: 
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This is so called Volterra integral equation of the first kind where unknown function is (). It 

can only be found by the numerical integration of Eq. (11.17). The obtained function allows for 

the determination of the current: 
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  (11.18) 

Function () is often called 1/2(t) with  = nFv/RT. It is tabulated, see e.g. ref. 8. Its plot 

versus potential is displayed in Fig. 11.3. 
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Fig. 11.3. Dimensionless current function versus potential for a reversible redox reaction in 

linear sweep voltammetry.8  

The current function represents curve with a peak, with 0.446p =  at 1.109p = − . 

Substitution to Eq. (11.18) at 25 C gives the Randles-Ševčik equation for the peak current for 

the reversible redox reaction: 

 5 3/2 *
O

1/2 1/2 2.69 10pi n AD v c=    (11.19) 

for i - A, v - V/s, *
O 3

mol

cm
c − , A - cm2, 

2

O
cm

s
D − . This equation indicated that then current is 

directly proportional to bulk concentration of ox form, square root of the sweep rate, and n3/2. 

This dependence on the number of electrons is different from those obtained for the steady-state 

or chronoamperometric techniques. This means that if the number of electrons changes from 1 to 

2, the peak current (when all other parameters are constant) increases 23/2 = 2.83 times. 

The peak potential is: 
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The potential at the half peak height, i.e. half-peak potential is: 

 p/2 1/2 1.09
RT

E E
nF

= +   (11.21) 

and 

 p p/2
0.0565

2.20 V
RT

E E
nF n

− = =   (11.22) 

Eq. (11.22) may be used as a criterion of the reversibility. Profiles of concentrations at 

different points of the chronoamperometric curve are displayed in Fig. 11.4. It should be noticed 

the surface concentration of ox drops to zero only after the current peak (~100/n mV after) and at 
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the peak potential it is not equal to zero. The current function for the reversible reaction in linear 

sweep voltammetry is shown in Table 11.1. 

 

Table 11.1. Current function for the reversible process in the linear sweep voltammetry.8 
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Fig. 11.4. Concentration profiles at different points of the chronoamperometric curve for the 

reversible redox reaction in linear sweep voltammetry, v = 0.1 V s-1.41 

11.2 Spherical electrodes 

In the case of the reversible redox reaction at a spherical electrode an additional term appears 

in the equation for current: 
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and the peak current becomes: 
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An example of the voltammetric curve at a spherical electrode is displayed in Fig. 11.5. An 

increase in the peak current and small shift of the peak towards more negative values is 

observed. It should be stressed that the spherical term in Eq. (11.23)-(11.24) is independent of 

the sweep rate. 
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Fig. 11.5. Linear sweep voltammograms for a reversible redox process at a flat (1) and spherical 

(2) electrode; v = 0.00333 V s-1, r0 = 0.05 cm, n = 2, D = 10-5 cm2 s-1.7 

11.3 Ultramicroelectrodes 

At ultramicroelectrodes (UME) the spherical effects are much more pronounced. Influence of 

the sweep rate on the voltammograms observed at spherical electrode are shown in Fig. 11.6. 

 
Fig. 11.6. Effect of the scan rate on the voltammograms at a spherical ultramicroelectrode, r0 = 

10 m, D = 10-5 cm2 s-1, 
*
Oc  = 1 mM.8 

At the ultramicroelectrode the effects of the radial diffusion are much more pronounced in 

comparison with micro electrode, Fig. 11.7. A practical example of the voltammetry at UME is 

displayed in Fig. 11.8. It is obvious that under these conditions the radial diffusion is much more 

important than linear diffusion and the cyclic voltammetric curves behave as stationary.  
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Fig. 11.7. Influence of the electrode size on the obtained cyclic voltammograms.62 

 
Fig. 11.8. Voltammogram of 3 mM ferrocene in 0.1 M NaClO4 in acetonitrile at Pt disk 10 m 

diameter at 0.1 V s-1. 

Influence of the sweep rate and electrode dimensions are illustrated in Fig. 11.9 and 11.10. 

 
 

 

Experimental Procedure for Figure 2: 

Working Electrode: 10 µm diameter platinum 

Reference Electrode: Gel filled or the Premium "no-leak" reference 

Polishing procedure:  (see directions under "polishing") 

Solution: 3 mm ferrocene and 0.1 M NaClO4 in acetonitrile 

Scan rate: 100 mV/sec Scan range: 0.0 mV to +500 mV and back to 0.0 mV 
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Fig. 11.9. Influence if the relative (normalized) current, I/Ilim, on the electrode size for the 

reversible process on the microdisk electrode, electrode sizes A) 0.1, B) 1, C) 10, D) 100, E) 

1000 m, F) comparison.62 

At low sweep rates the steady-state voltammograms are obtained but with the increase in v the 

diffusional term increases (proportionally to v1/2) and becomes larger than the radial term. 
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Fig. 11.10. Dependence of the voltammetric current density on the microdisk electrode on the 

electrode diameter.62 

Fig. 11.10 shows that with the increase of the electrode diameter the radial term becomes less 

important and the “normal” voltammograms at plane electrode are obtained. It should also be 

noticed that the current density at small electrodes are much larger than those at larger electrodes 

as the radial diffusion is very fast although its absolute value is much smaller at UMEs. 

11.4 Double layer effect on voltammograms 

During the potential sweep electrode double layer capacitance, Cd, is charged across the 

solution resistance, Rs, where Cd = A Cdl, and A is the electrode surface area. As Cd and Rs are in 

series the equation describing charging current is: 

 s
d 0

1
d

t

E R i i t
C

= +    (11.25) 
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but 

 iE E vt= +   (11.26) 

then 

 i s
d 0

1
d

t

E vt R i i t
C

+ = +    (11.27) 

This is an integral equation which can be solved using the Laplace transform: 
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Solution in Laplace space is: 
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The inverse transform give the charging current: 

 s di
c d d

s

t

R CE
i vC vC e

R

− 
= + − 

 

  (11.31) 

It contains two terms one constant (or slowly changing with Cd) and other transient, existing 

only after beginning of the sweep. When t >> RsCd the current becomes: 

 c dli AC v=   (11.32) 

From the comparison of charging and faradaic currents it is obvious that the charging current 

is proportional to the sweep rate, v, and the faradaic current is proportional to v1/2 that is the 

charging current increases much faster with v. Voltammograms at different sweep rates in the 

presence of the charging current are shown in Fig. 11.11. It is obvious that at high sweep rates 
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charging current becomes larger than faradaic current and determination of the faradaic current 

becomes difficult. 

 
Fig. 11.11. Influence of double-layer charging on the linear sweep voltammograms of the 

reversible process, the sweep rates changes form v = a to v = 900 a.8  

In fact, the ratio of the charging, ic, to faradaic peak current, ip, increases with v1/2: 

 
5 21/2 5 8 1/2

Oc d
3/2 1/2 * 3/2 * 2

p O O O d

10 cm / s10 2.4 10

2.69 20μF / cm

Di C v v

i n D c n c C

−− − =
= 

=
  (11.33) 

The double layer capacitance often changes with the potential In such cases to get the net 

voltammogram the voltammogram of the double layer charging must be subtracted from the total 

voltammogram, Fig. 11.12. 
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Fig. 11.12. Voltammogram (a) in the absence and (B) in the presence of Cd2+ in 0.5 M TBAP in 

DMSO at v = 2 V s-1.65 

11.5 Effect of uncompensated resistance 

In the presence of the uncompensated resistance in solution instead of applying linear voltage 

sweep, Eq. (11.2), the real applied voltage to the electrode is: 

 
i

i u

( ) –

( )

E t E vt

E t E vt iR



= − +
  (11.34) 

This indicates that it changes nonlinearly with time or the voltage applied by the potentiostat. 

This is illustrated in Fig. 11.13. 
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Fig. 11.13. Relation between the real potential at the electrode surface, Ereal and the potential 

applied by the potentiostat, Eapplied for reversible redox reaction; continuous line – no 

uncompensated resistance, dashed line – in the presence of uncompensated resistance, Ru. 
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In the presence of the uncompensated resistance the real potential applied to the working 

electrode is nonlinear and only the numerical solutions can be found. In this case the 

voltammograms are deformed, Fig. 11.14. The presence of the uncompensated resistance 

decreases the peak potential and displaces the peak current towards the negative values. Such an 

effect may be easily mistaken with the quasi-reversibility. 

 
Fig. 11.14. Voltammetric current function for a reversible heterogeneous reaction in the presence 

of the uncompensated solution resistance; a) no resistance, b) to e) with increasing 

uncompensated solution resistance nRu (where n is number of electrons): b) 19, c) 45, d) 84, e) 

150 Ω.96 

11.6 Irreversible heterogeneous redox reaction 

In the case of the totally irreversible reaction the backward heterogeneous rate constant might 

be completely neglected (kb = 0). The flux is: 

 O
O f O

0

( , )
(0, )

x

i c x t
J D k c t

nFA x =


= = =


  (11.35) 

and the solution for the current is: 
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where and the current function (bt) is calculated numerically and parameter b is proportional to 

the sweep rate: 
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Table 11.2 presents relation of ( )0 O
0

( ) vs. ln

y

D bRT
bt E E n

F k
− +


  . 

Table 11.2. Current function for the irreversible reaction in linear sweep voltammetry together 

with the spherical parameter.8  

 
 

Comparison of voltammograms for the reversible and irreversible process is shown in Fig. 

11.15. The peak current function is: 

 ( ) 0.4958bt =    (11.38) 

and the peak current: 

 ( )
1/25 * 1/2 1/2

p O O2.99 10i n n A c D v=     (11.39) 

In general, the peak current for the irreversible to that of reversible process is: 
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p,irr
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.44
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6
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= ==


   (11.40) 

and it depends on the value of the transfer coefficient. For  = 0.5 the irreversibility of the 

electron transfer process causes decrease of the peak current and shift of the peak potential into 

more negative values, Fig. 11.15. The peak current increases linearly with the square root of the 

sweep rate, v1/2, and linearly with the concentration.  
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Fig. 11.15. Theoretical current functions for the reversible (B) and irreversible (A) process in 

linear sweep voltammetry.7  

The peak potential depends on the kinetic parameters: 
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It is obvious that the peak potential depends on the sweep rate: 

 p p
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30
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 
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Another useful parameter is the half-peak potential: 

 ( )0' O
p/2 0

ln 42.36 mV
D bRT

n E E
F k

− + =


   (11.43) 

and the difference between the peak and half-peak potential is independent of the sweep rate but 

depends on the transfer coefficient: 

 p p/2
0.0477

1.857  V at 25 C
RT

E E
n F n

− = − = −
  

  (11.44) 

One can also compare potentials at ¼ and ¾ of the peak: 

 1/4 3/4
0.0408

VE E
n

− =


  (11.45) 

At the bottom of the peak, when current is lower than 0.1 ip, one can assume that the bulk and 

surface concentrations are similar and the following equation is obtained: 

 ( )* * 0 0'
O f O exp

n F
i nFAc k nFAc k E E

RT

 
= = − −  


  (11.46) 
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which allows for the determination of the rate constant and the transfer coefficient from the 

slope: 

 
ln i n F

E RT


= −




  (11.47) 

11.7 Irreversible processes at spherical electrodes 

At the spherical electrode an additional term must be added to Eq. (11.36): 

 
*

O O
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nFAD c bt
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r
= +


  (11.48) 

where function (bt) is shown in Table 11.2. The spherical term increases the observed current, it 

is independent of the sweep rate, as for the planar electrode, Eq. (11.23). An example is 

displayed in Fig. 11.16. The behavior is, in general, similar to that observed for planar 

electrodes. 

 
Fig. 11.16. Voltammetric curves for the irreversible process at a flat (1) and spherical (2) 

electrodes; v = 0.00333 V s-1, r0 = 0.05 cm, n = 2, D = 10-5 cm2 s-1.7 

The influence of the uncompensated resistance for irreversible redox reaction at planar 

electrodes is illustrated in Fig. 11.18. 
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Fig. 11.17. Effect of uncompensated resistance on the shape of the LSV curves at a planar 

electrode for different values of the parameter H; H=0: no Ru, 
* 1/2

u O O( / ) ( )H nF RT nR FAc D b =

.97 

11.8 Quasi-reversible systems 

In the case of the quasi-reversible systems both kf and kb are important and the flux is: 
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In this case the voltammetric current depends on the potential, rate constants and transfer 

coefficient: 
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and the peak current: 

 ( )p p rev ( , )i i K=     (11.51) 

For DO = DR =D Eq. (11.50) reduces to: 

 

0k

Dfv
 =   (11.52) 
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Functions (E) and K(, ) were calculated numerically.98 The plots of the dimensionless 

current function (E) are displayed in Fig. 11.18. These plots allow for understanding of the 

behavior of the quasi-reversible reaction in the LSV. 

 
Fig. 11.18. Plots of the dimensionless current parameter (E) in LSV for three different values 

of the transfer coefficient and the following values of the kinetic parameter : I) 10, II) 1, III) 

0.1, IV) 0.01; dashed curve is for the reversible reaction.98 

For the symmetrical process with  = 0.5 the increase of the irreversibility decreases the peak 

current, Eq. (11.40), and shifts the peak potential towards more negative value (for  = 0.01 

reaction can be considered as totally irreversible). This effect is much more pronounced for the 

lower values of the transfer coefficient,  = 0.3, and less pronounced for  = 0.7. The peak 

current function is displayed in Fig. 11.19. For the transfer coefficients lower than  < 0.809 the 

peak current decreases with decrease of the kinetic parameter (increase in irreversibility) while 

for  > 0.809 it increases. 
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Fig. 11.19. Variation of the dimensionless peak current function K(, ) with the dimensionless 

kinetic parameter  for different values of the transfer coefficient, .98 

The peak potential was defined as: 

 p 1/2 ( , ) 26 ( , )  mV at 25 C
RT

E E
F

 
− = −  = −    

 
    (11.53) 

and is displayed in Fig. 11.20. For fast reactions Ep is independent of the kinetics (reversible 

reaction zone) and for slow reaction (totally irreversible zone) it changes linearly with log , that 

is with the log v according to Eq. (11.41). The slope depends on the transfer coefficient. 

The potential difference between current half-peak and peak, Ep/2 – Ep, defined as: 

 p/2 p ( , ) 26 ( , ) mV at 25 C
RT

E E
F

 
− =   =    

 
    (11.54) 

and is displayed in Fig. 11.21. 
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Fig. 11.20. Variation of the dimensionless current peak potential with the kinetic parameter  for 

different .98  

 
Fig. 11.21. Dependence of the dimensionless Ep/2 – Ep parameter (, ) with the kinetic 

parameter  for different values of the transfer coefficients .98 
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For the transfer coefficients smaller than  < 0.809 the peak is wider than that for the 

reversible reaction but for  > 0.809 it is sharper. 

In general electrochemical reactions in LSV might be divided in three groups: 

 

reversible   > 15   k0 > 0.3 v1/2 cm s-1 

quasi-reversible 10-2(1+)    15  210-5v1/2 cm s-1  k0  0.3 v1/2 cm s-1 

totally irreversible  < 10-2(1+)  k0  210-5v1/2 cm s-1 

 

Calculations of the voltammetric curves might be carried out by digital simulations of the 

differential equations, by numerical solutions of the integral equations, or by series expansion of 

the currents. Eq. (11.49) can be written in a dimensionless form: 
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and the other parameters were defined in Eq. (11.5). The dimensionless surface concentrations 

are given by the convolution integral, see Eq. (11.15): 
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This leads to: 
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This is Volterra integral equation of the second kind as the unknown function  is under and 

outside integral. Such an equation can be relatively easily solved using known methods. 

11.9 Cyclic voltammetry 

The potential sweep in the linear sweep voltammetry may be reversed and continued to the 

initial potential. Such a method is called cyclic voltammetry and is illustrated in Fig. 11.22. 

During the backward sweep the red form produced around the electrode surface during the 

forward sweep is oxidized back to ox producing the anodic current. 
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Fig. 11.22. Potential program (a) and obtained current-potential curve (b) in cyclic voltammetry.8 

In this case the fundamental diffusion equations should be solved for the potential program in 

Fig. 11.22a. The potential at which the sweep is inversed, E, should be more negative than the 

peak potential by: 90 / mVpE E n−  . The effect of the switching potential, E, on the shape 

of the cyclic voltammograms is illustrated in Fig. 11.23. 

  

Fig. 11.23. Cyclic voltammograms for different switching potential, E, plotted versus time.8 

The same curves plotted versus electrode potential are shown in Fig. 11.24. It is evident that 

the absolute anodic peak current measured from the current zero line is always smaller than the 

reduction peak current. It also depends on the switching potential. However, anodic peak current, 

ipa, measured from the decreasing part of the cathodic current (after the cathodic peak) is 

constant and equal to the cathodic peak current, ipc. 
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Fig. 11.24. Cyclic voltammetric curves for different switching potential (as in Fig. 11.23) plotted 

versus potential. Dashed curves correspond to the decreasing current after the peak but plotted in 

the inverse direction.8  

For the reversible process the difference between cathodic and anodic peak potentials is 

independent of the sweep rate and depends on the number of electrons exchanged: 
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  (11.58) 

Often the ratio of ipa/ipc must be determined; it is necessary in the verification of the stability of 

the red form and determination of the kinetics of the reactions following the electron transfer 

step. In such cases experiment the continuation of the sweep after the cathodic peak must be 

carried out and then compared with that for smaller |Epc - E|. In the case when going further 

after peak is not possible because of further electrode processes this can be done with another 

stable product in the same experimental conditions and the same |Epc - E| and the missing part of 

the anodic current added. 

When the product is stable and stays in the solution one can wait at the potential after the peak, 

E4 in Fig. 11.24, until the current drops to zero and then continue backward scan, Fig. 11.24. 

11.10 Multicomponent and multistep charge transfer 

When two different species O and O’ are present in the solution the total current is the sum of 

individual currents, Fig. 11.25. 
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Fig. 11.25. Cyclic voltammogram of the mixture of two ox species: O and O’ (3); voltammogram 

of O only (1) and of O’ only (2). Concentrations, number of electrons and diffusion coefficients 

of these species are identical.8   

In the mixture of O and O’ the cathodic peak of O’ must be measured from the decreasing part 

of the voltammogram of O after the peak. This might not be known. A method was proposed in 

which the sweep is stopped after the first peak (where surface concentration of O is practically 

zero) and the current is followed as a function of time. This procedure is displayed in Fig. 11.26. 

These pictures show that the determination of the individual peaks in the LSV is not 

straightforward. However, when the separation of the standard potentials of these processes is 

much larger determination is much simpler, Fig. 11.27. 

When the separation of the half-wave potentials of two electrode processes has a pronounced 

effect on the voltammograms, Fig. 11.28. When the potential of the second step is more negative 

than that of the first one, two well-developed peaks are observed (a). When this difference is 

decreased overlap is produced (b). When the separation is zero (c) or the potential of the second 

step is more positive than that of the first only one peak (reversible) peak is observed. 
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Fig. 11.26. Method of obtaining the baseline for the second peak. Upper curve: potential 

programs, lower curve: the measured curves.8 
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.  

Fig. 11.27. Comparison of the cyclic voltammograms for one and two species in solution. 

Simulation was carried out far after the peak, separation of E1/2 is 1 V. 
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Fig. 11.28. Influence of the separation of E1/2 on the shape of the cyclic voltammograms of the 

stepwise electrode process O + ne = R, R + ne = R’; E = E2
0 – E1

0: a) -0.18 V, b) -0.09 V, c) 0 

V, d) 0.18 V.99 

11.11 Quasi-reversible electron transfer in cyclic voltammetry 

When the reaction is quasi-reversible anodic and cathodic peaks are observed but the 

separation between Epa – Epc increases. This separation is independent of then transfer coefficient 

for 0.3 ≤  ≤ 0.7, Fig. 11.29. Dependence of the peaks potential separation on the kinetic 

parameter, Ψ, is shown in Table 11.3 where Ψ is defined as: 
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Fig. 11.29. Simulated cyclic voltammograms for quasi-reversible electrode process; 1) Ψ = 0.5, α 

= 0.7; 2) Ψ = 0.5, α = 0.3, 3) Ψ = 7.0, α = 0.5, 4) Ψ = 0.25, α = 0.5.100 
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Table 11.3. Dependence of the anodic and cathodic peak separation on the dimensionless kinetic 

parameter Ψ.8 

 
An application of this method is illustrated in Fig. 11.30. Peak separation of Co(salen) was 

determined at 25 m Pt ultramicroelectrode in 0.1 M TEAP in DMSO. Then the function Ψ was 

calculated using Table 11.3 and plotted versus v-1/2. From the slope the standard rate constant 

was calculated as k0 = 0.39 cm s-1.101 

 
Fig. 11.30. Dependence of function Ψ on v-1/2 for Co(salen) in 0.1 M TEAP in DMSO on 25 μm 

Pt disk.101 
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Another application of the cyclic voltammetry to very fast electrode processes is shown in Fig. 

11.31. It shows importance of the uncompensated resistance compensation. 

 
Fig. 11.31. Cyclic voltammograms of 14.3 mM anthracene reduction in acetonitrile in 0.9 M 

NEt4BF4 at a 2.5 μm gold disk electrode; a) 100% IR compensated (solid curves) vs. 

uncompensated (dashed curves voltammograms; b) 100% compensated (solid curves) vs. 

simulated (dashed curves) voltammograms, c) variation of the anodic an cathodic peak potentials 

as a function of scan rate for the uncompensated (open circles) and 100% compensated (solid 

circles) modes. Sweep rates up to 1.25×106 V s-1, ks = 5.1 cm s-1.102 

11.12 Applications of convolution and semi-integration 

11.12.1General equation for concentrations 

Simulated voltammetric curves come from the numerical solution of diffusion-kinetic 

equations. To analyze the experimental curves the peak potentials and peak currents are 

determined (although the latter is often subject to some extrapolations). There is much more 

information in these curves but they are usually not analyzed so deeply. It is possible to obtain 

much more information after conducting further transformation of these curves using semi-

integration. This operation arises from the Riemann-Liouville operator for fractional calculus. It 

is defined for partial integration for  -1 q  0: 
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and for partial differentiation, 0  q 1: 
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These operations for different values of the parameter q are: 

q = 1   differentiation 

q = -1  integration 

q = -1/2  semi-integration 

q = 1/2  semi-differentiation 

It has been shown that the solution for the concentration in LSV is: 
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Operation in Eq. (11.62) is semi-integration: 
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The maximum (plateau) of I(t) is obtained when the surface concentration of ox reaches zero: 

 
1/2 *
O OlI nFAD c=   (11.64) 

This limiting convoluted (semi-integrated) current does not depend on the sweep rate and 

depends only on the bulk concentration. This technique allows for the determination of surface 

concentrations: 
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This method might be applied to the reversible and quasi-reversible/irreversible processes. 

11.12.2Reversible processes 

Substitution of the surface concentrations to the Nernst equation gives: 
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This equation for semi-integrated currents resembles that for the steady-state techniques, Fig. 

11.32. 
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Fig. 11.32. (a) Voltammetric and semi-integrated curves, (c) surface concentration of ox and 

ln[(Il-I)/I) versus potential.103 

11.12.3 Numerical semi-integration technique 

Current i(t) is digitalized by the data acquisition system producing series of values i(t), 

i(2t), i(3t),… at intervals t = ttotal/N,   

 
Fig. 11.33. Digital acquisition of the voltammetric curve. 

Then the numerical integration using Eq. (11.62) is simply carried out:72   
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where 
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  (11.68) 

etc. The semi-integrated current is simply produced from the experimental current. This 

operation is sometimes incorporated in the commercial software for voltammetry. 

An example of application of the semi-integration technique to reversible cyclic 

voltammograms is displayed in Fig. 11.34.  

 

 
Fig. 11.34. Cyclic voltammogram of 1.84 mM p-nitrotoluene in 0.1 M TEAP in acetonitrile at 

hanging Hg electrode at v = 50 V s-1 and its semi-integration.104 

11.12.4 Quasi-reversible and totally irreversible systems 

The current for the totally irreversible reaction is described as: 
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but the surface concentration is described by Eq. (11.65) therefore: 
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and the equation for the irreversible reaction is: 
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For the quasi-reversible reaction current is: 
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The equation for the potential is: 
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and for the rate constant: 
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Semi-integration of the cyclic voltammetric curve produces curves with plateau. For the 

reversible process the curves for the forward and backward sweeps overlap, Fig. 11.34, but they 

do not overlap for quasi-reversible reaction, Fig. 11.35.  

 
Fig. 11.35. Cyclic voltammogram of tert-nitrobutane in 0.1 M TBAI in DMF at v=17.9 V s-1 and 

its semi-integration.105 

Analysis of the reversible convoluted curves allows for the determination of E1/2, diffusion 

coefficients, and the number of electrons while that for the quasi-reversible and irreversible 

processes allows for the determination of the rate constants and transfer coefficients.  
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Some applications of the cyclic voltammetric technique to determine the kinetics and the 

mechanism of electrode processes are shown below. 

 
Fig. 11.36. Comparison of the voltammetric curves of a simple two electron reduction of Cd2+ in 

0.5 M TBAP in DMSO at Hg electrode at v = 2 V s-1; (A) experimental curve, (B) simulated 

curve.106 

In this case the transfer coefficient is α = 0.09 and the voltammetric curve is very asymmetric.  

An application of the semi-integration technique is illustrated in Fig. 11.37. 
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Fig. 11.37. Cyclic voltammetric curves of 0.8 mM Cd2+ in (A) 0.1 M TEAP and (B) 1.0 M TEAP 

in DMSO, v = 2 V s-1.107 

Convolution of the voltammetric curves in Fig. 11.37 is shown in Fig. 11.38. 

 
Fig. 11.38. Convolution of the voltammetric curves in Fig. 11.37.107 

Analysis of semi-integrated curves allows for the determination of the rate constants, Fig. 

11.39. 
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Fig. 11.39. Forward rate constants kf for Cd2+ reduction in DMSO at Hg electrode in (A) 0.5. (B) 

0.75, (C) 1.0 M TEAP.107 

The nonlinearity of log kf vs. potential curves was explained assuming CE mechanism. 

Another application is presented for Zn2+ reduction in HMPA. The shape of the CV curves was 

explained by fitting the experimental curves to the simulated ones. For different mechanisms 

were assumed but good fit was found only assuming CEE mechanism, Fig. 11.40. 

 
Fig. 11.40. Comparison of the experimental (symbols) and the simulated (lines) CV for 3 mM 

Zn2+ in HMPA at v = 0.1 V s-1; mechanisms: a) E, b) EE, c) CE, d) CEE.108 

Convolution for spherical electrodes was considered by Oldham.109 
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11.13 Voltammetry of adsorbed species 

In above voltammograms of species in solution only were considered. In such cases 

voltammograms are determined by the diffusion of electroactive species to and the electrode. 

Another case is when the electroactive species are adsorbed at the electrode surface and their 

diffusional transport might be neglected. Such cases will be considered in this chapter.  

11.13.1Reversible electrode process 

Let us assume that initially ox is adsorbed at the surface and the redox reaction takes place at 

the surface between two adsorbed species, i.e. only adsorbed species are electroactive: 

 ads adsO Rne+ =   (11.75) 

In such a case the current is: 
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  (11.76) 

and the sum of the surface concentrations of ox and red forms is constant: 
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where 
*
O  is the initial surface concentration of the ox species. Assuming Langmuir adsorption 

isotherms the surface coverages are: 
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where i,s  are the surface coverages at saturation. The ratio of the surface concentrations is: 
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For the reversible reaction: 
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and its substitution into Eq. (11.80) gives: 
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and the potential changes linearly with time: 

 iE E vt= −   (11.82) 

then the current: 
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This leads to the following equation for current: 



271 

 
( ) ( )

( ) ( )

* 0'
2 2 O O R

2
0'

O R

/ exp

1 / exp

b b nf E E
n F vA

i
RT

b b nf E E

  −
  =

  + −
    

  (11.84) 

and the peak current: 
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is observed at  
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where 
0 '
aE  is the formal potential for the adsorbed species which might be different from the 

formal potential of the species in solution. The plot of current versus potential is displayed in 

Fig. 11.41. 

 
Fig. 11.41. Cyclic voltammetric curve for the reversible surface redox reaction and Langmuir 

adsorption isotherm.8 

The cyclic voltammograms of surface reaction are different from those observed for diffusing 

species; the peaks are symmetrical and the peak current is proportional to the sweep rate, v, (not 

v1/2). The peaks are narrower with the half-with of: 
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 p,1/2
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RT

E
nF n

 = =    (11.87) 

Fig. 11.41 presented cyclic voltammetric curves for the reversible redox process of adsorbed 

species following the Langmuir isotherm. For the Frumkin adsorption isotherm similar but 

flatten curves are obtained, Fig. 11.42. 

 
Fig. 11.42. Cyclic voltammetric curves for the adsorbed species assuming the Frumkin 

adsorption isotherm; the interaction parameter (-g) is indicated in the graph, the value of 0 

corresponds to the Langmuir isotherm, negative value corresponds to repulsion and positive to 

attraction between the adsorbed molecules.110 

A practical example of the reduction of 9,10-phenanthrenequinone irreversibly adsorbed on a 

pyrolytic graphite electrode in 1 M HClO4 is shown in Fig. 11.43. 
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Fig. 11.43. Cyclic voltammetric curve of the reduction of 9,10-phenanthrenequinone irreversibly 

adsorbed on a pyrolytic graphite electrode in 1 M HClO4, v = 50 mV s-1; continuous line – 

experimental, dashed line – calculated using Eq. (11.84), points – taking into account Frumkin 

isotherm.111 

Let us also consider another mechanism of electrosorption where only the product of the redox 

reaction is adsorbed at the surface and the diffusion of ox might be neglected (its concentration is 

sufficiently large i.e. the surface concentration is 
*
O O(0)c c= : 

 adsO  Re+ =   (11.88) 

for which, assuming Langmuir adsorption isotherm, the current is: 
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where 1 is the charge necessary for the full coverage, 1 = nF*, in C cm-2, 0
1k  in cm3 s-1 mol-1 

and 0
1k−  in s-1, * is the total surface concentration of active sites, and R is the surface 

concentration of adsorbed R. Introducing the surface coverage R = R/* leads to: 
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The equilibrium potential is obtained when i = 0: 
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where * denotes equilibrium values. The reference potential, Ep, is usually taken at 0.5 =  and 

defining pE E = − , Eq. (11.90) becomes: 
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where 
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and the final equation may be written as: 
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At a constant potential current is zero and the surface coverage might be determined as: 
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It changes with potential from zero to one. Its derivative necessary for the determination of the 

current is (reversible case): 
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Eq. (11.96) is formally identical with Eq. (11.84) when bO = bR. Plots of Eqs. (11.95) and 

(11.96) are shown in Fig. 11.44. 
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Fig. 11.44. Dependence of the surface coverage and its derivative on potential for the reversible 

reaction with the red form electrosorbed at the surface on potential. 
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11.13.2 Irreversible electrode reaction 

Let us assume surface reaction as in Eq. (11.88) which is described by Eq. (11.94). For the 

totally irreversible process one gets: 
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with the solution 
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The plot of the surface coverage and its derivative versus overpotential for the irreversible 

electrosorption is displayed in Fig. 11.45. Comparison with the reversible case, Fig. 11.44, 

reveals that in the case of the irreversible adsorption the curves are asymmetrical, the current 

increases slowly then decreases more rapidly after the peak. The peak potential depends on the 

kinetics and the sweep rate: 
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The peak half-width is larger than for the reversible case: 
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The peak of d / d   is: 
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where e  2.718, the peak current depends linearly on the sweep rate: 
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Fig. 11.45. Dependence of the surface coverage and its derivative on overpotential for the 

irreversible electrosorption reaction for k0/v = 10-8 mol V-1 cm-2. 

11.13.3 Quasi-reversible electrode reaction 

The quasi-reversible process is described by Eq. (11.94):112  
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Solution of this differential equation after integration from the initiali to final 2 and 

assuming α = 0.5 is: 
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where: 
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and the derivative is: 
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  (11.107) 

Examples of the plots of the surface coverage and its derivative calculated using above equations 

are shown in Fig. 11.46. 
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Fig. 11.46. Dependence of the current on potential for different reaction rates for the reduction 

with formation of adsorbed species. 

With increase in irreversibility the peak decreases and is shifted to larger overpotentials. This 

shift is accompanied with growing asymmetry of the peak shape. The peak potential as a 

function of the sweep rate is displayed in Fig. 11.47. Such plots permit for determination of the 

reaction kinetics. 

 
Fig. 11.47. Dependence of the peak potential on log of the sweep rate for irreversible and quasi-

reversible processes.112 
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11.14 Both dissolved and adsorbed species electroactive 

In the above chapter we have considered that only adsorbed species are electroactive. Now let 

us consider that species in solution and adsorbed at the electrode are electroactive. In such a case 

Eq. (11.76) must be replaced by: 

 O O R R
O R

0 0

( , ) ( ) ( , ) ( )

x x

c x t t c x t t i
D D

x t x t nFA= =

    
− = − − = 

    

  (11.108) 

For this case case only numerical solutions exist. Let us consider few possibilities. 

11.14.1Product R strongly adsorbed 

Let us suppose that only ox is initially present in the bulk of solution only the form red, R, is 

adsorbed at the surface. In such cases adsorption peaks appear before the diffusional peaks, Fig. 

11.48 

 
Fig. 11.48. Simulated cyclic voltammogram for the reduction process when the product, R, is 

strongly adsorbed at the electrode surface. Dashed line in the absence of adsorption.113 

The effect of adsorption strength on the voltammograms is shown in Fig. 11.49. With increase 

of the adsorption strength, that is the parameter R, the adsorption peak appears at potentials 

more positive than the voltammetric peak due to reduction from solution. 
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Fig. 11.49. Cyclic voltammograms for reduction when the product is strongly adsorbed. The 

adsorption energy dimensionless parameter 
* 1/2 1/2
R R R4 ( / ) / ( )nFv RT D   decreases from A to 

D: A) 2.5×106, B) 2.5×105, C) 2.5×104, D) 2.5×103.113  

The effect of the scan rate on such process is shown in Fig. 11.50. The normalized current 

~iv-1/2 for diffusion processes should be independent of the sweep rate. However, with increase 

of R  the reduction peak increases because the adsorption peak is proportional to v. 

 
Fig. 11.50. Effect of scan rate and R on the voltammograms when product is strongly adsorbed. 

Parameter 
* 1/2 1/2
R R R4 ( / ) / ( )nFv RT D  : A) 1.6, B) 0.8, C) 0.2.113  
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The influence of the bulk concentration of ox, 
*
Oc  on the LSV when product is strongly 

adsorbed, at a constant sweep rate is displayed in Fig. 11.51. It is interesting to note, that as the 

bulk concentration is low, only the adsorption prepeak is visible. With increase in the bulk 

concentration the adsorption peak increases and approaches saturation value while the 

diffusional peak current increases with concentration. Therefore, *
O/i c  for adsorption peak 

decreases with concentration while the diffusional peak is approximately constant. 

 

 

Fig. 11.51. Effect of the bulk concentration of ox, 
*
Oc , on the reduced current in LSV; 

* 1/2 * 1/2
O O O( ) / 4 ( / )c D nFv RT  

 
 A) 0.5, B) 2.0, C) 8.0.113 

11.14.2Reactant O strongly adsorbed 

When the reactant, form ox, is strongly adsorbed, its reduction is energetically more difficult 

and a postpeak is observed, Fig. 11.52. 
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Fig. 11.52. Cyclic voltammogram for reduction when the reactant, O, is strongly adsorbed.113 

 

11.14.3Weak adsorption of reactant or product 

In the case of weak adsorption no separate peaks are formed and both processes take place at 

the same potentials. When reactant is weakly adsorbed the cathodic peak is affected. The effect 

of the sweep rate on the reduced current in cyclic voltammetry is shown in Fig. 11.53. 
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Fig. 11.53. Effect of scan rate on cyclic voltammograms when reactant, O, is weakly adsorbed; 

relative scan rates are 2500:100:1; 
* 1/2 1/2
O O O4 ( / ) / ( )nfv RT D   A) 5.0, B) 1.0, C) 0.1.113 

In the case when the product of the electrode reaction, R, is weakly adsorbed the curves with 

ipa > ipc are obtained, Fig. 11.54. To distinguish between the cases of weak adsorption of reactant 

or product the ratio of anodic and cathodic peak currents, ipa/ipc on the sweep rate might be 

studied, Fig. 11.55. This ratio deviates from the value of one at higher sweep rates: for the 

reactant adsorption this ratio decreases and for the product adsorption it increases with the sweep 

rate. 
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Fig. 11.54. Effect of scan rate on cyclic voltammograms when the product is weakly adsorbed; 

* 1/2 1/2
R R R4 ( / ) / ( )nFv RT D  : A) 20, B) 5, C) 0.1; the relative scan rates are: 

4000:1500:1.113 

 
Fig. 11.55. Peak ratio vs. sweep rate for cyclic voltammetry when (A) the reactant is weakly 

adsorbed and (B) when product is weakly adsorbed.113  
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11.15 Thin layer voltammetry 

Classical LSV considers semi-infinite diffusion to the electrode. Another approach used in 

analytical chemistry is to study thin layer cells possessing a large surface area to volume ratio. In 

such cells the volume is of a few l and the thickness of the solution layer of 2-100 μm. For such 

cells when the sweep rate is slow the solution layer thickness, l, is smaller than the diffusion 

layer thickness, that is: l << (2Dt)1/2 and the diffusion inside the solution layer might be 

neglected and the concentration is uniform. Examples of such cells are displayed in Fig. 11.56 

and 11.57. 

 

 

Fig. 11.56. (a) Schematic diagram of a single electrode thin-layer cell; (b) micrometer twin-

electrodes thin-layer cell with adjustable solution layer thickness, (c) close-up of electrode 

portion for single-electrode thin-layer electrode.114 
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Fig. 11.57. Capillary-wire single-electrode thin-layer cell (solution is contained between the 

metal rod and inner surface of glass capillary).114  

When potential is swept slowly the concentration of ox, cO(t), is uniform in the whole volume 

and one can write the following equation for current: 

 Od ( )

d

c t
i nFV

t
= −   (11.109) 

where V is solution volume. The concentration is uniform, with the error ε if the sweep rate is 

below: 

 
2

2

1
log

13

RT D
v

nF l

 



− 
  

+ 
  (11.110) 

Assuming that the redox reaction is reversible one can write the Nernst equation: 

 

0' O

R

*
O O R

( )
ln

( )

and

( ) ( )

RT c t
E E

nF c t

c c t c t

= +

= +

  (11.111) 

and the concentration is: 

 

0'
*

O O 0'

exp( ( )
( )

1 exp( ( )

nf E E
c t c

nf E E

−
=

+ −
  (11.112) 
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The equation for current is: 

 

 

2 2 * 0'
O

2
0'

exp[ ( ]

1 exp[ ( ]

n F vVc nf E E
i

RT
nf E E

−
=

+ −

  (11.113) 

which is formally identical with Eq. (11.84) in which the amount of moles of adsorbed species, 

AO, is replaced with VcO
*. In this case the current peak appears at E0’ and its value is: 

 

2 2 *
O

p
4

n F vVc
i

RT
=   (11.114) 

The observed current is proportional to the sweep rate and concentration or more precisely the 

amount of moles of ox. An example of thin-layer voltammogram is shown in Fig. 11.58. 

 
Fig. 11.58. Thin-layer cyclic voltammogram for the reversible process for n = 1, V = 1.0 μl, v = 

1 mV s-1, 
*
Oc  = 1 mM.114  

Studying the peak current versus the sweep rate for very thin layers a linear relation is 

obtained, however with the increase in layer thickness transition from ip ~ v to ip ~ v1/2 is 

observed.  
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Fig. 11.59. (a) Dependence of the peak current on scan rate for different layer thickness; (b) 

zones of thin layer and semi-infinite diffusion.115 

For the irreversible redox reaction the current is described as: 

 f O( )i FAk c t=   (11.115) 

and the curves with peak are obtained. The peak potential and current are: 
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  (11.116) 

These equations are formally similar to those developed for the adsorbed species, Eqs. 

(11.103) and (11.100). An example of the LSV curves for irreversible redox reaction is presented 

in Fig. 11.60. 

 
Fig. 11.60. Theoretical LSV curves for one-electron irreversible reaction for different values of 

k0: (A) reversible, (B) 10-6, (C) 10-8, (D) 10-10 cm s-1; other parameters: v = 2 mV s-1, A = 0.5 

cm2, 
*
Oc  = 1.0 mM, α = 0.5, V = 2.0 μl.116 

11.16 Chemical reactions in voltammetry 

For linear sweep or cyclic voltammetry only numerical solutions exits.7,8,32,61 Solutions 

obtained for the preceding or following reaction depend on the kinetics of the electron transfer. 

Although the voltammograms can be simulated for different electron transfer kinetics in the 

following sections it is assumed that the electron transfer is fast (reversible). 

11.16.1Preceding chemical reaction, CE 

The case of the preceding chemical reaction, Eq. (9.174) the for the reduction reaction current 

is lower than that without chemical reaction limitations.117,118 This is illustrated in Fig. 11.61. 

With increase of the sweep rate or decrease of the rate constants the peak current function 

decreases. This is also shown in Fig. 11.61 and 11.62. These numerical results were obtained by 

solving the appropriate integral equations but can also be obtained using digital simulations. 

These integral equations might be represented as infinite series. The kinetics might be estimated 

from the ratio of the kinetic, ip,k, to the diffusion limited ip,d, peak currents. The simplified semi-
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empirical equation describing dependence of this ration on the kinetic parameter is shown in Eq. 

(11.117): 

 p,k

p,d f b

1

1.02 0.471 / ( ) /

i

i nFv RT k k K
=

+ +
  (11.117) 

Second order preceding reaction was also considered in the literature.119,120 

 

Fig. 11.61. Dependence of the dimensionless current function versus potential defined as: 

(E - E1/2)n - (RT/F) ln(K/(1+K)) for different values of the kinetic parameter 

f b/ ( ) /nFv RT k k K+ .118 
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Fig. 11.62. Dependence of the reduced peak current function, f b( / ) / ( ) /K RT k k nFv +  

versus dimensionless potential 0( ) /nF E E RT = −  for different kinetic parameters 

f b( ) /nRT k k nFv = +  and K = 10-4.117 Following chemical reaction, EC of the first and the 

second order 

In the case of the following chemical first order reaction the anodic peak current decreases 

because the electrode reaction product disappears in chemical reaction, see Fig. 11.63. However, 

the anodic to cathodic peak ratio depends also on the switching potential i.e. the potential at 

which the sweep rate is inversed because the amount of the red form is decreasing with time and 

if the switching potential is more negative, longer time is passed until oxidation potential is 

reached and the anodic peak is smaller.  

The cyclic voltammograms in the case of the totally irreversible following chemical reaction 

are illustrated in Fig. 11.64. It can be noticed that with increase of the kinetics of the following 

reaction anodic peak decreases and the cathodic peak potential is shifted towards more positive 

values. The peak potential might be described by the following equation:118 

 p 1
f

/2 0.780 ln
RTRT

E E
nF Fv

k

n

 
= − − 

 
  (11.118) 
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Fig. 11.63. Dependence of the dimensionless current on potential defined as: 

1/2( ) ( / ) ln(1 )E E n RT F K− − +  for different values of the kinetic parameter 

f b/ ( )K nFv RT k k+  for EC (reversible) mechanism in cyclic voltammetry.118 

 

 
Fig. 11.64. Cyclic voltammograms for the EC (irreversible) mechanism for different values of 

the kinetic parameters RTkf/nFv in cyclic voltammetry.118  

Example of the dependence of the ratio of anodic to cathodic peak current as a function of the 

kinetic parameter log(kf τ), where τ is the time from E1/2 to the switching potential E is displayed 

in Fig. 11.65, which permits for the simple determination of the kinetics. 
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Fig. 11.65. Ratio of anodic to cathodic peak current as a function of the kinetic parameter kf τ for 

the first order following chemical homogeneous irreversible reaction.118 

The following second order dimerization reactions were also studied.121,122 These reactions 

may proceed according to different mechanisms:121  

1) DIM1 

This is the classical radical dimerization: 

 A  Ae+ +   (11.119) 

 2 A  A A−   (11.120) 

with reaction (11.120) as the rate determining step. 

2) DIM2 

After the first electron transfer, reaction (11.119), three different mechanism are possible: 

a) DIM2-ECE 

 A  A  A A+ ++ −   (11.121) 

 A A  A Ae+− + −   (11.122) 

with reaction (11.121) as the r.d.s. 

b) DIM2-DISP1 

Taking into account reduction potentials of reaction (11.119) and (11.122) homogeneous 

reaction in solution is possible: 

 A A  A  A A  A+ +− + − +   (11.123) 

with regeneration of the ox form. Mechanism involving reactions: (11.119), (11.121), and 

(11.123) with (11.121) as a r.d.s. is called DIM2-DISP1 mechanism. 

c) DIM2-DISP2 

In this mechanism reactions: (11.119), (11.121), and (11.123) proceed with (11.123) as the 

r.d.s. and with the equilibrium constant of reaction (11.121) denoted as K. 

3) DIM3 

In this mechanism after two electron reduction: 

 A 2  Ae+ −+   (11.124) 

dimerization of the substrate and product occurs: 

 A  A  A A+ −+ −    (11.125) 
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In all these mechanisms the final product is a dimer A-A. These mechanisms might be 

distinguished from the dependence of the peak potential on sweep rate and concentration. These 

equations are shown in Eq. (11.126)121 assuming that the rate determining step is irreversible and 

the electron transfer is reversible: 
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0 1 Ox
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*
0 1 Ox
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*
0 1 Ox
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E E
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E E

F F v

= − +

− = − +

− = − +

− = − +

= − +

  (11.126) 

Savéant and coworkers published a series of the theoretical and experimental papers on the 

determination of the dimerization mechanism.121,123-138 

An example of the determination of the kinetics of DIM1 reaction for dimerization during 

reduction of immonium cations is illustrated in Fig. 11.66. 

 

 
Fig. 11.66. Dependence of the peak potential on the logarithm of sweep rate for 1 mM 

immonium iodide in acetonitrile.124 

At the inflection point vi = 87 V s-1, which give the dimerization rate constant: 

 
6 1 1i

1 *
O

0.8 2.8 10 M  s
Fv

k
RTc

− −= =    (11.127) 

Determination of the kinetics of the dimerization reaction is probably easier from the ratio of 

the anodic to cathodic peak current.122 Olmstead et al. published a table of the ratio of the anodic 

to cathodic peak currents, ip,a/ip,c, as a function of the kinetic parameter  defined as: 
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 ( )*
1 Olog log 0.034( 4)k c a  = + −   (11.128) 

where τ is the time from the reversible half-wave potential to the switching potential, E: 

 ( )1/2
1/2;

E E nF
a E E

v RT


 

−
= = −   (11.129) 

For the reversible processes E1/2 is observed at 0.85 ip,c. An illustration of this method is shown 

in ref. 139 

11.16.3 ECE and disproportionation (DISP) mechanisms 

These two mechanisms are interrelated and three reaction schemes can be 

distinguished.140-147ECE 

This mechanism is described by the reactions 

 1 1O  +  Re   (11.130) 

 
b

f
1 2R O

k

k

⎯⎯→⎯⎯   (11.131) 

 2 2O Re+   (11.132) 

where the chemical reaction (11.131) is the rate determining step. 

However, because of the standard potentials of reactions (11.130) and (11.132) a 

homogeneous redox reaction is possible: 

 
D

1 2 1 2R O  O R
k

⎯⎯⎯→+ +⎯⎯   (11.133) 

In the ECE mechanism this reaction does not proceed. 

 

2) DISP1 

In this mechanism reactions (11.130), (11.131), and (11.133) proceed with the first order 

reaction (11.131) as the rate determining step. 

 

3) DISP2 

In this case reactions (11.130), (11.131), and (11.133) proceed with the second order 

reaction (11.133) as the rate determining step. 

 

The kinetics of these processes might be studied using the dependence of the peak potential on 

the sweep rate and concentration but it is simpler to study the increase of the peak current due to 

these reactions. These equations are:140,146 

ECE 

 
0

p 1 0.78 ln ln (1 )
2

RT RT RT RT k
E E K

F F F F v

 
= − + + + 

 
  (11.134) 

DISP1 

 
0

p 1 1.127 ln ln
2 2 (1 )

RT RT RT RT k
E E

F F F F v K
= − + +

+
  (11.135) 

DISP2 
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*

0 D O
p 1 1.268 ln ln

3 3

RT RT RT RT k c
E E

F F F F vK
= − + +   (11.136) 

where f bk k k= +  and f b/K k k= .  

Similar equations were also developed for the convoluted curves.103 

Nevertheless, it is usually easier to study the increase of the peak current and to determine the 

kinetics from the plot of the peak current in the presence of the reaction, ip,k to that in its absence, 

ip,d for ECE 148,149 and DISP1150,151 mechanisms. 

 

11.16.4 Catalytic processes 

The increase of the current due to the catalytic reaction depends on the reversibility of the 

redox process. Changes in shape of the cyclic voltammograms for the reversible charge transfer 

and irreversible catalytic reactions are displayed in Fig. 11.67.118  

 
Fig. 11.67. Cyclic voltammograms (current function) for the reversible charge transfer followed 

by the irreversible catalytic reaction for different values of the kinetic parameter 

f f/ /k a RTk nFv= .118 
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With increase of the kinetics of the catalytic reaction the cathodic (forward) current increases 

and the anodic peak current disappears as the product is quickly transformed into ox. The ratio of 

the kinetic to diffusion limited peak current is displayed in Fig. 11.68. 

 
Fig. 11.68. Dependence of the ratio of the kinetic, ip,k to the diffusion limited, ip,d as a function of 

the kinetic parameter 
1/2

f( / )RTk nFv  for the catalytic mechanism with reversible (VII) and 

irreversible (VIII) electron transfer reaction.118 

Some applications were reviewed by Savéant.152 
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12 Rotating disk electrode 

12.1 Introduction 

In the above chapters transport of electroactive species to the electrode was by diffusion only. 

These methods are called transient techniques. In this chapter we will consider one technique 

with forced convective mass transport: rotating disk electrode. Other methods with convective 

(called also hydrodynamic) mass transport methods are: wall jet electrode, vibrating electrodes, 

streaming mercury electrodes, etc.153-160 It should be added that in the electrochemical cells there 

might appear natural convection related to the temperature gradient which causes the density 

gradient and solution movement. There might also be convection due to gas bubbling. However, 

using the rotating disk electrode the hydrodynamic conditions are very well defined. 

The rotating disk electrode, RDE, is displayed in Fig. 12.1. It is placed vertically and rotates 

with a constant frequency, f, in, s-1 (or Hz) revolutions per second. The angular frequency is then 

2 f = . The disk is usually made of Pt, Au, glassy carbon, but may be made of any other 

material. 

 
Fig. 12.1. Rotating disk electrode.8   

12.2 The solution velocity profile 

In order to solve the equation for the current at the RDE one should know liquid velocity, V , 

profiles in solution generated by the electrode rotation. This problem was solved separately by 

von Karman and Cochrane.161 There are two equations describing the system which should be 

solved simultaneously: 

1) Equation of continuity 

 div 0V =   (12.1) 
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2) Navier-Stokes equation 

 
21

s s

dV f
P V

dt d d
= −  +  +   (12.2) 

where V  is the vector of the solution velocity: 

 x y( , , ) zV x y z iV jV kV= + +   (12.3) 

where i , j  k   are unit vectors of the axes, P is the pressure,  operator denotes the gradient: 

 grad
P P P

P P i j k
x y z

  
 = = + +

  
  (12.4) 

div is the divergence of a vector: 

 
i,yi,x i,z

div
VV V

V V
x y z

 
=   = + +

  
  (12.5) 

ds is the solution density, v is the kinematic viscosity, in cm2 s-1, i.e. the ratio of the solution 

viscosity, s and density: 

 
s

s

v
d


=   (12.6) 

f  is the force per volume exerted on a solution element by gravity. The kinematic viscosity of 

water is: 

 
2

2 1
H O 0.01cm s  at  20 C −=   (12.7) 

The Navier-Stokes equation represents the Newton’s first law for the liquid, the second term 

represents the liquid friction forces, and the third the natural convection due to differences in 

solution density. 

In order to solve this problem the Cartesian coordinates: x,y,z, should be changed to 

cylindrical, r, y, ϕ, see Fig. 12.2. 

 
Fig. 12.2. Cylindrical coordinates for the RDE.8 

Rotation of the electrode causes movement of the solution towards the disk and then outside of 

the center. This process is well visible when graphite powder is added to the solution, Fig. 12.3. 

Rotating disk acts as a pump sucking solution for the bulk to the surface. 
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Fig. 12.3. Liquid flow patterns at a RDE. Electrode rotates at 10 rpm. 

Moreover two types of flow may be distinguished: laminar and turbulent. This is illustrated in 

Fig. 12.4. 

 

 
Fig. 12.4. Laminar (left) and turbulent (right) flows.8 
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When the flow is smooth and steady, and occurs as if separate layers (laminae) of the fluid 

have steady and characteristic velocities, the flow is said to be laminar, Fig. 12.4. The velocity at 

the tube walls is zero and it is maximal at the center and the velocity profile is parabolic. This is 

observed at lower velocities. On the other hand when the flow is fast it can become locally 

chaotic and unsteady it is called turbulent. In such a case the fluid also moves in tube but on 

average forms a different velocity profile. Turbulent flow will also appear if there is an obstacle 

in the solution, Fig. 12.4. In hydrodynamics one uses dimensionless variable called Reynolds 

number, Re, defined as: 

 Re =  ch l/v (12.8) 

where ch is the characteristic velocity, l is the characteristic length, and v kinematic viscosity of 

the fluid. When this number exceeds certain critical number, Recr, the flow becomes turbulent. 

For the RDE the characteristic velocity of the edge of the disk is: ch =  r1 where r1 is the disk 

radius. Then, the Reynolds number is: 

 

 
2

1Re
r

v


=   (12.9) 

For lower rotation rates the flow is laminar. More details will be given later. 

 

The problem solved bay von Karman and Cochrane is defined as: 

 y = 0,  Vr = 0,  Vy = 0,  V = r 

 y → ,  Vr = 0,  Vy = U0 V = 0 

assuming that: 

1) The flow is stationary (dV/dt = 0) and laminar 

2) The flow does not depend on the coordinate , because of the axial symmetry 

/ 0  =   

3) The fluid is not compressible and its surface is horizontal 

4) 0f =  natural convection might be neglected 

Under such conditions the continuity and Navier-Stokes equations might be written as: 
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  (12.10) 

The solution, i.e. three components of the velocity, was given in terms of the dimensionless 

distance: 
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




=   (12.11) 

 
2

31
( )

2 3
rV r F r a b


    

 
=   = − − + 

 
 

  (12.12) 

 
31

( ) 1
3

V r G r b a     
 

=   = + + + 
 

  (12.13) 

 
3 4

1/2 2( ) ( )
3 6

y
b

V H a
 

    
 

= =  − + + + 
 
 

  (12.14) 

where a = 0.51023 and b = 0.6159. 

At the electrode surface, when y → 0, the solution velocity can be written keeping only the 

first term in Eq. (12.14): 

 ( )2 3/2 1/2 20.5102yV a y    −= − = −   (12.15) 

On the other hand, when y → , the solution for H() is given by: 

   0.88447  2.1( ) (1 exp  0.884  ...)H  = − + −  −   (12.16) 

and the velocity becomes constant: 

 00.88447yV U= − =   (12.17) 

Hydrodynamic layer which rotates with the electrode has thickness 

 
h h

h

3.6

3.6

y
v

v
y






= =

=

  (12.18) 

It is called the hydrodynamic or Prandtl boundary layer thickness and represents the thickness 

of liquid dragged by the disk. Under these condition H(3.6) = 0.8 H() and G(3.6) = 0.05 G(0). 

This means that outside this layer the solution velocity is small, 5% of the rotation at the disk 

surface and the vertical speed is 80% of the maximal value at infinity. The plots of the functions 

F, G, and H on distance from the electrode is illustrated in Fig. 12.5. 
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Fig. 12.5. Variation of the velocity components with the dimensionless distance .8 

Function F() corresponding to the radial velocity is zero at the surface as for the laminar flow 

the first layer of the solution turns with the disk surface. It passes through a maximum and 

decreases far from the surface meaning that the solution far from the disk surface does not flow 

radially. Function G() corresponds to the solution rotation velocity; solution rotates with the 

disk at the disk surface and with the increase of distance from the surface this rotations decreases 

to zero due to the friction (viscosity). Function H() corresponds to the velocity towards the disk 

from the bulk of solution. Of course at the electrode surface solution cannot go any further but 

with the increase in distance from the disk it goes to a constant. The velocity profiles are shown 

in Fig. 12.6. Vector representation of fluid velocities near the rotating disk are shown in Fig. 

12.7. 

 
Fig. 12.6. Variation of the normal, Vy, and radial Vr fluid velocities as functions of the distance 

from the disk surface and the radial distance, r.8 
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Fig. 12.7. (a) Vector representation of fluid velocities near the rotating disk; (b) flow vectors in 

the liquid.8 

The size of the hydrodynamic layer, yh, depends on the rotation rate. For water  = 0.01 cm2 s-1 

and the following distances are obtained: 

 

Table 12.1. Dependence of the thickness of the hydrodynamic layer on the rotation angular 

velocity. 

/s-1 f / rpm yh/cm 

1 

10 

100 

1000 

9.55 

95.5 

955 

9550 

0.36 

0.11 

 0.036 

 0.011 

12.3 Solution of the convective-diffusion problem 

Knowing the solution velocity in liquid it is possible to solve the Fick equation involving 

convection and diffusion. For one dimensional conditions it has been already presented: 

 

i,xi

i
i,x i i x

2
i i i

x2

Jc

t x

c
J D c V

x

c c c
D V

t xx


= −

 


= − +



  
= −

 

  (12.19) 

However, for the rotating disk electrode a three dimensional equation must be considered: 
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i i i
i i i i i i
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i i

2 2 2
yi i i i i i i x z

i x y z i2 2 2
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i i i i
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c c c c
D
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=

   
= − + + + = −  + 

   


= − =



           
= + + − − − − + +               

   
= + +

   

i j k

i i i
x y z2

2 2 2
2 2i

i i i 2 2 2
where

c c c
V V V

x y z

c
D c V c

t x y z

    
− − − 

     

   
=  −   =  = + +

   

  (12.20) 

In the development it was taken into account that divergence of V  is zero, Eq. (12.1). It can be 

noticed that the flux is a vector but its divergence, div, and the Laplacian 
2  are scalars. 

This problem may be simplified taking into account cylindrical symmetry of the system. 

Changing Cartesian coordinates into cylindrical and assuming a steady-state, O / 0c t  =  gives: 

 
2 2 2

O O O O O O O
r O 2 2 2 2

1 1 c
y

Vc c c c c c
V V D

r r y r ry r r

       
+ + = + + + 

       

  (12.21) 

This equation might be further simplified assuming: 

1) DO is independent of the concentration 

2) cO is independent of the coordinate , i.e. 
2

O O
2

0
c c 

= =
 

 

3) cO is independent of the coordinate r for y = 0, i.e. for 0  r  r1 O 0
c

r


=


 

4) disk surface is smooth 

 

Under such conditions much simpler ordinary differential equation is obtained with the 

following conditions: 

 

2
O O

O 2

O

*
O O

d d

d d

0 0

y
c c

V D
y y

y c

y c c

=

= =

→  =

  (12.22) 

where conditions of the limiting current were assumed. To solve it first substitution is carried 

out: 
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2
O O

2

y

O

d d d

d dd

c c X
X

y yy

V dX
X

D dy

= =

=

  (12.23) 

rearranging and integrating gives: 

 

y

O

y 1
O 0

1 y
O 0

d
d

1
ln ( )d

1
exp ( )d

y

y

VX
y

X D

X V z z a
D

X a V z z
D

=

= +

 
 =
 
 





  (12.24) 

Returning to the original variables: 

 O
1 y

O 0

d 1
exp ( )d

d

y
c

a V z z
y D

 
 =
 
 

   (12.25) 

and integrating gives: 

 

O 1 y
O 0

O 1 y 2
O0 0

1
exp ( )d d

1
( ) exp ( )d d

y

y t

dc a V z z y
D

c y a V z z t a
D

 
 =
 
 

 
 = +
  



 

  (12.26) 

Constant a2 might be determined from the surface condition: 

 

0

O 1 y 2
O0 0

2

1
(0) 0 exp ( )d d

0

t

c a V z z t a
D

a

 
 = = +
  

=

    (12.27) 

Constant a1 might be determined form the condition in the bulk of the solution. The integration 

form the surface, y = 0 to infinity might be divided into two parts, one inside the hydrodynamic 

layer, [0, yh], I1, and the other outside the hydrodynamic layer [yh, ], I2: 

 

( )

h

h 0

1 2

*
O 1 y

O0 0

1 y 1 y
O O0 0

1 1 2

1
exp ( )d d

1 1
exp ( )d d exp ( )d d

t

y t t

y

I I

c a V z z t
D

a V z z t a V z z t
D D

a I I



  
 = =
  

  
  = + =
     

= +

 

      (12.28) 
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The hydrodynamic conditions inside and outside the hydrodynamic layer are described by Eqs. 

(12.15) and (12.17): 

 

3/2 1/2 2 2 3/2 1/2
h

h

0                       0.51 0.51

                  0.8

;

845

y

y

y y V y By

y y V

B  



− −  = − = =−

 = −
  (12.29) 

Integration inside the hydrodynamic layer gives: 

 

( )

( ) ( )

h

1 y
O0 0

3
2

y

0 0

1
exp d d

but

d d
3

y t

t t

I V z r t
D

Bt
V z z Bz z

 
 =
  

= − = −

 

 

  (12.30) 

then 

 

h
3

1
O0

exp d
3

y
B

I t t
D

 
= − 

 
   (12.31) 

This integral might be evaluated using substitutions: 

 O33 3

O O

3
d d d d

3 3

B B D
u t u t t u

D D B
= = =   (12.32) 

The integration limits are also transformed: 

 

3 3 3h
O O O

h: from 0 to

from 0 to: 3.6 1.995 1
3 3

B B
u y

y y

D D D

 


 =  = 

 

For water, v = 0.01 cm2 s-1 and DO ~ 10-5 cm2 s-1, the upper limit of u is large: 

 3
5

0.01
1.995 ~ 20

10
u

−
=   (12.33) 

and the integration might be safely conducted to infinity: 

 

3

O 3 3 3

2
20

O O O3 3 3
1

0 0 0

3 3 3
d d d

D
u u uD D D

I e u e u e u
B B B




− − −= =      (12.34) 

but the integral to the infinity is known analytically: 

       
3

2/3
0 0

1 4 1 1
d d 0.8934 or more precisely 0.89298

3 3 3 3

t
u e

e u t
t

  −
−    

= =  =  =   
   

    (12.35) 

where (x) is the gamma function. Then the integral I1 is: 

 

1/3 1/6
1/3 1/6 1/2O3

1 O1/2

3
0.8934 1.6126

0.51

D
I D


 



−=  =   (12.36) 

Next, let us evaluate I2: 
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

  (12.37) 

Knowing that for aqueous solutions v/DO ~ 103, exponent exp(-3180) ~ 0. Therefore, only I1 is 

important and the parameter a1 is easily determined: 

 

* 1/3 1/6 1/2
O 1 O

* 1/2
O

1 1/3 1/6
O

1.6126

0.620

c a D v

c
a

D







−= 

=
  (12.38) 

Using this constant in Eq. (12.28) the concentration as a function of the distance is found: 

 

* 1/2
3O

O 1/3 1/6
OO 0

( ) 0.620 exp d
3

y
c B

c y t t
DD





 
= − 

 
   (12.39) 

and the concentration gradient at the surface: 

 

* 1/2
O
1/3 1/6
O

d (0)
0.620

d

c c

y D




=   (12.40) 

allows for the determination of the current: 

 2/3 1/2 1/6 *
O O O

dc(0)
0.620

d
li nFAD nFAD c

y
  −= =   (12.41) 

This is so called Levich equation. It predicts that the limiting current is proportional to the bulk 

concentration, 
*
Oc  and the square root of the rotation rate, 

1/2 . The value: 

 
2/3 1/6
O1/2 *

O

0.620ii nFAD v
c

−=   (12.42) 

is called Levich constant. The thickness of the diffusion layer, O, is: 

 
*

1/3 1/2 1/6O
O O O

O

1.613l
c

i nFAD D  


−= =   (12.43) 

The ratio of the hydrodynamic and diffusion layer thickness is: 

 h 3
1/3 1/2 1/6

O OO

3.6

2
1.61

y

DD





  −
=    (12.44) 

The term under root is called Schmidt number: 
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O

Sc
v

D
=   (12.45) 

and for aqueous solutions it is: Sc = 1000 and O  0.05 yh. The values of these parameters for 

different rotation rates are shown in Table 12.2. It should be recalled that the hydrodynamic layer 

is the portion of the solution rotating with the electrode and the diffusion layer thickness is the 

portion of the solution where the concentration gradient occurs, see Table 12.2. 

 

Table 12.2. Values of the hydrodynamic and diffusion layer thicknesses for different rotation 

rates. 

/s-1 yh/cm O/cm 

 

1 

10 

100 

1000 

0.36 

0.11 

0.036 

0.011 

0.018 

0.0055 

0.0018 

5.5×10-4 

 

Eq. (12.43) for the diffusion layer thickness was obtained assuming only the first term in Eq. 

(12.14). Gregory and Riddiford162 presented more exact equation: 

 

0.36
1/3 1/6 1/2 O

O O1.61 1 0.3539
D

D  


−
  

= +  
   

  (12.46) 

The difference between O calculated using Levich and Gregory-Riddiford equations is 3% for 

Sc = v/DO =103 and 17% for v/DO =10. 

Newman163 carried out calculation for a wider interval of DO/v and obtained: 

 

1/3 2/3
1/3 1/6 1/2 O O

O O1.61 1 0.2980 0.14514
D D

D  
 

−
    

= + +    
     

  (12.47) 

Kassner164 presented a numerical solution valid for up to DO/v = 0.25 and applied it to the 

dissolution of Ta in liquid tin. 

The shape of the RDE has an influence on the fluid flow. The best shape is the bell-like, 

however, it is more complicated to prepare and the cylindrical shapes are usually used in 

experimental research.    
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Fig. 12.8. Steady state fluid flow patterns at different RDE.165 

12.4 Limitations 

There are limitations for the Levich equation, (12.41), at low and high rotation rates. At low 

rotation rates the condition that the electrode radius must be larger than the hydrodynamic layer 

thickness, yh, 

 1 h 3.6 ~ 4
v v

r y
 

 =   (12.48) 

that is: 

 
2

1

16
v

r
    (12.49) 
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Assuming v = 0.01 cm2 s-1 and r1 = 0.1 cm,  > 16 s-1, or f = 2.5 rounds per second or 153 

rpm.  

The upper rotation limit is related with the supposition of the laminar flow which at too high 

rotation rates become turbulent. The Reynolds number, Eq. (12.9), must be lower than the 

critical value, Recr. It was determined153 that the critical Reynolds number is: 

 
2

5 cr 1
crRe 2 10

r

v


  =   (12.50) 

which leads to  < 2×105 s-1 but in practice the limit is lower, cr  1000 s-1 = 160 rounds per 

second = 9600 rpm because of the non-ideal character of the electrode; it might not be perfectly 

polished, surface might not be ideally perpendicular to the rotation axis, there might be a small 

eccentricities in electrode position, cell walls might be too close to the electrode, formation of 

vortex at the electrode, etc. Reassuming, for aqueous solutions and r1 = 0.1 cm the limits are: 

 
1 12.5s 160 s or 153 rpm < 9600 rpmf f− −     (12.51) 

12.5 Concentration profile 

The concentration profile is described by Eq. (12.39), which might be rearranged by 

substitution: 
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  (12.52) 

where 
1/3/ (3 )Y y B= . The plot of the relative concentration versus dimensionless distance 

1/2

1/3 1/6
O O3

3 1.8

y
y

D D

B




=  is displayed in Fig. 12.9. 
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Fig. 12.9. Dimensionless concentration of ox versus dimensionless distance from the electrode.8 

The distance y = O when O

O3

0.89
3D

B


= , Eq. (12.43). 

 

12.6 Current potential curve for the reversible process 

When current is lower than the limiting current, the surface concentration is greater than zero, 

that is: y = 0,  cO(0)  0, and Eq. (12.25) becomes: 

 ( ) ( )
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O O
1 1/3 1/6
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and  
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Integration of this equation gives: 
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y D
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 = + 
    

    (12.55) 

From this equation it is obvious that the surface concentration (integration from 0 to 0) is cO(0) 

= a2. Integration to infinity gives the bulk concentration: 
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and 
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or the current 
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but 
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D
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
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= =   (12.59) 

and, in the case where ox and red forms are initially in the solution, the current might be written 

as: 
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and might be expressed by the forms ox or red: 
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and 
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where the limiting oxidation current is: 
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For the reversible reaction the Nernst law may be used and the following equation is obtained: 
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  (12.64) 

This equation was obtained earlier for the steady-state techniques. 
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12.7 Quasi-reversible and totally irreversible systems 

For the totally irreversible system one can write: 

 ( )f O 0i nFA k c=   (12.65) 

but from Eq. (12.61) 
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  (12.66) 

and Eq. (12.65) becomes 
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At the bottom of the voltammetric curve the surface concentration equals to that of bulk and 

the current is purely kinetic 
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Eq. (12.67) might be rearranged to: 
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  (12.69) 

The plot of 1/i versus -1/2 gives a straight line with the slope depending on the bulk 

concentration and diffusion coefficient and the intercept gives the kinetic current and the rate 

constant. Plot of the total current versus 1/2 gives the curved dependence as at large rotation 

rates current might be limited by the kinetic current. This is shown in Fig. 12.10 

 
Fig. 12.10. Variation of current with 1/2 at an RDE, at constant potential, for slow kinetics.8 
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To obtain the kinetics the plot of Eq. (12.69) is usually carried out; this is so called Koutecký-

Levich plot, Fig. 12.12. All the slopes are identical and the intercept gives the kinetic current and 

the rate constant of the reduction reaction. 

 

 
Fig. 12.11. Koutecký-Levich plots used to determine the electrode kinetics; E1 corresponds to a 

slow and E2 to the fast electrode kinetics.8 
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Fig. 12.12. (a) Current versus potential for the reduction of 1 mM O2 in 0.1 M NaOH at a 

rotating gold disk electrode; (b) Koutecký-Levich plots at different potentials.166 

General equation for the quasi-reversible process was developed earlier, Eq. XXX 
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and because: 
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or 
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  (12.73) 

The plot 1/i vs. -1/2allows for determination of the kinetic parameters. 

Eq. (12.70) might also be rearranged into 
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When the process is totally irreversible, kb = 0, one can obtain equation of the potential-current 

curve at the RDE: 
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Rearranging Eq. (12.75) one can get: 
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The process might be considered as reversible when: 
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and totally irreversible when: 
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12.8 Current distribution 

Current distribution at a rotating disk electrode is, in general, not uniform. In solution current 

flows through the solution resistance and the current density is larger at the disk edges than in its 

center.57,167 There are three principal cases of current distribution: 

a) primary current distribution 

b) secondary current distribution 

c) ternary current distribution 

 

The primary current distribution is observed when the surface and concentration overpotentials 

are neglected and the electrode surface is equipotential. It is displayed in Fig. 12.13. 

 
Fig. 12.13. Primary current distribution at the RDE. Solid lines show lines of equal potential at 

values of ϕ/ϕ0, where ϕ0 is the potential at the disk electrode surface measured against the 

reference electrode at infinity. Dotted lines are lines of current flow. The number of lines per unit 

length represents the current density, j.167 

To obtain the current and potential distribution it is necessary to solve the Laplace’s equation: 

 
2 0  =   (12.79) 

with the boundary conditions at the electrode: 

 gradi  = −  = −    (12.80) 

and  

 0
y


=


  (12.81) 

at the insulating surface where y is the distance perpendicular from the surface. This problem 

was solved by Newman167 and presented in Fig. 12.13. 

It is obvious that the current density is larger at the disk edge than at the center. The direction 

of current is perpendicular to that of the potential. The current density at the disk is described by: 
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  (12.82) 

where iavg is the average current flowing to the disk. It is illustrated in Fig. 12.14. At the disk 

edge the current goes to infinity. 

 
Fig. 12.14. Primary current distribution at the disk electrode according to Eq. (12.82). 

The solution resistance at the disk electrode is: 
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r
 =   (12.83) 

Secondary current distribution is observed for slow electrode kinetics. In such a case the 

current distribution is more uniform than the primary distribution. The current distribution can be 

considered as a function of the dimensionless parameter ρ:154 

 
E

R

R
 =   (12.84) 

where RE is the electrode resistance due to charge transfer and RΩ is the solution resistance. The 

average electrode resistance is given by: 
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and the current is given by Eq.(6.56). The secondary current distribution is shown in Fig. 12.15. 
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Fig. 12.15. Secondary current distribution at an RDE for different values of the parameter ρ, Eq. 

(12.84).154 

When ρ →  (line 10), i.e. when the charge transfer resistance goes to zero and process is 

reversible the current distribution becomes primary, as in Fig. 12.14. When ρ decreases and 

becomes small the current distribution becomes uniform (line 1). As current distribution 

becomes uniform the potential distribution at the electrode becomes non uniform. This effect is 

illustrated in Fig. 12.16. In such a case potential |0| is higher in the center and decreases 

towards the electrode edge. The maximum potential difference between the center of the disk 

and its edge is: 

 
0 avg0.363r i


 =   (12.86) 

Diagnostic plot for the current uniformity at the RDE is displayed in Fig. 12.17. For the 

different values of the solution specific conductivity and kinetic conductance (di/d) in Ω-1 cm-1 

zones of the primary (non-uniform) and secondary (uniform) current distributions can be found. 

 

The ternary current distribution is observed when additional mass transfer, e.g. due to bubble 

formation at the vertical electrode is considered.168 
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Fig. 12.16. Primary current distribution (as in Fig. 12.14) and a dimensionless potential 

distribution for a uniform current density.167 

 
Fig. 12.17. Diagnostic plot for the current uniformity at the RDE.154 
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12.9 Rotating ring-disk electrode 

Rotating ring-disk electrode, RRDE, contains a conductive ring around the central disk. It 

permits studying of the inverse processes as in double potential step chronoamperometry, 

chronopotentiometry with current reversal, or cyclic voltammetry. Schematics of the RRDE is 

presented in Fig. 12.18. The disk radius is r1, and that of the ring between r2 and r3. The surface 

area of the ring is: 
2 2
3 2( )A r r= − . The space between r1 and r2 and that >r3 is insulating (e.g. 

Teflon, Kel-F). 

 

 
Fig. 12.18. Rotating ring-disk electrode.8 

12.9.1 Rotating ring electrode 

Let us first consider a case where only ring surface is active in the electrode process. Let us 

also suppose: 

1) stationary conditions, dc/dt =0 

2) concentration is independent of the angle , c  f() 

3) diffusion coefficient is independent of concentration, D  f(c) 

4) radial diffusion is negligible in comparison with radial convection 
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  (12.87) 

In this case the following equation is obtained from the general Eq. (12.21): 
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Contrary to the equation for the disk, for the ring the radial convection cannot be neglected. 

This equation must be solved with the following conditions: 
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where: 
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This substitution to Eq. (12.88) gives: 
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The total current must be integrated over the electrode surface: 
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Solution for the limiting ring current is: 
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Comparing the ring, Eq. (12.93), and disk, Eq. (12.41), currents gives: 
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This ratio is a constant geometric factor independent of the rotation rate. 

 

12.9.2 Rotating ring-disk electrode: Collection experiment 

There are two principal types of experiments carried out at the RRDE: a) collection experiment 

and b) shielding experiment. In the collection experiment the conditions are such that at the disk 

electrode ox is reduced into red and at the ring red is oxidized into ox, Eq. (12.96). Let us also 



323 

assume that the applied potentials correspond to the conditions of the limiting current, i.e. 

surface concentrations of ox at the disk and that of the red at the ring are zero. Of course, the disk 

current is not affected by the process at the ring. 

 
disk     O + ne = R

ring     R ne = O−
  (12.96) 

Conditions at the ring are: 
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The ring current is: 
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Solution is given in terms of the collection efficiency, N: 
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which depends only on the RRDE geometry: 
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  (12.100) 

The values of N as function of ri can be easily calculated using Excel. For example for:  r1 = 

0.187 cm, r2 = 0.200 cm, r3 = 0.323 cm the collection efficiency is  N = 0.555. The mass flow 

for such an experiment is displayed in Fig. 12.19. Red form generated at the disk is forced 

toward the bulk of solution and to the ring.  
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Fig. 12.19. Concentration profiles of the form red for the collection experiments at the RRDE.154 

Current-potentials steady-state voltammograms for the collection experiment are shown in Fig. 

12.20 (top). Curve (1) represents iD vs. ED and curve (2) iR at a constant potential, E1, 

corresponding to the condition cR(0) = 0. When the disk current increases the ring current 

corresponding to the oxidation of R follows to the constant value described by the collection 

efficiency, N. 

 
Fig. 12.20. (a) disk voltammogram corresponding to the collection experiment: (1) iD vs. ED, (2) 

iR (measured at E = E1) vs. ED; (b) shielding experiment: (3) iR vs. ER when iD = 0 (that is when 

ED = E1), (4) iR vs. ER when iD = iD,l,c (that is when ED = E2).
8 

12.9.3 Rotating ring-disk electrode: Shielding experiment 

When the disk current is zero, iD = 0, the reduction current on the ring is described by Eq. 

(12.93) or, according to Eq. (12.95): 
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 0 2/3
R,l D,li i=   (12.101) 

where iD,l is the limiting current which could have been observed at the disk electrode (if active). 

When the disk current is flowing, the flux of ox to the ring is decreased. Its decrease is the same 

as the flux of stable red product to the ring in a collection experiments, -NiD. The limiting current 

at the ring is: 

 0
R,l R,l Di i Ni= −   (12.102) 

or 

 ( )0 2/3
R.l R.l 1i i N −= −   (12.103) 

This equation shows extend of the decrease of the ring current due to the presence of the disk 

current. Disk is shielding ring by consuming part of the ox form. The curves iR vs. ER are 

displayed in Fig. 12.20b. When the disc current is zero, curve (3), a normal voltammogram on 

the ring is observed. However, when the disk current is not zero, curve (4), and the disk is at the 

potential of the limiting current, E2, at the more positive potentials collection phenomenon is 

observed while at more negative potentials the shielding effect is visible. 

The collection phenomenon is often used in the determination of instable 

products/intermediates of the redox reaction and in the study of the subsequent chemical 

homogeneous reactions. Examples of the application of this method to study the stability of 

Cu(I) during reduction of Cu2+ is displayed below. In the chloride solutions Cu(I) is stabilized by 

the presence of the complex with chlorides and two well separated waves are observed and in the 

potential range of the first wave presence of Cu(I) is detected at the ring electrode, Fig. 12.21. 
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Fig. 12.21. Disk and ring currents vs. disk potential, the potential of the ring is kept positive in 

the range of the limiting current of Cu(I) in 1 M KCl. 169 

The mechanism of the reaction is: 
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  (12.104) 

However, in sulfates, only one reduction wave is observed, but in the potential range at the 

bottom of the wave anodic current on the ring is observed indicating that Cu(I) appears as the 

reduction product,  
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Fig. 12.22. Reduction of Cu2+ vs. disk potential at the RRDE in 1 M Na2SO4.
169 

Similar method was applied to detection of H2O2 during the reduction of O2 in alkaline 

solution at Pt electrode. The intermediate H2O2 was detected by oxidation, Fig. 12.23. This 

method is often used in the selection of electrode materials for oxygen reduction for fuel cells. 
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Fig. 12.23. Reduction of O2 at Pt disk electrode in 0.12 M KOH and oxidation of H2O2 at the 

ring electrode.170 

12.10 Chemical homogeneous reactions  

12.10.1Preceding chemical reaction, CE 

The case of the preceding chemical reaction for RDE was studied by several authors.171-174 In 

this case the reduction current, ik, is smaller than the mass transfer limiting current, il, when the 

preceding reaction is infinitely fast: 
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where 
* *
O Y/K c c= , Eq. (9.175), f bk k = + , and  is the diffusion layer thickness. When: 
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Eq. (12.105) may be expressed as: 
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where 
* * *

O Yc c c= + . This equation may be also expressed in a different form:174 
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Plot of k /i   vs. ki  leads to the kinetic parameter: f b( )K k k+ . Example of such a plot for 

infinitely fast and kinetically limited case is displayed in Fig. 12.24. 
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Fig. 12.24. Dependence of ik / 1/2 versus ik for the preceding homogeneous reaction in RDE;  = 

kf is the forward rate constant.160 

12.10.2 Following chemical reaction, EC 

In this case a shift of the reversible half-wave potential towards more positive values is 

observed:175 

 ( )k 0 1/6 1/6 f
1/2 1/2 Rln 1.61 ln

2

RT RT k
E E v D

nF nF 

−= + +   (12.109) 

 

It is easier to study the kinetics using RRDE. Because of the following reaction the collection 

coefficient decreases.176,177 However, this coefficient depends on the electrode geometry. 

Probably the best way to obtain the working curve is to carry out the digital simulations.177 An 

example of the dependence of the collection coefficient as a function of the kinetic parameter 

XKT = 
1/3 1/3 2/3

f / (0.51)k v D  is displayed in Fig. 12.25. 

 
Fig. 12.25. Example of the dependence of the collection coefficient, Nk, as a function of the 

kinetic parameter XKT for the following chemical reaction in RRDE,177 points from ref.176. 
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12.10.3 ECE mechanism 

Theory of the ECE reaction was solved by Filinovsky178 and Riger.179 The limiting current 

might be expressed as:179 
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where d is the diffusion layer thickness, Eq. (12.43) and ’
k the thickness of the kinetic layer: 
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The last term in parentheses in Eq. (12.110) changes between 2 for fast kinetics to 1 for slow 

kinetics. An example of the determination of the kinetics of the ECE reaction ion the case of 

electrooxidation of acetyltriphenylamine is shown in Fig. 12.26.180 

 

  
Fig. 12.26. Determination of the kinetics of the acetyltriphenylamine showing the effective 

number of electrons exchanged versus kinetic parameter ~-1.180 

12.10.4 Catalytic reactions 

Catalytic reaction increases the limiting current.179,181,182 The kinetic limiting current is 

described as: 
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